Evaluation of Dietary Probiotic Bacteria and Processed Yeast (GroPro-Aqua) as the Alternative of Antibiotics in Juvenile Olive Flounder Paralichthys olivaceus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Collection and Preparation of Probiotic Bacteria
2.3. Experimental Diets
2.4. Animals and Experimental Set-Up
2.5. Sample Collection and Analyses
2.6. Proximate Composition Fish and Feeds
2.7. Serum Biochemical Analysis
2.8. Serum Enzyme Activity Analysis
2.9. Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) Analysis
2.10. Histology
2.11. Challenge Test against Edwardsiella tarda
2.12. Statistical Analysis
3. Results
3.1. Growth Performance of Fish
3.2. Whole-Body Proximate Composition
3.3. Serum Biochemical Parameters of Fish Blood
3.4. Immune Enzymes Analyses in Fish
3.5. Immune and Growth Related Gene Expressions in Fish
3.6. Histology of Anterior Intestine of Fish
3.7. Challenge Test against Edwardsiella tarda
4. Discussion
4.1. Growth and Somatic Indices of Olive Flounder
4.2. Hematology of Olive Flounder
4.3. Non-Specific Immune Responses and Growth Hormone in Olive Flounder
4.4. Histomorphology of Intestine in Olive Flounder
4.5. Disease Resistance in Olive Flounder Challenged with Edwardsiella tarda
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bostock, J.; McAndrew, B.; Richards, R.; Jauncey, K.; Telfer, T.; Lorenzen, K.; Little, D.; Ross, L.; Handisyde, N.; Gatward, I.; et al. Aquaculture: Global status and trends. Phil. Trans. R. Soc. B 2010, 365, 2897–2912. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquacult. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Flegel, T.W. A future vision for disease control in shrimp aquaculture. J. World Aquac. Soc. 2019, 50, 249–266. [Google Scholar] [CrossRef]
- Choi, S.; Sim, W.; Jang, D.; Yoon, Y.; Ryu, J.; Oh, J.; Woo, J.-S.; Kim, Y.M.; Lee, Y. Antibiotics in coastal aquaculture waters: Occurrence and elimination efficiency in oxidative water treatment processes. J. Hazard. Mater. 2020, 396, 122585. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Min, T.S. Curcumin, curcumin nanoparticles and curcumin nanospheres: A review on their pharmacodynamics based on monogastric farm animal, poultry and fish nutrition. Pharmaceutics 2020, 12, 447. [Google Scholar] [CrossRef]
- Grenni, P.; Ancona, V.; Caracciolo, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Kim, H.H.; Shin, H.W.; Kim, H.S.; Kim, N.Y.; Chin, S.Y.; Karthikeyan, A.; Choi, H.J.; Kim, G.S.; Min, T.S. Evaluation of Dietary Curcumin Nanospheres in a Weaned Piglet Model. Antibiotics 2021, 10, 1280. [Google Scholar] [CrossRef]
- Bai, S.C.; Katya, K.; Yun, H.H. Additives in aquafeed: An overview. In Feed and Feeding Practices in Aquaculture; Allen, D.D., Ed.; Woodhead Publishing; Elsevier: Cambridge, UK, 2015; pp. 171–191. [Google Scholar]
- Won, S.; Moniruzzaman, M.; Lee, S.; Hong, J.W.; Park, J.K.; Kim, S.; Bai, S.C. Evaluation of dietary natural mineral materials as an antibiotic replacer on growth performance, non-specific immune responses and disease resistance in rainbow trout, Oncorhynchus mykiss. Aquac. Res. 2017, 48, 4735–4747. [Google Scholar] [CrossRef]
- Park, Y.; Park, M.; Hamidoghli, A.; Kim, C.H.; Bai, S.C. Optimum dietary processed sulfur (Immuno-F) level has antibiotic effects on the growth, hematology and disease resistance of juvenile olive flounder, Paralichthys olivaceus. Anim. Feed Sci. Technol. 2021, 279, 115035. [Google Scholar] [CrossRef]
