Molecular Determinants of Ethionamide Resistance in Clinical Isolates of Mycobacterium tuberculosis
Abstract
:1. Introduction
2. Results
2.1. The MIC of Ethionamide Depends on the Resistance Profile of the Isolate
2.2. Molecular Determinants of Ethionamide Resistance
3. Discussion
4. Materials and Methods
4.1. Mycobacterium Tuberculosis Strains
4.2. DNA Isolation and Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rist, N.; Grumbach, F.; Libermann, D. Experiments on the Antituberculous Activity of Alpha-Ethylthioisonicotinamide. Am. Rev. Tuberc. 1959, 79, 1–5. [Google Scholar] [CrossRef]
- Scardigli, A.; Caminero, J.A.; Sotgiu, G.; Centis, R.; D’Ambrosio, L.; Migliori, G.B. Efficacy and Tolerability of Ethionamide versus Prothionamide: A Systematic Review. Eur. Respir. J. 2016, 48, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Kadura, S.; King, N.; Nakhoul, M.; Zhu, H.; Theron, G.; Köser, C.U.; Farhat, M. Systematic Review of Mutations Associated with Resistance to the New and Repurposed Mycobacterium Tuberculosis Drugs Bedaquiline, Clofazimine, Linezolid, Delamanid and Pretomanid. J. Antimicrob. Chemother. 2020, 75, 2031–2043. [Google Scholar] [CrossRef]
- Laborde, J.; Deraeve, C.; Duhayon, C.; Pratviel, G.; Bernardes-Génisson, V. Ethionamide Biomimetic Activation and an Unprecedented Mechanism for Its Conversion into Active and Non-Active Metabolites. Org. Biomol. Chem. 2016, 14, 8848–8858. [Google Scholar] [CrossRef]
- DeBarber, A.E.; Mdluli, K.; Bosman, M.; Bekker, L.G.; Barry, C.E. Ethionamide Activation and Sensitivity in Multidrug-Resistant Mycobacterium Tuberculosis. Proc. Natl. Acad. Sci. USA 2000, 97, 9677–9682. [Google Scholar] [CrossRef] [Green Version]
- Baulard, A.R.; Betts, J.C.; Engohang-Ndong, J.; Quan, S.; McAdam, R.A.; Brennan, P.J.; Locht, C.; Besra, G.S. Activation of the Pro-Drug Ethionamide Is Regulated in Mycobacteria. J. Biol. Chem. 2000, 275, 28326–28331. [Google Scholar] [CrossRef] [Green Version]
- Vannelli, T.A.; Dykman, A.; Ortiz de Montellano, P.R. The Antituberculosis Drug Ethionamide Is Activated by a Flavoprotein Monooxygenase. J. Biol. Chem. 2002, 277, 12824–12829. [Google Scholar] [CrossRef] [Green Version]
- Vilchèze, C.; Jacobs, W.R. Resistance to Isoniazid and Ethionamide in Mycobacterium Tuberculosis: Genes, Mutations, and Causalities. Microbiol. Spectr. 2014, 2, MGM2-0014-2013. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Tan, Y.; Hameed, H.M.A.; Liu, Z.; Chhotaray, C.; Liu, Y.; Lu, Z.; Cai, X.; Tang, Y.; Gao, Y.; et al. Detection of Novel Mutations Associated with Independent Resistance and Cross-Resistance to Isoniazid and Prothionamide in Mycobacterium Tuberculosis Clinical Isolates. Clin. Microbiol. Infect. 2019, 25, 1041.e1–1041.e7. [Google Scholar] [CrossRef]
- Hanoulle, X.; Wieruszeski, J.-M.; Rousselot-Pailley, P.; Landrieu, I.; Locht, C.; Lippens, G.; Baulard, A.R. Selective Intracellular Accumulation of the Major Metabolite Issued from the Activation of the Prodrug Ethionamide in Mycobacteria. J. Antimicrob. Chemother. 2006, 58, 768–772. [Google Scholar] [CrossRef] [Green Version]
