From Pathophysiological Hypotheses to Case–Control Study Design: Resistance from Antibiotic Exposure in Community-Onset Infections
Abstract
:1. Introduction
2. Studies’ Epidemiological Key Points: Challenges, Findings and Limitations
2.1. Risk Factor: Antibiotic Exposure
2.1.1. Classification
2.1.2. Collection of Antibiotic Exposure
2.1.3. Window of Exposure
2.1.4. Quantification of Antibiotic Exposure
2.2. Populations and Design
2.2.1. Cases: Community-Onset Infections
2.2.2. Controls
Patients Infected with Susceptible Bacteria
Uninfected Hosts
2.2.3. Designs
3. Pathophysiological Hypotheses
3.1. Construction of the Pathophysiological Hypotheses
3.2. An Example: ESBL-Producing E.coli ST131 CO-Infections
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Costelloe, C.; Metcalfe, C.; Lovering, A.; Mant, D.; Hay, A.D. Effect of Antibiotic Prescribing in Primary Care on Antimicrobial Resistance in Individual Patients: Systematic Review and Meta-Analysis. BMJ 2010, 340, c2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Commission (EC). A European One Health Action Plan against Antimicrobial Resistance (AMR); EC: Brussels, Belgium, 2017. [Google Scholar]
- Harbarth, S.; Balkhy, H.H.; Goossens, H.; Jarlier, V.; Kluytmans, J.; Laxminarayan, R.; Saam, M.; Van Belkum, A.; Pittet, D. Antimicrobial Resistance: One World, One Fight! Antimicrob. Resist. Infect. Control 2015, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Nicolas-Chanoine, M.-H.; Gruson, C.; Bialek-Davenet, S.; Bertrand, X.; Thomas-Jean, F.; Bert, F.; Moyat, M.; Meiller, E.; Marcon, E.; Danchin, N.; et al. 10-Fold Increase (2006-11) in the Rate of Healthy Subjects with Extended-Spectrum -Lactamase-Producing Escherichia Coli Faecal Carriage in a Parisian Check-up Centre. J. Antimicrob. Chemother. 2013, 68, 562–568. [Google Scholar] [CrossRef]
- Glaser, P.; Martins-Simões, P.; Villain, A.; Barbier, M.; Tristan, A.; Bouchier, C.; Ma, L.; Bes, M.; Laurent, F.; Guillemot, D.; et al. Demography and Intercontinental Spread of the USA300 Community-Acquired Methicillin-Resistant Staphylococcus Aureus Lineage. mBio 2016, 7, e02183-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, S.W.; Barnett, M.L.; MacFadden, D.R.; Brownstein, J.S.; Hernández-Díaz, S.; Lipsitch, M.; Grad, Y.H. The Distribution of Antibiotic Use and Its Association with Antibiotic Resistance. eLife 2018, 7, e39435. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA—Annual Epidemiological Report 2019; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020.