- Bae, J.; Hamidoghli, A.; Won, S.; Choi, W.; Lim, S.G.; Kim, K.W.; Lee, B.J.; Hur, S.W.; Bai, S.C. Evaluation of seven different functional feed additives in a low fish meal diet for olive flounder, Paralichthys olivaceus. Aquaculture 2020, 525, 735333. [Google Scholar] [CrossRef]
- Wu, C.; Yang, Z.; Song, C.; Liang, C.; Li, H.; Chen, W.; Lin, W.; Xie, Q. Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific pathogen-free chickens. Poult. Sci. 2018, 97, 3837–3846. [Google Scholar] [CrossRef] [PubMed]
- Hamidoghli, A.; Won, S.; Lee, S.; Lee, S.; Farris, N.W.; Bai, S.C. Nutrition and Feeding of Olive Flounder Paralichthys olivaceus: A Review. Rev. Fish. Sci. Aquac. 2020, 28, 340–357. [Google Scholar] [CrossRef]
- Back, S.J.; Park, S.J.; Moon, J.S.; Lee, S.B.; Jo, S.J.; Nam, T.J.; Bai, S.C.; Kong, I.S.; Lee, K.J.; Lee, B.J.; et al. The effects of dietary heat-killed probiotics bacteria additives in low fishmeal feed on growth performance, immune responses, and intestinal morphology in juvenile olive flounder Paralichthys olivaceus. Aquac. Rep. 2020, 18, 100415. [Google Scholar] [CrossRef]
- Lee, S.; Katya, K.; Park, Y.; Won, S.; Seong, M.; Hamidoghli, A.; Bai, S.C. Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish Immun. 2017, 61, 201–210. [Google Scholar] [CrossRef]
- Hasan, M.T.; Jang, W.J.; Lee, B.; Kim, K.W.; Hur, S.W.; Lim, S.G.; Bai, S.C.; Kong, I. Heat-killed Bacillus sp. SJ-10 probiotic acts as a growth and humoral innate immunity response enhancer in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2019, 88, 424–431. [Google Scholar] [CrossRef]
- Nguafack, T.T.; Jang, W.J.; Hasan, M.T.; Choi, Y.H.; Bai, S.C.; Lee, E.W.; Lee, B.J.; Hur, S.W.; Lee, S.H.; Kong, I.S. Effects of dietary non-viable Bacillus sp. SJ-10, Lactobacillus plantarum, and their combination on growth, humoral and cellular immunity, and streptococcosis resistance in olive flounder (Paralichthys olivaceus). Res. Vet. Sci. 2020, 131, 177–185. [Google Scholar] [CrossRef]
- Jang, W.J.; Hasan, M.T.; Lee, B.J.; Hur, S.W.; Lee, S.H.; Kim, K.W.; Lee, E.W.; Kong, I.S. Effect of dietary differences on changes of intestinal microbiota and immune-related gene expression in juvenile olive flounder (Paralichthys olivaceus). Aquaculture 2020, 527, 735442. [Google Scholar] [CrossRef]
- Olmos, J.; Acosta, M.; Mendoza, G.; Pitones, V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch. Microbiol. 2020, 202, 427–435. [Google Scholar] [CrossRef]
- Todorova, S.; Kozhuharova, L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J. Microbiol. Biotechnol. 2010, 26, 1207–1216. [Google Scholar] [CrossRef]
- Zokaeifar, H.; Balcazar, J.L.; Saad, C.R.; Kamarudin, M.S.; Sijam, K.; Arshad, A.; Nejat, N. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2012, 33, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Moniruzzaman, M.; Lee, S.; Hong, J.W.; Won, S.; Lee, J.M.; Yun, H.; Kim, K.W.; Ko, D.; Bai, S.C. Comparison of the effects of dietary single and multi-probiotics on growth, non-specific immune responses and disease resistance in starry flounder, Platichthys stellatus. Fish Shellfish Immunol. 2016, 59, 351–357. [Google Scholar] [CrossRef]