- Dover, L.G.; Alahari, A.; Gratraud, P.; Gomes, J.M.; Bhowruth, V.; Reynolds, R.C.; Besra, G.S.; Kremer, L. EthA, a Common Activator of Thiocarbamide-Containing Drugs Acting on Different Mycobacterial Targets. Antimicrob. Agents Chemother. 2007, 51, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.H.; Vilchèze, C.; Kremer, L.; Besra, G.S.; Parsons, L.; Salfinger, M.; Heifets, L.; Hazbon, M.H.; Alland, D.; Sacchettini, J.C.; et al. Overexpression of InhA, but Not KasA, Confers Resistance to Isoniazid and Ethionamide in Mycobacterium Smegmatis M. Bovis BCG and M. Tuberculosis. Mol. Microbiol. 2002, 46, 453–466. [Google Scholar] [CrossRef]
- Brossier, F.; Veziris, N.; Truffot-Pernot, C.; Jarlier, V.; Sougakoff, W. Molecular Investigation of Resistance to the Antituberculous Drug Ethionamide in Multidrug-Resistant Clinical Isolates of Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 2011, 55, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Casali, N.; Nikolayevskyy, V.; Balabanova, Y.; Harris, S.R.; Ignatyeva, O.; Kontsevaya, I.; Corander, J.; Bryant, J.; Parkhill, J.; Nejentsev, S.; et al. Evolution and Transmission of Drug-Resistant Tuberculosis in a Russian Population. Nat. Genet. 2014, 46, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Farhat, M.R.; Sultana, R.; Iartchouk, O.; Bozeman, S.; Galagan, J.; Sisk, P.; Stolte, C.; Nebenzahl-Guimaraes, H.; Jacobson, K.; Sloutsky, A.; et al. Genetic Determinants of Drug Resistance in Mycobacterium Tuberculosis and Their Diagnostic Value. Am. J. Respir. Crit. Care Med. 2016, 194, 621–630. [Google Scholar] [CrossRef] [Green Version]
- De Welzen, L.; Eldholm, V.; Maharaj, K.; Manson, A.L.; Earl, A.M.; Pym, A.S. Whole-Transcriptome and -Genome Analysis of Extensively Drug-Resistant Mycobacterium Tuberculosis Clinical Isolates Identifies Downregulation of EthA as a Mechanism of Ethionamide Resistance. Antimicrob. Agents Chemother. 2017, 61, e01461-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsor, D.; Butz, S.F.; Solomons, J.; Grant, S.; Fairlamb, I.J.S.; Fogg, M.J.; Grogan, G. Ligation Independent Cloning (LIC) as a Rapid Route to Families of Recombinant Biocatalysts from Sequenced Prokaryotic Genomes. Org. Biomol. Chem. 2006, 4, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.S.; Wellington, S.; Kawate, T.; Desjardins, C.A.; Silvis, M.R.; Wivagg, C.; Thompson, M.; Gordon, K.; Kazyanskaya, E.; Nietupski, R.; et al. Baeyer-Villiger Monooxygenases EthA and MymA Are Required for Activation of Replicating and Non-Replicating Mycobacterium Tuberculosis Inhibitors. Cell Chem. Biol. 2016, 23, 666–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, N.D.; Carey, A.F.; Yang, J.; Zhao, Y.; Fortune, S.M. Bacterial Genome-Wide Association Identifies Novel Factors That Contribute to Ethionamide and Prothionamide Susceptibility in