- Lipsitch, M.; Samore, M.H. Antimicrobial Use and Antimicrobial Resistance: A Population Perspective. Emerg. Infect. Dis. 2002, 8, 347–354. [Google Scholar] [CrossRef]
- Schechner, V.; Temkin, E.; Harbarth, S.; Carmeli, Y.; Schwaber, M.J. Epidemiological Interpretation of Studies Examining the Effect of Antibiotic Usage on Resistance. Clin. Microbiol. Rev. 2013, 26, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.D.; Karchmer, T.B.; Carmeli, Y.; Samore, M.H. Methodological Principles of Case-Control Studies That Analyzed Risk Factors for Antibiotic Resistance: A Systematic Review. Clin. Infect. Dis. 2001, 32, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.D.; Carmeli, Y.; Samore, M.H.; Kaye, K.S.; Perencevich, E. Impact of Severity of Illness Bias and Control Group Misclassification Bias in Case–Control Studies of Antimicrobial-Resistant Organisms. Infect. Control Hosp. Epidemiol. 2005, 26, 342–345. [Google Scholar] [CrossRef]
- Harris, A.D.; Samore, M.H.; Carmeli, Y. Control Group Selection Is an Important but Neglected Issue in Studies of Antibiotic Resistance. Ann. Intern. Med. 2000, 133, 159. [Google Scholar] [CrossRef]
- Kaye, K.S.; Harris, A.D.; Samore, M.; Carmeli, Y. The Case-Case-Control Study Design: Addressing the Limitations of Risk Factor Studies for Antimicrobial Resistance. Infect. Control Hosp. Epidemiol. 2005, 26, 346–351. [Google Scholar] [CrossRef]
- Pirofski, L.; Casadevall, A. The Meaning of Microbial Exposure, Infection, Colonisation, and Disease in Clinical Practice. Lancet Infect. Dis. 2002, 2, 628–635. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Picón, E.; Gijón, P.; Hernández, J.R.; Ruíz, M.; Peña, C.; Almela, M.; Almirante, B.; Grill, F.; Colomina, J.; et al. Community-Onset Bacteremia Due to Extended-Spectrum Β-Lactamase-Producing Escherichia Coli: Risk Factors and Prognosis. Clin. Infect. Dis. 2010, 50, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, C.-J.; Shen, Y.-H.; Hwang, K.-P. Clinical Implications, Risk Factors and Mortality Following Community-Onset Bacteremia Caused by Extended-Spectrum β-Lactamase (ESBL) and Non-ESBL Producing Escherichia Coli. J. Microbiol. Immunol. Infect. 2010, 43, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Choi, S.-M.; Lee, D.-G.; Kim, J.; Choi, J.-H.; Kim, S.-H.; Kwon, J.-C.; Yoo, J.-H. Emergence of Extended-Spectrum β-Lactamase-Producing Escherichia Coli as a Cause of Community-Onset Bacteremia in South Korea: Risk Factors and Clinical Outcomes. Microb. Drug Resist. 2011, 17, 537–544. [Google Scholar] [CrossRef]
- Park, Y.S.; Bae, I.K.; Kim, J.; Jeong, S.H.; Hwang, S.; Seo, Y.-H.; Cho, Y.K.; Lee, K.; Kim, J.M. Risk Factors and Molecular Epidemiology of Community-Onset Extended-Spectrum β-Lactamase-Producing Escherichia Coli Bacteremia. Yonsei Med. J. 2014, 55, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Song, K.-H.; Kim, C.-J.; Choe, P.G.; Park, W.B.; Bang, J.H.; Kim, E.S.; Park, S.-W.; Kim, N.J.; Oh, M.; et al. Clinical Prediction Score for Community-Onset Bloodstream Infections Caused by Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli and Klebsiella Species. J. Korean Med. Sci. 2019, 34, e116. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Chu, F.-Y.; Hsieh, C.-C.; Hong, M.-Y.; Chi, C.-H.; Ko, W.-C.; Lee, C.-C. A Simple Scoring Algorithm Predicting Extended-Spectrum β-Lactamase Producers in Adults with Community-Onset Monomicrobial Enterobacteriaceae Bacteremia: Matters of Frequent Emergency Department Users. Medicine 2017, 96, e6648. [Google Scholar] [CrossRef]