- Won, S.; Hamidoghli, A.; Choi, W.; Park, Y.; Jang, W.J.; Kong, I.S.; Bai, S.C. Effects of Bacillus subtilis WB60 and Lactococcus lactis on Growth, Immune Responses, Histology and Gene Expression in Nile Tilapia, Oreochromis niloticus. Microorganisms 2020, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Won, S.; Hamidoghli, A.; Choi, W.; Bae, J.; Jang, W.J.; Lee, S.; Bai, S.C. Evaluation of Potential Probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune-Related Genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms 2020, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xie, J.; Liu, Z.; Yin, P.; Chen, M.; Liu, Y.; Tian, L.; Niu, J. Modulation of growth performance, non-specific immunity, intestinal morphology, the response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella) by dietary supplementation of a multi-strain probiotic. Comp. Biochem. Physiol. Part C 2020, 231, 108724. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.Q.; Tian, L.X.; Liu, Y.J.; Niu, J. Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comp. Biochem. Physiol. Part C 2020, 236, 108791. [Google Scholar] [CrossRef]
- Da Costa Sousa, N.; do Couto, M.V.S.; Abe, H.A.; Paixão, P.E.G.; Cordeiro, C.A.M.; Monteiro, L.E.; Ready, J.S.; Jesus, G.F.A.; Martins, M.L.; Mouriño, J.L.P.; et al. Effects of an Enterococcus faecium-based probiotic on growth performance and health of Pirarucu, Arapaima gigas. Aquac. Res. 2019, 50, 3720–3728. [Google Scholar] [CrossRef]
- Bae, J.; Song, Y.; Moniruzzaman, M.; Hamidoghli, A.; Lee, S.; Je, H.; Choi, W.; Min, T.S.; Bai, S.C. Evaluation of Dietary Soluble Extract Hydrolysates with or without Supplementation of Inosine Monophosphate Based on Growth, Hematology, Non-Specific Immune Responses and Disease Resistance in Juvenile Nile Tilapia Oreochromis niloticus. Animals 2021, 11, 1107. [Google Scholar] [CrossRef]
- Li, P.; Gatlin, D.M., III. Nucleotide nutrition in fish: Current knowledge and future applications. Aquaculture 2006, 251, 141–152. [Google Scholar] [CrossRef]
- Adel, M.; Lazado, C.C.; Safari, R.; Yeganeh, S.; Zorriehzahra, M.J. Aqualase®, a yeast-based in-feed probiotic, modulates intestinal microbiota, immunity and growth of rainbow trout Oncorhynchus mykiss. Aquac. Res. 2017, 48, 1815–1826. [Google Scholar] [CrossRef]
- Jin, M.; Xiong, J.; Zhou, Q.C.; Yuan, Y.; Wang, X.X.; Sun, P. Dietary yeast hydrolysate and brewer’s yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2018, 82, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Cao, S.; Zou, T.; Han, D.; Liu, H.; Jin, J.; Yang, Y.; Zhu, X.; Xie, S.; Zhou, W. Effects of dietary yeast culture on growth performance, immune response and disease resistance of gibel carp (Carassius auratus gibelio CAS III). Fish Shellfish Immunol. 2018, 82, 400–407. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.Z.; Wang, A.; Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huyben, D.; Nyman, A.; Vidakovic, A.; Passoth, V.; Moccia, R.; Kiessling, A.; Dicksved, J.; Lundh, T. Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture 2017, 473, 528–537. [Google Scholar] [CrossRef]
- Reyes-Becerril, M.; Guluarte, C.; Ceballos-Francisco, D.; Angulo, C.; Esteban, M.A. Dietary yeast Sterigmatomyces halophilus enhances mucosal immunity of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2017, 64, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Bae, S.S.; Lee, J.H.; Park, G.H.; Lee, J.Y. Dietary squid liver powder (SLP) with dehulled soybean meal (DHSM) as a fish meal (FM) substitute for olive flounder, Paralichthys olivaceus. Korean J. Fish. Aqua Sci. 2009, 42, 243–249. [Google Scholar]
