Antibacterial and Anti-Biofilm Activities of Essential Oil Compounds against New Delhi Metallo-β-Lactamase-1-Producing Uropathogenic Klebsiella pneumoniae Strains
Abstract
:1. Introduction
2. Results
2.1. Gene Analysis
2.2. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), MBC/MIC Ratio and the Effectiveness of Investigated Substances against K. pneumoniae Strains
2.3. Effect of Investigated Substances on the Anti-Biofilm Activity
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Condition
4.2. Investigated Substances
4.3. Virulence and Carbapenemase Genes Detection
4.3.1. DNA Isolation
4.3.2. PCR Amplification
4.4. Determination of MIC, MBC, MBC/MIC Ratio and Effectiveness of Investigated Substance against K. pneumoniae Strains
4.5. Effect of Investigated Substances on Biofilm Biomass Reduction
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurałowicz, E.; Bartoszko-Tyczkowska, A.; Tyczkowska-Sieroń, E.; Kurnatowska, I. Etiology and bacterial susceptibility to antibiotics in patients with recurrent lower urinary tract infections. Pol. Arch. Intern. Med. 2020, 130, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meade, E.; Savage, M.; Garvey, M. Effective antimicrobial solutions for eradicating multi-resistant and β-lactamase-producing nosocomial gram-negative pathogens. Antibiotics 2021, 10, 1283. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. Uropathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Kerekes, E.B.; Vidács, A.; Takó, M.; Petkovits, T.; Vágvölgyi, C.; Horváth, G.; Balázs, V.L.; Krisch, J. Anti-biofilm effect of selected essential oils and main components on mono- and polymicrobic bacterial cultures. Microorganisms 2019, 7, 345. [Google Scholar] [CrossRef] [Green Version]
- Kavanaugh, N.L.; Ribbeck, K. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl. Environ. Microbiol. 2012, 78, 4057–4061. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Rajivgandhi, G.N.; Ramachandran, G.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Almanaa, T.N.; Manoharan, N.; viji, R. Preparative HPLC fraction of Hibiscus rosa-sinensis essential oil against biofilm forming Klebsiella pneumoniae. Saudi J. Biol. Sci. 2020, 27, 2853–2862. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Trifan, A.; Luca, S.V.; Greige-Gerges, H.; Miron, A.; Gille, E.; Aprotosoaie, A.C. Recent advances in tackling microbial multidrug resistance with essential oils: Combinatorial and nano-based strategies. Crit. Rev. Microbiol. 2020, 46, 338–357. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, P.; Pruss, A.; Grygorcewicz, B.; Wojciuk, B.; Dołȩgowska, B.; Giedrys-Kalemba, S.; Kochan, E.; Sienkiewicz, M. Preliminary study on the antibacterial activity of essential oils alone and in combination with gentamicin against extended-spectrum β-lactamase-producing and New Delhi metallo-β-lactamase-1-producing Klebsiella pneumoniae isolates. Microb. Drug Resist. 2018, 24, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Safavi, M.; Bostanshirin, N.; Hajikhani, B.; Yaslianifard, S.; van Belkum, A.; Goudarzi, M.; Hashemi, A.; Darban-Sarokhalil, D.; Dadashi, M. Global genotype distribution of human clinical isolates of New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae; A systematic review. J. Glob. Antimicrob. Resist. 2020, 23, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Codjoe, F.S.; Donkor, E.S. Carbapenem resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect. Dis. 2015, 2, ofv050. [Google Scholar] [CrossRef] [Green Version]
- Parente, G.; Gargano, T.; Pavia, S.; Cordola, C.; Vastano, M.; Baccelli, F.; Gallotta, G.; Bruni, L.; Corvaglia, A.; Lima, M. Pyelonephritis in pediatric uropathic patients: Differences from community-acquired ones and therapeutic protocol considerations. A 10-year single-center retrospective study. Children 2021, 8, 436. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 15 December 2021).