- Zahar, J.-R.; Lesprit, P.; Ruckly, S.; Eden, A.; Hikombo, H.; Bernard, L.; Harbarth, S.; Timsit, J.-F.; Brun-Buisson, C.; Aissa, N.; et al. Predominance of Healthcare-Associated Cases among Episodes of Community-Onset Bacteraemia Due to Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2017, 49, 67–73. [Google Scholar] [CrossRef]
- Lin, W.-P.; Huang, Y.-S.; Wang, J.-T.; Chen, Y.-C.; Chang, S.-C. Prevalence of and Risk Factor for Community-Onset Third-Generation Cephalosporin-Resistant Escherichia Coli Bacteremia at a Medical Center in Taiwan. BMC Infect. Dis. 2019, 19, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Han, S.W.; Kim, K.W.; Song, D.Y.; Kwon, K.T. Third-Generation Cephalosporin Resistance of Community-Onset Escherichia Coli and Klebsiella Pneumoniae Bacteremia in a Secondary Hospital. Korean J. Intern. Med. 2014, 29, 3932395. [Google Scholar] [CrossRef]
- Sung, Y.K.; Lee, J.K.; Lee, K.H.; Lee, K.T.; Kang, C.-I. The Clinical Epidemiology and Outcomes of Bacteremic Biliary Tract Infections Caused by Antimicrobial-Resistant Pathogens. Am. J. Gastroenterol. 2012, 107, 473–483. [Google Scholar] [CrossRef]
- Gottesman, B.-S.; Shitrit, P.; Katzir, M.; Chowers, M. Antibiotic Exposure in the Community and Resistance Patterns of Escherichia Coli Community-Acquired Bloodstream Infection. Isr. Med. Assoc. J. 2018, 20, 382–384. [Google Scholar] [PubMed]
- Pedersen, G.; Schønheyder, H.C.; Steffensen, F.H.; Sørenson, H.T. Risk of Resistance Related to Antibiotic Use before Admission in Patients with Community-Acquired Bacteraemia. J. Antimicrob. Chemother. 1999, 43, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, M.; Soriano, A.; Marco, F.; Almela, M.; Martínez, J.A.; Morata, L.; Cobos-Trigueros, N.; de la Calle, C.; Mensa, J. Risk Factors for the Isolation of a Third Generation Cephalosporin Resistant Strain in Patients with Community-Acquired Enterobacteriaceae Bacteraemia. J. Infect. 2016, 72, 268–271. [Google Scholar] [CrossRef]
- Wi, Y.M.; Rhee, J.Y.; Kang, C.I.; Chung, D.R.; Song, J.H.; Peck, K.R. Clinical Predictors of Methicillin-Resistance and Their Impact on Mortality Associated with Staphylococcus Aureus Bacteraemia. Epidemiol. Infect. 2018, 146, 1326–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, C.J.; Cheng, A.C.; Kong, D.C.M.; Peleg, A.Y. Community-Onset Bloodstream Infection with Multidrug-Resistant Organisms: A Matched Case-Control Study. BMC Infect. Dis. 2014, 14, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, N.-C.; Chen, H.-H.; Chen, C.-L.; Ou, L.-S.; Lin, T.-Y.; Tsai, M.-H.; Chiu, C.-H. Rise of Community-Onset Urinary Tract Infection Caused by Extended-Spectrum β-Lactamase-Producing Escherichia Coli in Children. J. Microbiol. Immunol. Infect. 2014, 47, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Pérez Heras, I.; Sanchez-Gomez, J.C.; Beneyto-Martin, P.; Ruano-de-Pablo, L.; Losada-Pinedo, B. Community-Onset Extended-Spectrum β-Lactamase Producing Escherichia Coli in Urinary Tract Infections in Children from 2015 to 2016: Prevalence, Risk Factors, and Resistances. Medicine 2017, 96, e8571. [Google Scholar] [CrossRef]
- Søgaard, M.; Heide-Jørgensen, U.; Vandenbroucke, J.P.; Schønheyder, H.C.; Vandenbroucke-Grauls, C.M.J.E. Risk Factors for Extended-Spectrum β-Lactamase-Producing Escherichia Coli Urinary Tract Infection in the Community in Denmark: A Case–Control Study. Clin. Microbiol. Infect. 2017, 23, 952–960. [Google Scholar] [CrossRef] [Green Version]