- Ringø, E.; Sperstad, S.; Myklebust, R.; Mayhew, T.M.; Mjelde, A.; Melle, W. The effect of dietary krill supplementation on epithelium-associated bacteria in the hindgut of Atlantic salmon (Salmo salar L.): A microbial and electron microscopical study. Aquac. Res. 2006, 37, 1644–1653. [Google Scholar] [CrossRef]
- Xia, Y.; Lu, M.; Chen, G.; Cao, J.; Gao, F.; Wang, M.; Liu, Z.; Zhang, D.; Zhu, H.; Yi, M. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2018, 76, 368–379. [Google Scholar] [PubMed]
- Bai, S.C.; Kim, K.W. Effects of dietary animal protein sources on growth and body composition in Korean rockfish, Sebastes schlegelii. J. Aquacult. 1997, 10, 77–85. [Google Scholar]
- Kim, D.H.; Austin, B. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shell. Immunol. 2006, 21, 513–524. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists (AOAC): Arlington, VA, USA, 1995. [Google Scholar]
- Hultmark, D.; Steiner, H.; Rasmuson, T.; Boman, H.G. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 1980, 106, 7–16. [Google Scholar] [CrossRef]
- Quade, M.J.; Roth, J.A. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol. Immunopathol. 1997, 58, 239–248. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Balcazar, J.L.; Rojas-Luna, T. Cunningham DP. Effect of the addition of four potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. J. Invertebr. Pathol. 2007, 96, 147–150. [Google Scholar] [CrossRef]
- Son, V.M.; Chang, C.C.; Wu, M.C.; Guu, Y.K.; Chiu, C.H.; Cheng, W. Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses and disease resistance of the grouper Epinephelus coioides. Fish Shellfish Immunol. 2009, 26, 691–698. [Google Scholar] [CrossRef]
- Hasan, M.T.; Jang, W.J.; Lee, B.J.; Hur, S.W.; Lim, S.G.; Kim, K.W.; Han, H.S.; Lee, E.W.; Bai, S.C. Dietary Supplementation of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 Combinations Enhance Growth and Cellular and Humoral Immunity in Olive Flounder (Paralichthys olivaceus). Probiot. Antimicrob. Prot. 2021, 13, 1277–1291. [Google Scholar] [CrossRef]
- Skrodenyte-Arbaciauskiene, V. Enzymeatic activity of intestinal bacteria in roach Rutilus rutilus. Fish. Sci. 2007, 73, 964–966. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Damusaru, J.H.; Won, S.H.; Cho, S.J.; Chang, K.H.; Bai, S.C. Effects of partial replacement of dietary fish meal by bioprocessed plant protein concentrates on growth performance, hematology, nutrient digestibility and digestive enzyme activities in juvenile Pacific white shrimp, Litopenaeus vannamei. J. Sci. Food Agric. 2020, 100, 1285–1293. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Bae, J.H.; Won, S.H.; Cho, S.J.; Chang, K.H.; Bai, S.C. Evaluation of solid-state fermented protein concentrates as a fish meal replacer in the diets of juvenile rainbow trout, Oncorhynchus mykiss. Aquac. Nutr. 2018, 24, 1198–1212. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, H.M.; Mai, K.S.; Zhang, W.B.; Liufu, Z.G.; Xu, W. Interaction of dietary Bacillus subtilis and Fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicas. Fish Shellfish Immunol. 2010, 29, 204–211. [Google Scholar] [CrossRef]
- Aly, S.M.; Mohamed, M.F.; John, G. Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquac. Res. 2008, 39, 647–656. [Google Scholar] [CrossRef]
- Jahan, H.; Tumpa, I.J.; Qasem, W.A.; Moniruzzaman, M.; Pervin, M.A.; Akter, R.A.; Omri, W.; Min, T.S.; Hossain, Z. Evaluation of the partial replacement of dietary fish meal with fermented or untreated soybean meal in juvenile silver barb, Barbonymus gonionotus. Front. Nutr. 2021, 8, 733402. [Google Scholar] [CrossRef] [PubMed]
