The Influence of Liquid Medium Choice in Determination of Minimum Inhibitory Concentration of Essential Oils against Pathogenic Bacteria
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Bacterial Strains
3.2. Essential Oils
3.3. Determination of Minimum Inhibitory Concentration
3.4. Growth Kinetics Measurements
3.5. Statistical Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Specification | Isolated | Source |
---|---|---|---|
Escherichia coli | serotype O157 | 2015 | pork meat preparation |
Escherichia coli | serotype O157 | 2017 | wild boar carcass |
Escherichia coli | serotype O157 | 2017 | wild boar carcass |
Escherichia coli | serotype O157 | 2018 | sushi |
Escherichia coli | serotype O157 | 2019 | duck carcass |
Listeria monocytogenes | serotype 1/2a | 2014 | chicken carcass |
Listeria monocytogenes | serotype 1/2a | 2014 | chicken carcass |
Listeria monocytogenes | serotype 1/2b | 2018 | cooked meat product |
Listeria monocytogenes | serotype 1/2b | 2018 | cooked meat product |
Listeria monocytogenes | serotype 1/2c | 2015 | pork meat preparation |
Salmonella Enteritidis | phage type 1b | 2015 | poultry meat preparation |
Salmonella Enteritidis | phage type 4 | 2015 | poultry meat preparation |
Salmonella Enteritidis | phage type 4b | 2016 | minced turkey meat |
Salmonella Enteritidis | phage type 8 | 2014 | chicken carcass |
Salmonella Enteritidis | phage type 13 | 2014 | chicken carcass |
Staphylococcus aureus | - | 2015 | pork meat preparation |
Staphylococcus aureus | - | 2015 | cooked meat product |
Staphylococcus aureus | - | 2019 | duck carcass |
Staphylococcus aureus | - | 2019 | duck carcass |
Staphylococcus aureus | - | 2018 | cooked meat product |
References
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI: Wayne, PA, USA, 2018; pp. 1–112. [Google Scholar]
- EUCAST. Media Preparation for EUCAST Disk Diffusion Testing and for Determination of MIC Values by the Broth Microdilution Method, Version 6.0; EUCAST: Växjö, Sweden, 2020; pp. 4–5. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Media_preparation_v_6.0_EUCAST_AST.pdf (accessed on 21 October 2021).
- Van de Vel, E.; Sampers, I.; Raes, K. A Review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Veldhuizen, E.J.; Creutzberg, T.O.; Burt, S.A.; Haagsman, H.P. Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare. J. Food Prot. 2007, 70, 2127–2132. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Cendrowski, A.; Kraśniewska, K.; Przybył, J.L.; Zielińska, A.; Kalisz, S. Antibacterial and antioxidant activity of extracts from rose fruits (Rosa rugosa). Molecules 2020, 25, 1365. [Google Scholar] [CrossRef] [Green Version]
- Serio, A.; Chiarini, M.; Tettamanti, E.; Paparella, A. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane. Lett. Appl. Microbiol. 2010, 51, 149–157. [Google Scholar] [CrossRef]
- Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Malandrino, G.; Cafiso, V.; Stefani, S.; Geraci, C. Oregano and thyme essential oils encapsulated in chitosan nanoparticles as effective antimicrobial agents against foodborne pathogens. Molecules 2021, 26, 4055. [Google Scholar] [CrossRef] [PubMed]
- Simionato, I.; Domingues, F.C.; Nerín, N.; Silva, F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food Chem. Toxicol. 2019, 132, 110647. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M45: Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI: Wayne, PA, USA, 2016; p. 44. [Google Scholar]
- Bouarab-Chibane, L.; Forquet, V.; Lanteri, P.; Clement, Y.; Leonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Chaleshtori, F.D.; Saholi, M.; Chaleshtori, R.S. Chemical composition, antioxidant and antibacterial activity of Bunium persicum, Eucalyptus globulus, and rose water on multidrug-resistant Listeria species. J. Evid.-Based Integr. Med. 2018, 23, 2515690X17751314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.H.; Song, K.B. Combined washing effect of noni extract and oregano essential oil on the decontamination of Listeria monocytogenes on romaine lettuce. Int. J. Food Sci. 2020, 55, 3515–3523. [Google Scholar] [CrossRef]
- Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D.; Kozics, K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 2017, 7, 8211. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, C.; Silva, A.C.; Garcia-Diez, J.; Cenci-Goga, B.; Grispoldi, L.; Silva, A.F.; Almeida, J.M. Antimicrobial activity of Myrtus communis L. and Rosmarinus officinalis L. essential oils against Listeria monocytogenes in cheese. Foods 2021, 10, 1106. [Google Scholar] [CrossRef]