Mycobacterium Tuberculosis. mBio 2019, 10, e00616-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondiaux, N.; Moune, M.; Desroses, M.; Frita, R.; Flipo, M.; Mathys, V.; Soetaert, K.; Kiass, M.; Delorme, V.; Djaout, K.; et al. Reversion of Antibiotic Resistance in Mycobacterium Tuberculosis by Spiroisoxazoline SMARt-420. Science 2017, 355, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Vilchèze, C.; Weisbrod, T.R.; Chen, B.; Kremer, L.; Hazbón, M.H.; Wang, F.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R. Altered NADH/NAD+ Ratio Mediates Coresistance to Isoniazid and Ethionamide in Mycobacteria. Antimicrob. Agents Chemother. 2005, 49, 708–720. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Vilchèze, C.; Av-Gay, Y.; Gómez-Velasco, A.; Jacobs, W.R. Precise Null Deletion Mutations of the Mycothiol Synthesis Genes Reveal Their Role in Isoniazid and Ethionamide Resistance in Mycobacterium Smegmatis. Antimicrob. Agents Chemother. 2011, 55, 3133–3139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatum, N.J.; Liebeschuetz, J.W.; Cole, J.C.; Frita, R.; Herledan, A.; Baulard, A.R.; Willand, N.; Pohl, E. New Active Leads for Tuberculosis Booster Drugs by Structure-Based Drug Discovery. Org. Biomol. Chem. 2017, 15, 10245–10255. [Google Scholar] [CrossRef] [PubMed]
- Leisch, H.; Shi, R.; Grosse, S.; Morley, K.; Bergeron, H.; Cygler, M.; Iwaki, H.; Hasegawa, Y.; Lau, P.C.K. Cloning, Baeyer-Villiger Biooxidations, and Structures of the Camphor Pathway 2-Oxo-Δ(3)-4,5,5-Trimethylcyclopentenylacetyl-Coenzyme A Monooxygenase of Pseudomonas Putida ATCC 17453. Appl. Environ. Microbiol. 2012, 78, 2200–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chollet, A.; Mourey, L.; Lherbet, C.; Delbot, A.; Julien, S.; Baltas, M.; Bernadou, J.; Pratviel, G.; Maveyraud, L.; Bernardes-Génisson, V. Crystal Structure of the Enoyl-ACP Reductase of Mycobacterium Tuberculosis (InhA) in the Apo-Form and in Complex with the Active Metabolite of Isoniazid Pre-Formed by a Biomimetic Approach. J. Struct. Biol. 2015, 190, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R. InhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium Tuberculosis. Science 1994, 263, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heym, B.; Honoré, N.; Truffot-Pernot, C.; Banerjee, A.; Schurra, C.; Jacobs, W.R.; van Embden, J.D.; Grosset, J.H.; Cole, S.T. Implications of Multidrug Resistance for the Future of Short-Course Chemotherapy of Tuberculosis: A Molecular Study. Lancet 1994, 344, 293–298. [Google Scholar] [CrossRef]
- Rueda, J.; Realpe, T.; Mejia, G.I.; Zapata, E.; Rozo, J.C.; Ferro, B.E.; Robledo, J. Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium Tuberculosis Clinical Isolates. Antimicrob. Agents Chemother. 2015, 59, 7805–7810. [Google Scholar] [CrossRef] [Green Version]
- Farhat, M.R.; Freschi, L.; Calderon, R.; Ioerger, T.; Snyder, M.; Meehan, C.J.; de Jong, B.; Rigouts, L.; Sloutsky, A.; Kaur, D.; et al. GWAS for Quantitative Resistance Phenotypes in Mycobacterium Tuberculosis Reveals Resistance Genes and Regulatory Regions. Nat. Commun. 2019, 10, 2128. [Google Scholar] [CrossRef]