- Siddik, M.A.B.; Foysal, M.J.; Fotedar, R.; Francis, D.S.; Gupta, S.K. Probiotic yeast Saccharomyces cerevisiae coupled with Lactobacillus casei modulates physiological performance and promotes gut microbiota in juvenile barramundi, Lates calcarifer. Aquaculture 2022, 546, 737346. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Diaz, J.; Munoz-Quezada, S.; Gomez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef] [Green Version]
- Maita, M. Fish health assessment. In Dietary Supplements for the Health and Quality of Cultured Fish; Nakagawa, H., Sato, M., Gatlin, D.M., III, Eds.; CABI: Washington, DC, USA, 2007; pp. 10–35. [Google Scholar]
- Park, Y.; Lee, S.; Hong, J.W.; Kim, D.; Moniruzzaman, M.; Bai, S.C. Use of probiotics to enhance growth, stimulate immunity and confer disease resistance to Aeromonas salmonicida in rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2017, 48, 2672–2682. [Google Scholar] [CrossRef]
- Magnadottir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef]
- Kiron, V. Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol. 2012, 173, 111–133. [Google Scholar] [CrossRef]
- Saurabh, S.; Sahoo, P.K. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- Oliver, W.T.; Wells, J.E. Lysozyme as an alternative to growth promoting antibiotics in swine production. J. Anim. Sci. Biotechnol. 2015, 6, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Valadez-Cosmes, P.; Raftopoulou, S.; Mihalic, Z.N.; Marsche, G.; Kargl, J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol. Therapeut. 2021, 236, 108052. [Google Scholar] [CrossRef]
- Davies, M.J. Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol. Therapeut. 2021, 218, 107685. [Google Scholar] [CrossRef]
- Platanitis, E.; Decker, T. Regulatory Networks Involving STATs, IRFs, and NFκB in Inflammation. Front. Immunol. 2018, 9, 2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, M.; Hikima, J.; Kono, T. Fish cytokines: Current research and applications. Fish. Sci. 2021, 87, 1–9. [Google Scholar] [CrossRef]
- Secombes, C.J.; Bird, S.; Cunningham, C.; Zou, J. Interleukin-1 in fish. Fish Shellfish Immunol. 1999, 9, 335–343. [Google Scholar] [CrossRef]
- Karan, S.; Kaushik, H.; Saini, N.; Sahoo, P.K.; Dixit, A.; Garg, L.C. Genomic cloning and sequence analysis of Interleukin-10 from Labeo rohita. Bioinformation 2014, 10, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Yang, H.; Liu, Y.; Chen, S.; Guo, D.; Yu, Y. Effects of graded levels of threonine on growth performance, biochemical parameters and intestine morphology of juvenile grass carp Ctenopharyngodon idella. Aquaculture 2014, 424, 113–119. [Google Scholar] [CrossRef]
- Klurfeld, D.M. Nutritional regulation of gastrointestinal growth. Front. Biosci. 1999, 4, 299–302. [Google Scholar] [CrossRef]
- Simon, R.; Docando, F.; Nunez-Ortiz, N.; Tafalla, C.; Diaz-Rosales, P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front. Immunol. 2021, 12, 653025. [Google Scholar] [CrossRef]
Ingredients | Percentage (%) |
---|---|
Fish meal, anchovy 1 | 45 |
Soybean meal | 12 |
Starch 2 | 3.8 |
Wheat flour | 7 |
Blood meal | 4.5 |
Squid liver powder | 5.5 |
Meat and bone meal | 8 |
Poultry by product meal | 4.5 |
Fish oil 3 | 4.3 |
Vitamin premix 4 | 1.2 |
Mineral premix 5 | 1.2 |
Etc 6 | 3.0 |
Proximate analysis (% of DM basis) | |
Moisture | 8.56 |
Crude protein | 56.2 |
Crude lipid | 8.35 |
Crude ash | 11.4 |
Gene | Sense | Primer Sequence (5′ → 3′) | Size (bp) | Accession No. |