- Chemaly, R.F.; Simmons, S.; Dale, C.J.; Ghantoji, S.S.; Rodriguez, M.; Gubb, J.; Stachowiak, J.; Stibich, M. The role of the healthcare environment in the spread of multidrug-resistant organisms: Update on current best practices for containment. Ther. Adv. Infect. Dis. 2014, 2, 79–90. [Google Scholar] [CrossRef]
- Brisse, S.; Fevre, C.; Passet, V.; Issenhuth-Jeanjean, S.; Tournebize, R.; Diancourt, L.; Grimont, P. Virulent clones of Klebsiella pneumoniae: Identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS ONE 2009, 4, e4982. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, L.; Coderch, N.; Piqué, N.; Bedini, E.; Corsaro, M.M.; Merino, S.; Fresno, S.; Tomás, J.M.; Regué, M. The Klebsiella pneumoniae wabG gene: Role in biosynthesis of the core lipopolysaccharide and virulence. J. Bacteriol. 2003, 185, 7213–7221. [Google Scholar] [CrossRef] [Green Version]
- Rosen, D.A.; Pinkner, J.S.; Walker, J.N.; Elam, J.S.; Jones, J.M.; Hultgren, S.J. Molecular variations in Klebsiella pneumoniae and Escherichia coli fimH affect function and pathogenesis in the urinary tract. Infect. Immun. 2008, 76, 3346–3356. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.; Ranjbar, R.; Behzadi, P.; Mohammadian, T. Virulence factors, antibiotic resistance patterns, and molecular types of clinical isolates of Klebsiella pneumoniae. Expert Rev. Anti Infect. Ther. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hamam, S.S.; El Kholy, R.M.; Zaki, M.E.S. Study of various virulence genes, biofilm formation and extended-spectrum β-lactamase resistance in Klebsiella pneumoniae isolated from urinary tract infections. Open Microbiol. J. 2019, 13, 249–255. [Google Scholar] [CrossRef]
- Candan, E.D.; Aksöz, N. Klebsiella pneumoniae: Characteristics of carbapenem resistance and virulence factors. Acta Biochim. Pol. 2015, 62, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Nahar, N.; Bin Rashid, R. Phylogenetic analysis of antibiotic resistance genes and virulence genes of Klebsiella species in silico. Dhaka Univ. J. Pharm. Sci. 2017, 16, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Burt, S.A.; van der Zee, R.; Koets, A.P.; de Graaff, A.M.; van Knapen, F.; Gaastra, W.; Haagsman, H.P.; Veldhuizen, E.J.A. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007, 73, 4484–4490. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 23289. [Google Scholar] [CrossRef]
- de Lira, M.H.P.; de Andrade Júnior, F.P.; Moraes, G.F.Q.; da Silva Macena, G.; de Oliveira Pereira, F.; Lima, I.O. Antimicrobial activity of geraniol: An integrative review. J. Essent. Oil Res. 2020, 32, 187–197. [Google Scholar] [CrossRef]
- Bisso Ndezo, B.; Tokam Kuaté, C.R.; Dzoyem, J.P. Synergistic antibiofilm efficacy of thymol and piperine in combination with three aminoglycoside antibiotics against Klebsiella pneumoniae biofilms. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 7029944. [Google Scholar] [CrossRef]
- Raei, P.; Pourlak, T.; Memar, M.Y.; Alizadeh, N.; Aghamali, M.; Zeinalzadeh, E.; Asgharzadeh, M.; Kafil, H.S. Thymol and carvacrol strongly inhibit biofilm formation and growth of carbapenemase-producing gram-negative bacilli. Cell. Mol. Biol. 2017, 63, 108–112. [Google Scholar] [CrossRef]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.-C.; Fang, C.-T.; Lee, C.-Z.; Shun, C.-T.; Wang, J.-T. Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J. Infect. Dis. 2005, 192, 117–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.-T.; Chuang, Y.-P.; Shun, C.-T.; Chang, S.-C.; Wang, J.-T. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med. 2004, 199, 697–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchaim, D.; Navon-Venezia, S.; Schwaber, M.J.; Carmeli, Y. Isolation of imipenem-resistant Enterobacter species: Emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob. Agents Chemother. 2008, 52, 1413–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI Clinial and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement; M100-S22; CLSI: Wayne, PA, USA, 2012; Volume 32. [Google Scholar]