- Tüzün, T.; Sayın Kutlu, S.; Kutlu, M.; Kaleli, İ. Risk Factors for Community-Onset Urinary Tract Infections Caused by Extended-Spectrum β-Lactamase-Producing Escherichia Coli. Turk. J. Med. Sci. 2019, 49, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Boix-Palop, L.; Xercavins, M.; Badía, C.; Obradors, M.; Riera, M.; Freixas, N.; Pérez, J.; Rodríguez-Carballeira, M.; Garau, J.; Calbo, E. Emerging Extended-Spectrum β-Lactamase-Producing Klebsiella Pneumoniae Causing Community-Onset Urinary Tract Infections: A Case–Control–Control Study. Int. J. Antimicrob. Agents 2017, 50, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Kung, C.-H.; Ku, W.-W.; Lee, C.-H.; Fung, C.-P.; Kuo, S.-C.; Chen, T.-L.; Lee, Y.-T. Epidemiology and Risk Factors of Community-Onset Urinary Tract Infection Caused by Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in a Medical Center in Taiwan: A Prospective Cohort Study. J. Microbiol. Immunol. Infect. 2015, 48, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Calbo, E.; Romaní, V.; Xercavins, M.; Gómez, L.; Vidal, C.G.; Quintana, S.; Vila, J.; Garau, J. Risk Factors for Community-Onset Urinary Tract Infections Due to Escherichia Coli Harbouring Extended-Spectrum β-Lactamases. J. Antimicrob. Chemother. 2006, 57, 780–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.H.; Rodado, M.P.; Asmar, B.I.; Salimnia, H.; Thomas, R.; Abdel-Haq, N. Risk Factors for Community Acquired Urinary Tract Infections Caused by Extended Spectrum β-Lactamase (ESBL) Producing Escherichia Coli in Children: A Case Control Study. Infect. Dis. 2019, 51, 802–809. [Google Scholar] [CrossRef]
- Topaloglu, R.; Er, I.; Dogan, B.G.; Bilginer, Y.; Ozaltin, F.; Besbas, N.; Ozen, S.; Bakkaloglu, A.; Gur, D. Risk Factors in Community-Acquired Urinary Tract Infections Caused by ESBL-Producing Bacteria in Children. Pediatr. Nephrol. 2010, 25, 919–925. [Google Scholar] [CrossRef]
- Yilmaz, E.; Akalin, H.; Özbey, S.; Kordan, Y.; Sinirtaş, M.; Gürcüoglu, E.; Özakin, C.; Heper, Y.; Mistik, R.; Helvaci, S. Risk Factors in Community-Acquired/Onset Urinary Tract Infections Due to Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli and Klebsiella Pneumoniae. J. Chemother. 2008, 20, 581–585. [Google Scholar] [CrossRef]
- Colodner, R.; Rock, W.; Chazan, B.; Keller, N.; Guy, N.; Sakran, W.; Raz, R. Risk Factors for the Development of Extended-Spectrum Beta-Lactamase-Producing Bacteria in Nonhospitalized Patients. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 163–167. [Google Scholar] [CrossRef]
- Albaramki, J.H.; Abdelghani, T.; Dalaeen, A.; Khdair Ahmad, F.; Alassaf, A.; Odeh, R.; Akl, K. Urinary Tract Infection Caused by Extended-spectrum Β-lactamase-producing Bacteria: Risk Factors and Antibiotic Resistance. Pediatr. Int. 2019, 61, 1127–1132. [Google Scholar] [CrossRef]
- Guzmán, M.; Salazar, E.; Cordero, V.; Castro, A.; Villanueva, A.; Rodulfo, H.; De Donato, M. Multidrug Resistance and Risk Factors Associated with Community-Acquired Urinary Tract Infections Caused by Escherichia Coli in Venezuela. Biomedica 2019, 39, 96–107. [Google Scholar] [CrossRef]
- Koksal, E.; Tulek, N.; Sonmezer, M.C.; Temocin, F.; Bulut, C.; Hatipoglu, C.; Erdinc, F.S.; Ertem, G. Investigation of Risk Factors for Community-Acquired Urinary Tract Infections Caused by Extended-Spectrum Beta-Lactamase Escherichia Coli and Klebsiella Species. Investig. Clin. Urol. 2019, 60, 46. [Google Scholar] [CrossRef]