- Shahbazi, Y. Chemical composition and in vitro antibacterial activity of Mentha spicata essential oil against common food-borne pathogenic bacteria. J. Pathog. 2015, 916305. [Google Scholar] [CrossRef]
- Limsuwan, C.; Subhadhirasakul, S.; Voravuthikunchai, S.P. Medicinal plants with significant activity against important pathogenic bacteria. Pharm. Biol. 2009, 47, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, L.; Khodaei, N.; Salmeri, S.; Karboune, S.; Lacroix, M. Correlation between chemical composition and antimicrobial properties of essential oils against most common food pathogens and spoilers: In-vitro efficacy and predictive modelling. Microb. Pathog. 2020, 147, e104212. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Liu, Y.; Wang, X.; Liu, B.; Dong, Q. Microrisk Lab: An online freeware for predictive microbiology. Foodborne Pathog. Dis. 2021, 18, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Roberts, T.A. Mathematics of predictive food microbiology. Int. J. Food Microbiol. 1995, 26, 199–218. [Google Scholar] [CrossRef] [Green Version]
Medium | Oregano Essential Oil | Cinnamon Essential Oil | ||||
---|---|---|---|---|---|---|
Mean | Median | Min–Max | Mean | Median | Min–Max | |
TSB | 466 | 474 Aa | 379–569 | 461 | 465 Aa | 310–620 |
BHI | 482 | 474 Aa | 379–664 | 530 | 517 Ba | 414–620 |
MHB | 604 | 616 Ba | 474–758 | 470 | 517 Ab | 310–620 |
Broth | Proteinous Components | Glucose | Starch | Phosphate Buffer | NaCl | |
---|---|---|---|---|---|---|
BHI | 12.5 | Brain infusion solids | 2.0 | - | 2.5 | 5.0 |
5.0 | Beef heart infusion solids | |||||
10.5 | Proteose peptone | |||||
TSB | 17.0 | Pancreatic digest of casein | 2.5 | - | 2.5 | 5.0 |
3.0 | Enzymatic digest of soya | |||||
MHB | 300.0 | Beef infusion | - | 1.5 | - | - |
17.5 | Casein hydrolysate |
Strain | Medium | OEO [µg/mL] | λ [h] | μmax [OD units/h] | RMSE | Δ λ [%] | Δ μmax [%] |
---|---|---|---|---|---|---|---|
L. monocytogenes ATCC 13932 | TSB | 0 | 3.47 ± 0.34 | 0.37 ± 0.03 | 0.04 ± 0.00 | +189% | −70% |
284 | 10.04 ± 0.56 | 0.11 ± 0.02 | 0.04 ± 0.01 | ||||
BHI | 0 | 4.59 ± 0.31 | 0.30 ± 0.01 | 0.03 ± 0.00 | +92% | −60% | |
284 | 8.81 ± 0.50 | 0.12 ± 0.01 | 0.05 ± 0.01 | ||||
MHB | 0 | 5.15 ± 0.37 | 0.10 ± 0.01 | 0.02 ± 0.00 | +17% | −30% | |
284 | 6.01 ± 0.41 | 0.07 ± 0.01 | 0.03 ± 0.00 | ||||
E. coli O157 ATCC 700728 | TSB | 0 | 3.43 ± 0.36 | 0.27 ± 0.03 | 0.02 ± 0.01 | +172% | −59% |
284 | 9.35 ± 0.49 | 0.11 ± 0.01 | 0.04 ± 0.01 | ||||
BHI | 0 | 3.88 ± 0.35 | 0.27 ± 0.04 | 0.02 ± 0.00 | +113% | −41% | |
284 | 8.72 ± 0.58 | 0.16 ± 0.02 | 0.05 ± 0.01 | ||||
MHB | 0 | 4.29 ± 0.41 | 0.19 ± 0.02 | 0.03 ± 0.01 | +6% | −26% | |
284 | 4.54 ± 0.53 | 0.14 ± 0.04 | 0.01 ± 0.01 |
Medium | Oregano Essential Oil | Cinnamon Essential Oil | ||||
---|---|---|---|---|---|---|
Mean | Median | Min–Max | Mean | Median | Min–Max | |
Salmonella Enteritidis | 442 | 474 Aa | 379–569 | 506 | 517 Aa | 310–620 |
Escherichia coli O157 | 500 | 474 ABa | 379–664 | 494 | 517 Aa | 310–620 |
Listeria monocytogenes | 569 | 569 Ba | 474–758 | 483 | 517 Ab | 310–620 |
Staphylococcus aureus | 558 | 569 Ba | 379–664 | 465 | 414 Ab | 310–620 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulankova, R. The Influence of Liquid Medium Choice in Determination of Minimum Inhibitory Concentration of Essential Oils against Pathogenic Bacteria. Antibiotics 2022, 11, 150. https://doi.org/10.3390/antibiotics11020150
Hulankova R. The Influence of Liquid Medium Choice in Determination of Minimum Inhibitory Concentration of Essential Oils against Pathogenic Bacteria. Antibiotics. 2022; 11(2):150. https://doi.org/10.3390/antibiotics11020150
Chicago/Turabian StyleHulankova, Radka. 2022. "The Influence of Liquid Medium Choice in Determination of Minimum Inhibitory Concentration of Essential Oils against Pathogenic Bacteria" Antibiotics 11, no. 2: 150. https://doi.org/10.3390/antibiotics11020150
APA StyleHulankova, R. (2022). The Influence of Liquid Medium Choice in Determination of Minimum Inhibitory Concentration of Essential Oils against Pathogenic Bacteria. Antibiotics, 11(2), 150. https://doi.org/10.3390/antibiotics11020150