- Sandoval, R.; Monteghirfo, M.; Salazar, O.; Galarza, M. Cross-resistance between isoniazid and ethionamide and its strong association with mutation C-15T in Mycobacterium tuberculosis isolates from Peru. Rev. Argent Microbiol. 2020, 52, 36–42. [Google Scholar] [CrossRef]
- Coxon, G.D.; Craig, D.; Corrales, R.M.; Vialla, E.; Gannoun-Zaki, L.; Kremer, L. Synthesis, Antitubercular Activity and Mechanism of Resistance of Highly Effective Thiacetazone Analogues. PLoS ONE 2013, 8, e53162. [Google Scholar] [CrossRef] [Green Version]
- Heysell, S.K.; Pholwat, S.; Mpagama, S.G.; Pazia, S.J.; Kumburu, H.; Ndusilo, N.; Gratz, J.; Houpt, E.R.; Kibiki, G.S. Sensititre MycoTB Plate Compared to Bactec MGIT 960 for First- and Second-Line Antituberculosis Drug Susceptibility Testing in Tanzania: A Call to Operationalize MICs. Antimicrob. Agents Chemother. 2015, 59, 7104–7108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jou, R.; Lee, W.-T.; Kulagina, E.V.; Weng, J.-Y.; Isakova, A.I.; Lin, W.-H.; Antonova, O.V.; Wu, M.-H.; Arslanbaeva, L.R.; Tasi, H.-Y.; et al. Redefining MDR-TB: Comparison of Mycobacterium Tuberculosis Clinical Isolates from Russia and Taiwan. Infect. Genet. Evol. 2019, 72, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.; Pasipanodya, J.G.; Mpagama, S.G.; Srivastava, S.; Bendet, P.; Koeuth, T.; Lee, P.S.; Heysell, S.K.; Gumbo, T. Ethionamide Pharmacokinetics/Pharmacodynamics-Derived Dose, the Role of MICs in Clinical Outcome, and the Resistance Arrow of Time in Multidrug-Resistant Tuberculosis. Clin. Infect. Dis. 2018, 67, S317–S326. [Google Scholar] [CrossRef]
- Chirehwa, M.T.; Court, R.; de Kock, M.; Wiesner, L.; de Vries, N.; Harding, J.; Gumbo, T.; Maartens, G.; Warren, R.; Denti, P.; et al. Effect of Isoniazid Intake on Ethionamide Pharmacokinetics and Target Attainment in Multidrug-Resistant Tuberculosis Patients. Antimicrob. Agents Chemother. 2021, 65, e00278-21. [Google Scholar] [CrossRef] [PubMed]
- Mugabo, P.; Mulubwa, M. Ethionamide Population Pharmacokinetics/Pharmacodynamics and Therapeutic Implications in South African Adult Patients with Drug-Resistant Tuberculosis. Br. J. Clin. Pharmacol. 2021, 87, 3863–3870. [Google Scholar] [CrossRef]
- Morlock, G.P.; Metchock, B.; Sikes, D.; Crawford, J.T.; Cooksey, R.C. EthA, InhA, and KatG Loci of Ethionamide-Resistant Clinical Mycobacterium Tuberculosis Isolates. Antimicrob. Agents Chemother. 2003, 47, 3799–3805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, C.; Kobayashi, I.; Mitarai, S.; Wada, M.; Kawabe, Y.; Takashima, T.; Suzuki, K.; Sng, L.-H.; Wang, S.; Htay, H.H.; et al. Biological and Molecular Characteristics of Mycobacterium Tuberculosis Clinical Isolates with Low-Level Resistance to Isoniazid in Japan. J. Clin. Microbiol. 2008, 46, 2263–2268. [Google Scholar] [CrossRef] [Green Version]