- Azap, Ö.K.; Arslan, H.; Şerefhanoğlu, K.; Çolakoğlu, Ş.; Erdoğan, H.; Timurkaynak, F.; Senger, S.S. Risk Factors for Extended-Spectrum β-Lactamase Positivity in Uropathogenic Escherichia Coli Isolated from Community-Acquired Urinary Tract Infections. Clin. Microbiol. Infect. 2010, 16, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Baño, J.; Alcalá, J.C.; Cisneros, J.M.; Grill, F.; Oliver, A.; Horcajada, J.P.; Tórtola, T.; Mirelis, B.; Navarro, G.; Cuenca, M.; et al. Community Infections Caused by Extended-Spectrum β-Lactamase–Producing Escherichia Coli. Arch. Intern. Med. 2008, 168, 1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Tokumori, F.; Irey-Salgado, C.; Málaga, G. Worrisome High Frequency of Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli in Community-Acquired Urinary Tract Infections: A Case–Control Study. Int. J. Infect. Dis. 2017, 55, 16–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megged, O. Extended-Spectrum β-Lactamase-Producing Bacteria Causing Community-Acquired Urinary Tract Infections in Children. Pediatr. Nephrol. 2014, 29, 1583–1587. [Google Scholar] [CrossRef] [PubMed]
- Chervet, D.; Lortholary, O.; Zahar, J.-R.; Dufougeray, A.; Pilmis, B.; Partouche, H. Antimicrobial Resistance in Community-Acquired Urinary Tract Infections in Paris in 2015. Méd. Mal. Infect. 2018, 48, 188–192. [Google Scholar] [CrossRef]
- Jacmel, L.; Timsit, S.; Ferroni, A.; Auregan, C.; Angoulvant, F.; Chéron, G. Extended-Spectrum β-Lactamase-Producing Bacteria Caused Less than 5% of Urinary Tract Infections in a Paediatric Emergency Centre. Acta Paediatr. 2017, 106, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Brosh-Nissimov, T.; Navon-Venezia, S.; Keller, N.; Amit, S. Risk Analysis of Antimicrobial Resistance in Outpatient Urinary Tract Infections of Young Healthy Adults. J. Antimicrob. Chemother. 2019, 74, 499–502. [Google Scholar] [CrossRef]
- Colodner, R.; Kometiani, I.; Chazan, B.; Raz, R. Risk Factors for Community-Acquired Urinary Tract Infection Due to Quinolone-Resistant E. Coli. Infection 2008, 36, 41–45. [Google Scholar] [CrossRef]
- Seija, V.; Fratchez, V.; Ventura, V.; Pintos, M.; González, M. Risk factors for community-acquired urinary tract infection caused by fluoroquinolone resistant E. coli. Rev. Chil. Infectol. 2014, 31, 400–405. [Google Scholar] [CrossRef] [Green Version]
- Killgore, K.M.; March, K.L.; Guglielmo, B.J. Risk Factors for Community-Acquired Ciprofloxacin-Resistant Escherichia Coli Urinary Tract Infection. Ann. Pharmacother. 2004, 38, 1148–1152. [Google Scholar] [CrossRef]
- Chaniotaki, S.; Giakouppi, P.; Tzouvelekis, L.S.; Panagiotakos, D.; Kozanitou, M.; Petrikkos, G.; Avlami, A.; Vatopoulos, A.C. Quinolone Resistance among Escherichia Coli Strains from Community-Acquired Urinary Tract Infections in Greece. Clin. Microbiol. Infect. 2004, 10, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Dromigny, J.A.; Nabeth, P.; Juergens-Behr, A.; Perrier-Gros-Claude, J.D. Risk Factors for Antibiotic-Resistant Escherichia Coli Isolated from Community-Acquired Urinary Tract Infections in Dakar, Senegal. J. Antimicrob. Chemother. 2005, 56, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillier, S.; Roberts, Z.; Dunstan, F.; Butler, C.; Howard, A.; Palmer, S. Prior Antibiotics and Risk of Antibiotic-Resistant Community-Acquired Urinary Tract Infection: A Case–Control Study. J. Antimicrob. Chemother. 2007, 60, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Anesi, J.A.; Lautenbach, E.; Nachamkin, I.; Garrigan, C.; Bilker, W.B.; Wheeler, M.; Tolomeo, P.; Han, J.H. Clinical and Molecular Characterization of Community-Onset Urinary Tract Infections Due to Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae. Infect. Control Hosp. Epidemiol. 2016, 37, 1433–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-H.; Lee, Y.-T.; Kung, C.-H.; Ku, W.-W.; Kuo, S.-C.; Chen, T.-L.; Fung, C.-P. Risk Factors of Community-Onset Urinary Tract Infections Caused by Plasmid-Mediated AmpC β-Lactamase-Producing Enterobacteriaceae. J. Microbiol. Immunol. Infect. 2015, 48, 269–275. [Google Scholar] [CrossRef]