- Kwiatkowski, P.; Pruss, A.; Wojciuk, B.; Dołęgowska, B.; Wajs-Bonikowska, A.; Sienkiewicz, M.; Mężyńska, M.; Łopusiewicz, Ł. The influence of essential oil compounds on antibacterial activity of mupirocin-susceptible and induced low-level mupirocin-resistant MRSA strains. Molecules 2019, 24, 3105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogana, R.; Adhikari, A.; Tzar, M.N.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement. Med. Ther. 2020, 20, 55. [Google Scholar] [CrossRef] [Green Version]
- Barros, C.H.N.; Hiebner, D.W.; Fulaz, S.; Vitale, S.; Quinn, L.; Casey, E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. J. Nanobiotechnol. 2021, 19, 104. [Google Scholar] [CrossRef]
Bacteria | Chemicals | MIC (mg/mL) | MBC (mg/mL) | MBC/MIC | Effectiveness |
---|---|---|---|---|---|
Reference strain (K. pneumoniae ATCC BAA-2473) | Linalool | 6.48 ± 0.00 | 51.88 ± 0.00 | 8 | bacteriostatic |
β-Citronellol | 6.70 ± 0.00 | 107.13 ± 0.00 | 16 | bacteriostatic | |
Menthone | 224.00 ± 0.00 | >448 | ND | ND | |
Geraniol | 1.74 ± 0.00 | 6.95 ± 0.00 | 4 | bactericidal | |
Eugenol | 4.14 ± 0.00 | >530 | ND | ND | |
Thymol | 0.78 ± 0.00 | 1.56 ± 0.00 | 2 | bactericidal | |
1,8-Cineole | 57.63 ± 0.00 | 461.00 ± 0.00 | 8 | bacteriostatic | |
Carvacrol | 1.91 ± 0.00 | 1.91 ± 0.00 | 1 | bactericidal | |
Gentamicin | 1.25 ± 0.00 | >40 | ND | ND | |
Isolate no. 1 | Linalool | 3.24 ± 0.00 | 25.94 ± 0.00 | 8 | bacteriostatic |
β-Citronellol | 26.78 ± 0.00 | 107.13 ± 0.00 | 4 | bactericidal | |
Menthone | 448.00 ± 0.00 | >448 | ND | ND | |
Geraniol | 3.47 ± 0.00 | 6.95 ± 0.00 | 2 | bactericidal | |
Eugenol | 4.14 ± 0.00 | >530 | ND | ND | |
Thymol | 0.78 ± 0.00 | 1.56 ± 0.00 | 2 | bactericidal | |
1,8-Cineole | 14.41 ± 0.00 | 461.00 ± 0.00 | 32 | bacteriostatic | |
Carvacrol | 1.91 ± 0.00 | 1.91 ± 0.00 | 1 | bactericidal | |
Gentamicin | 20.00 ± 0.00 | 40.00 ± 0.00 | 2 | bactericidal | |
Isolate no. 2 | Linalool | 1.62 ± 0.00 | 25.94 ± 0.00 | 16 | bacteriostatic |
β-Citronellol | 3.35 ± 0.00 | 107.13 ± 0.00 | 32 | bacteriostatic | |
Menthone | 224.00 ± 0.00 | >448 | ND | ND | |
Geraniol | 1.74 ± 0.00 | 6.95 ± 0.00 | 4 | bactericidal | |
Eugenol | 4.14 ± 0.00 | >530 | ND | ND | |
Thymol | 0.78 ± 0.00 | 1.56 ± 0.00 | 2 | bactericidal | |
1,8-Cineole | 14.41 ± 0.00 | >461 | ND | ND | |
Carvacrol | 1.91 ± 0.00 | 1.91 ± 0.00 | 1 | bactericidal | |
Gentamicin | 20.00 ± 0.00 | 40.00 ± 0.00 | 2 | bactericidal | |
Isolate no. 3 | Linalool | 3.24 ± 0.00 | 103.75 ± 0.00 | 32 | bacteriostatic |
β-Citronellol | 1.67 ± 0.00 | 107.13 ± 0.00 | 64 | bacteriostatic | |
Menthone | 224.00 ± 0.00 | >448 | ND | ND | |
Geraniol | 0.87 ± 0.00 | 6.95 ± 0.00 | 8 | bacteriostatic | |
Eugenol | 4.14 ± 0.00 | >530 | ND | ND | |
Thymol | 0.78 ± 0.00 | 1.56 ± 0.00 | 2 | bactericidal | |
1,8-Cineole | 461.00 ± 0.00 | >461 | ND | ND | |
Carvacrol | 1.91 ± 0.00 | 1.91 ± 0.00 | 1 | bactericidal | |
Gentamicin | 1.25 ± 0.00 | >40 | ND | ND |
Comparison of Group | p Value | |||
---|---|---|---|---|
Reference Strain (K. pneumoniae ATCC BAA-2473) | Isolate No. 1 | Isolate No. 2 | Isolate No. 3 | |
Control vs. A | 0.413 | 0.8177 | 0.9999 | 0.0652 |
Control vs. B | 0.3198 | 0.5023 | 0.2472 | 0.9999 |
Control vs. C | 0.0003 | <0.0001 | <0.0001 | 0.1817 |
Control vs. D | <0.0001 | <0.0001 | <0.0001 | 0.4558 |