- Imperiale, B.R.; Di Giulio, Á.B.; Adrián Cataldi, A.; Morcillo, N.S. Evaluation of Mycobacterium Tuberculosis Cross-Resistance to Isoniazid, Rifampicin and Levofloxacin with Their Respective Structural Analogs. J. Antibiot. 2014, 67, 749–754. [Google Scholar] [CrossRef]
- Ghodousi, A.; Tagliani, E.; Karunaratne, E.; Niemann, S.; Perera, J.; Köser, C.U.; Cirillo, D.M. Isoniazid Resistance in Mycobacterium Tuberculosis Is a Heterogeneous Phenotype Composed of Overlapping MIC Distributions with Different Underlying Resistance Mechanisms. Antimicrob. Agents Chemother. 2019, 63, e00092-19. [Google Scholar] [CrossRef] [Green Version]
- Fridman, O.; Goldberg, A.; Ronin, I.; Shoresh, N.; Balaban, N.Q. Optimization of Lag Time Underlies Antibiotic Tolerance in Evolved Bacterial Populations. Nature 2014, 513, 418–421. [Google Scholar] [CrossRef]
- Tan, Y.; Su, B.; Zheng, H.; Song, Y.; Wang, Y.; Pang, Y. Molecular Characterization of Prothionamide-Resistant Mycobacterium Tuberculosis Isolates in Southern China. Front. Microbiol. 2017, 8, 2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brossier, F.; Sola, C.; Bernard, C.; Jarlier, V.; Veziris, N.; Sougakoff, W. Characterization of a Clone of Mycobacterium Tuberculosis Clinical Isolates with Mutations in KatG (A110V), EthA (Q269STOP), and the InhA Promoter (-15C→T). J. Clin. Microbiol. 2015, 53, 3104. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R.; Srivastava, A.; Bharti, R.; Roy, T.; Verma, S.; Ray, L.; Misra, A. Preclinical Development of Inhalable D-Cycloserine and Ethionamide To Overcome Pharmacokinetic Interaction and Enhance Efficacy against Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 2019, 63, e00099-19. [Google Scholar] [CrossRef] [Green Version]
- WHO. Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis; WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-154880-9.
- WHO. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis; World Health Organization: Geneva, Switzerland, 2018; 106p.
- Nosova, E.Y.; Zimenkov, D.V.; Khakhalina, A.A.; Isakova, A.I.; Krylova, L.Y.; Makarova, M.V.; Galkina, K.Y.; Krasnova, M.A.; Safonova, S.G.; Litvinov, V.I.; et al. A Comparison of the Sensititre MycoTB Plate, the Bactec MGIT 960, and a Microarray-Based Molecular Assay for the Detection of Drug Resistance in Clinical Mycobacterium Tuberculosis Isolates in Moscow, Russia. PLoS ONE 2016, 11, e0167093. [Google Scholar] [CrossRef] [PubMed]
- Zimenkov, D.V.; Nosova, E.Y.; Kulagina, E.V.; Antonova, O.V.; Arslanbaeva, L.R.; Isakova, A.I.; Krylova, L.Y.; Peretokina, I.V.; Makarova, M.V.; Safonova, S.G.; et al. Examination of Bedaquiline- and Linezolid-Resistant Mycobacterium Tuberculosis Isolates from the Moscow Region. J. Antimicrob. Chemother. 2017, 72, 1901–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Drug Resistance Profile | MIC Ethionamide, mg/L | Isolates, Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.3 | 0.6 | 1.25 | 2.5 | 5 | 10 | 20 | 40 | >40 | ||