---|---|---|---|---|
β-actin | F | CAGCATCATGAAGTGTGACGTG | 107 | HQ386788.1 |
R | CTTCTGCATACGGTCAGCAATG | |||
FGH | F | CGCCGTATGGAAACTCTGAACT | 160 | M23439.1 |
R | GGGTGCAGTTAGCTTCTGGAAA | |||
IL-1β | F | ATGGAATCCAAGATGGAATGC | 250 | KF025662.1 |
R | GAGACGAGCTTCTCTCACAC | |||
IL-10 | F | AGCGAACGATGACCTAGACACG | 114 | KF025662.1 |
R | ACCGTGCTCAGGTAGAAGTCCA |
Diets | Pooled SEM 12 | |||||||
---|---|---|---|---|---|---|---|---|
CON | BSWB60 | BSSJ10 | EFSH30 | GRO | OTC | AMO | ||
IBW 2 | 12.5 ns | 12.4 | 12.6 | 12.2 | 12.3 | 12.2 | 12.4 | 0.39 |
FBW 3 | 35.6 b | 42.5 a | 41.3 a | 41.5 a | 40.0 ab | 37.5 b | 36.9 b | 0.39 |
WG (%) 4 | 185 b | 238 a | 233 a | 241 a | 223 ab | 205 b | 201 b | 7.04 |
SGR (%/day) 5 | 1.90 b | 2.21 a | 2.18 a | 2.23 a | 2.13 ab | 2.02 b | 2.00 b | 0.32 |
FE (%) 6 | 174 b | 178 ab | 174 ab | 174 ab | 190 a | 181 ab | 183 ab | 14.7 |
PER 7 | 1.06 b | 1.16 ab | 1.14 ab | 1.17 ab | 1.15 a | 1.14 ab | 1.12 ab | 0.09 |
Survival (%) 8 | 90.0 ns | 91.7 | 90.7 | 91.0 | 95.3 | 91.0 | 93.7 | 5.03 |
HSI (%) 9 | 1.24 ns | 1.15 | 1.36 | 1.94 | 1.70 | 1.33 | 1.22 | 0.08 |
VSI (%) 10 | 2.05 ns | 1.74 | 1.94 | 1.94 | 1.24 | 1.88 | 1.74 | 0.05 |
CF 11 | 0.91 ns | 0.93 | 0.97 | 0.92 | 0.95 | 0.91 | 0.92 | 0.01 |
Diets | Pooled SEM | |||||||
---|---|---|---|---|---|---|---|---|
CON | BSWB60 | BSSJ10 | EFSH30 | GRO | OTC | AMO | ||
Moisture | 75.1 ns | 75.8 | 72.9 | 75.8 | 76.2 | 76.8 | 76.2 | 0.48 |
Crude protein | 20.3 ns | 20.8 | 21.3 | 21.4 | 20.7 | 22.3 | 20.7 | 0.25 |
Crude lipid | 2.42 ns | 2.30 | 2.39 | 2.34 | 2.41 | 2.41 | 2.41 | 0.02 |
Crude ash | 4.09 ns | 4.21 | 4.25 | 4.16 | 4.19 | 4.14 | 4.19 | 0.02 |
Diets | Pooled SEM | |||||||
---|---|---|---|---|---|---|---|---|
CON | BSWB60 | BSSJ10 | EFSH30 | GRO | OTC | AMO | ||
GOT 2 | 5.67 ns | 5.10 | 5.27 | 5.12 | 5.19 | 5.19 | 5.10 | 0.36 |
GPT 3 | 20.3 ns | 19.5 | 21.4 | 22.0 | 22.5 | 21.0 | 20.5 | 1.25 |
GLU 4 | 13.3 ns | 13.0 | 11.3 | 14.2 | 12.5 | 12.5 | 11.1 | 1.04 |
TP 5 | 3.1 ns | 3.3 | 3.4 | 3.2 | 3.4 | 3.3 | 3.5 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Moniruzzaman, M.; Bae, J.; Hamidoghli, A.; Lee, S.; Choi, Y.-H.; Min, T.; Bai, S.C. Evaluation of Dietary Probiotic Bacteria and Processed Yeast (GroPro-Aqua) as the Alternative of Antibiotics in Juvenile Olive Flounder Paralichthys olivaceus. Antibiotics 2022, 11, 129. https://doi.org/10.3390/antibiotics11020129
Choi W, Moniruzzaman M, Bae J, Hamidoghli A, Lee S, Choi Y-H, Min T, Bai SC. Evaluation of Dietary Probiotic Bacteria and Processed Yeast (GroPro-Aqua) as the Alternative of Antibiotics in Juvenile Olive Flounder Paralichthys olivaceus. Antibiotics. 2022; 11(2):129. https://doi.org/10.3390/antibiotics11020129
Chicago/Turabian StyleChoi, Wonsuk, Mohammad Moniruzzaman, Jinho Bae, Ali Hamidoghli, Seunghan Lee, Youn-Hee Choi, Taesun Min, and Sungchul C. Bai. 2022. "Evaluation of Dietary Probiotic Bacteria and Processed Yeast (GroPro-Aqua) as the Alternative of Antibiotics in Juvenile Olive Flounder Paralichthys olivaceus" Antibiotics 11, no. 2: 129. https://doi.org/10.3390/antibiotics11020129
APA StyleChoi, W., Moniruzzaman, M., Bae, J., Hamidoghli, A., Lee, S., Choi, Y. -H., Min, T., & Bai, S. C. (2022). Evaluation of Dietary Probiotic Bacteria and Processed Yeast (GroPro-Aqua) as the Alternative of Antibiotics in Juvenile Olive Flounder Paralichthys olivaceus. Antibiotics, 11(2), 129. https://doi.org/10.3390/antibiotics11020129