Control vs. E | 0.0114 | <0.0001 | <0.0001 | 0.4394 |
Control vs. F | 0.0008 | <0.0001 | <0.0001 | 0.4683 |
Control vs. G | 0.0003 | <0.0001 | <0.0001 | 0.6886 |
Control vs. H | 0.0005 | <0.0001 | <0.0001 | 0.9999 |
Control vs. I | 0.1543 | <0.0001 | <0.0001 | 0.5959 |
Control vs. J | 0.0004 | <0.0001 | <0.0001 | 0.9999 |
Control vs. K | 0.8456 | <0.0001 | <0.0001 | 0.9959 |
Chemicals | Structure | Molecular Formula | Flavor Profile | Application |
---|---|---|---|---|
Linalool | C10H18O | Coriander, floral, lavender, lemon, rose | Flavouring agent or adjuvant | |
β-Citronellol | C10H20O | Citrus, green, rose | Food improvement agent | |
Linalyl acetate | C12H20O2 | Fruit | Flavouring agent or adjuvant | |
Menthone | C10H18O | Green, fresh, mint | Flavouring agent or adjuvant | |
(−)-Menthol | C10H20O | Mint, Cool | Flavouring agent or adjuvant | |
(+)-Menthol | C10H20O | Mint, Cool | Flavouring agent or adjuvant | |
Geraniol | C10H18O | Geranium, lemon peel, passion fruit, peach, rose | Flavouring agent or adjuvant | |
Eugenol | C10H12O2 | Burnt, clove, spice | Flavouring agent or adjuvant | |
Thymol | C10H14O | Spice, wood | Flavouring agent or adjuvant | |
trans-Anethole | C10H12O | Anise | Flavouring agent or adjuvant | |
Farnesol | C15H26O | Oil | Flavouring agent or adjuvant | |
β-Caryophyllene | C15H24 | Fried, Spice, Wood | Flavouring agent or adjuvant | |
(R)-(+)-Limonene | C10H16 | Citrus, Mint | Flavouring agent or adjuvant | |
1,8-Cineole | C10H18O | Camphor, cool, eucalyptol, mint | Flavouring agent or adjuvant | |
Carvacrol | C10H14O | Caraway, spice, thyme | Flavouring agent or adjuvant |
Gene | Sequence | Amplicon Length (bp) | References |
---|---|---|---|
uge | F: 5′-GAT CAT CCG GTC TCC CTG TA-3′ R: 5′-TCT TCA CGC CTT CCT TCA CT-3′ | 534 | [32] |
wabG | F: 5′-CGG ACT GGC AGA TCC ATA TC-3′ R: 5′-ACC ATC GGC CAT TTG ATA GA-3′ | 683 | [33] |
fimH | F: 5′-ATG AAC GCC TGG TCC TTT GC-3′ R: 5′-GCT GAA CGC CTA TCC CCT GC-3′ | 688 | [34] |
blaNDM-1 | F: 5′-GGA ATA GAG TGC CTT AAY TCT C-3′ R: 5′-CGG AAT GGC TCA CGA TC-3′ | 612 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, P.; Sienkiewicz, M.; Pruss, A.; Łopusiewicz, Ł.; Arszyńska, N.; Wojciechowska-Koszko, I.; Kilanowicz, A.; Kot, B.; Dołęgowska, B. Antibacterial and Anti-Biofilm Activities of Essential Oil Compounds against New Delhi Metallo-β-Lactamase-1-Producing Uropathogenic Klebsiella pneumoniae Strains. Antibiotics 2022, 11, 147. https://doi.org/10.3390/antibiotics11020147
Kwiatkowski P, Sienkiewicz M, Pruss A, Łopusiewicz Ł, Arszyńska N, Wojciechowska-Koszko I, Kilanowicz A, Kot B, Dołęgowska B. Antibacterial and Anti-Biofilm Activities of Essential Oil Compounds against New Delhi Metallo-β-Lactamase-1-Producing Uropathogenic Klebsiella pneumoniae Strains. Antibiotics. 2022; 11(2):147. https://doi.org/10.3390/antibiotics11020147
Chicago/Turabian StyleKwiatkowski, Paweł, Monika Sienkiewicz, Agata Pruss, Łukasz Łopusiewicz, Nikola Arszyńska, Iwona Wojciechowska-Koszko, Anna Kilanowicz, Barbara Kot, and Barbara Dołęgowska. 2022. "Antibacterial and Anti-Biofilm Activities of Essential Oil Compounds against New Delhi Metallo-β-Lactamase-1-Producing Uropathogenic Klebsiella pneumoniae Strains" Antibiotics 11, no. 2: 147. https://doi.org/10.3390/antibiotics11020147
APA StyleKwiatkowski, P., Sienkiewicz, M., Pruss, A., Łopusiewicz, Ł., Arszyńska, N., Wojciechowska-Koszko, I., Kilanowicz, A., Kot, B., & Dołęgowska, B. (2022). Antibacterial and Anti-Biofilm Activities of Essential Oil Compounds against New Delhi Metallo-β-Lactamase-1-Producing Uropathogenic Klebsiella pneumoniae Strains. Antibiotics, 11(2), 147. https://doi.org/10.3390/antibiotics11020147