Eth-S * | 3 | 17 | 45 | 63 | 37 | 10 | 1 | 176 | ||
Eth-R * | 1 | 7 | 28 | 38 | 57 | 20 | 13 | 9 | 173 | |
S | 4 | 22 | 24 | 3 | 53 | |||||
mono/poly | 1 | 11 | 18 | 13 | 5 | 4 | 3 | 55 | ||
MDR | 1 | 5 | 8 | 17 | 12 | 12 | 3 | 2 | 3 | 63 |
pre-XDR | 3 | 6 | 5 | 16 | 24 | 23 | 5 | 3 | 85 | |
XDR | 1 | 6 | 16 | 23 | 27 | 9 | 5 | 6 | 93 |
MIC Isoniazid, mg/L | MIC Ethionamide, mg/L | Isolates, Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.3 | 0.6 | 1.25 | 2.5 | 5 | 10 | 20 | 40 | >40 | ||
0.03 | 3 | 7 | 2 | 2 | 1 | 15 | ||||
0.06 | 17 | 27 | 3 | 47 | ||||||
0.13 | 1 | 2 | 1 | 1 | 5 | |||||
0.25 | 1 | 1 | 1 | 3 | ||||||
0.5 | 1 | 1 | 2 | |||||||
1 | 2 | 2 | 1 | 5 | ||||||
2 | 1 | 6 | 4 | 12 | 8 | 10 | 1 | 42 | ||
4 | 1 | 3 | 9 | 18 | 23 | 15 | 4 | 2 | 75 | |
>4 | 2 | 3 | 12 | 28 | 37 | 39 | 17 | 8 | 9 | 155 |
Isolates, total | 4 | 17 | 52 | 91 | 75 | 67 | 21 | 13 | 9 | 349 |
Mutation Profile | MIC Ethionamide, mg/L | Eth * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.3 | 0.6 | 1.25 | 2.5 | 5 | 10 | 20 | 40 | >40 | S | R | |
wt | 1 | 7 | 23 | 41 | 6 | 1 | 77 | 2 | |||
ethA_subst | 1 | 3 | 4 | 4 | 2 | 1 | 8 | 7 | |||
ethA_fs | 1 | 3 | 3 | 7 | 4 | 1 | 0 | 19 | |||
PethA | 1 | 1 | 0 | 2 | |||||||
PfabG1 | 1 | 1 | 3 | 2 | 1 | 3 | 5 | ||||
inhA | 3 | 1 | 2 | 2 | |||||||
PfabG1 + ethA | 1 | 1 | 1 | 2 | 0 | 4 | |||||
PfabG1 + inhA | 1 | 0 | 1 | ||||||||
ethA + inhA | 1 | 0 | 1 | ||||||||
PfabG1 c(-15)t | |||||||||||
mutation | 1 | 1 | 5 | 3 | 2 | 2 | 10 | ||||
wt | 1 | 8 | 28 | 51 | 15 | 14 | 6 | 2 | 88 | 37 | |
All mutations | |||||||||||
mutation | 1 | 6 | 11 | 9 | 17 | 9 | 2 | 2 | 13 | 44 | |
wt | 1 | 7 | 23 | 41 | 6 | 1 | 77 | 2 | |||
All mutations excluding ethA substitutions | |||||||||||
mutation | 3 | 7 | 5 | 15 | 9 | 2 | 1 | 5 | 37 | ||
wt | 1 | 8 | 26 | 45 | 10 | 3 | 1 | 85 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushtanit, A.; Kulagina, E.; Mikhailova, Y.; Makarova, M.; Safonova, S.; Zimenkov, D. Molecular Determinants of Ethionamide Resistance in Clinical Isolates of Mycobacterium tuberculosis. Antibiotics 2022, 11, 133. https://doi.org/10.3390/antibiotics11020133
Ushtanit A, Kulagina E, Mikhailova Y, Makarova M, Safonova S, Zimenkov D. Molecular Determinants of Ethionamide Resistance in Clinical Isolates of Mycobacterium tuberculosis. Antibiotics. 2022; 11(2):133. https://doi.org/10.3390/antibiotics11020133
Chicago/Turabian StyleUshtanit, Anastasia, Elena Kulagina, Yulia Mikhailova, Marina Makarova, Svetlana Safonova, and Danila Zimenkov. 2022. "Molecular Determinants of Ethionamide Resistance in Clinical Isolates of Mycobacterium tuberculosis" Antibiotics 11, no. 2: 133. https://doi.org/10.3390/antibiotics11020133
APA StyleUshtanit, A., Kulagina, E., Mikhailova, Y., Makarova, M., Safonova, S., & Zimenkov, D. (2022). Molecular Determinants of Ethionamide Resistance in Clinical Isolates of Mycobacterium tuberculosis. Antibiotics, 11(2), 133. https://doi.org/10.3390/antibiotics11020133