- Smithson, A.; Chico, C.; Ramos, J.; Netto, C.; Sanchez, M.; Ruiz, J.; Porron, R.; Bastida, M.T. Prevalence and Risk Factors for Quinolone Resistance among Escherichia Coli Strains Isolated from Males with Community Febrile Urinary Tract Infection. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 423–430. [Google Scholar] [CrossRef]
- Bosch-Nicolau, P.; Falcó, V.; Viñado, B.; Andreu, A.; Len, O.; Almirante, B.; Pigrau, C. A Cohort Study of Risk Factors That Influence Empirical Treatment of Patients with Acute Pyelonephritis. Antimicrob. Agents Chemother. 2017, 61, e01317-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filiatrault, L.; McKay, R.M.; Patrick, D.M.; Roscoe, D.L.; Quan, G.; Brubacher, J.; Collins, K.M. Antibiotic Resistance in Isolates Recovered from Women with Community-Acquired Urinary Tract Infections Presenting to a Tertiary Care Emergency Department. Can. J. Emerg. Med. 2012, 14, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruppé, E.; Andremont, A. Causes, Consequences, and Perspectives in the Variations of Intestinal Density of Colonization of Multidrug-Resistant Enterobacteria. Front. Microbiol. 2013, 4, 129. [Google Scholar] [CrossRef] [Green Version]
- Pilmis, B.; Le Monnier, A.; Zahar, J.-R. Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms 2020, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Ruppé, E.; Armand-Lefèvre, L.; Estellat, C.; Consigny, P.-H.; El Mniai, A.; Boussadia, Y.; Goujon, C.; Ralaimazava, P.; Campa, P.; Girard, P.-M.; et al. High Rate of Acquisition but Short Duration of Carriage of Multidrug-Resistant Enterobacteriaceae After Travel to the Tropics. Clin. Infect. Dis. 2015, 61, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Titelman, E.; Hasan, C.M.; Iversen, A.; Nauclér, P.; Kais, M.; Kalin, M.; Giske, C.G. Faecal Carriage of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Is Common 12 Months after Infection and Is Related to Strain Factors. Clin. Microbiol. Infect. 2014, 20, O508–O515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, N.D.; Kaye, K.S.; Stout, J.E.; McGarry, S.A.; Trivette, S.L.; Briggs, J.P.; Lamm, W.; Clark, C.; MacFarquhar, J.; Walton, A.L.; et al. Health Care—Associated Bloodstream Infections in Adults: A Reason to Change the Accepted Definition of Community-Acquired Infections. Ann. Intern. Med. 2002, 137, 791–797. [Google Scholar] [CrossRef]
- Kollef, M.H.; Shorr, A.; Tabak, Y.P.; Gupta, V.; Liu, L.Z.; Johannes, R.S. Epidemiology and Outcomes of Health-Care-Associated Pneumonia: Results from a Large US Database of Culture-Positive Pneumonia. Chest 2005, 128, 3854–3862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewig, S.; Welte, T.; Chastre, J.; Torres, A. Rethinking the Concepts of Community-Acquired and Health-Care-Associated Pneumonia. Lancet Infect. Dis. 2010, 10, 279–287. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2011–2012; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2013.
- Angebault, C.; Andremont, A. Antimicrobial Agent Exposure and the Emergence and Spread of Resistant Microorganisms: Issues Associated with Study Design. Eur. J. Clin. Microbiol Infect. Dis. 2013, 32, 581–595. [Google Scholar] [CrossRef]
- Whitmer, G.R.; Moorthy, G.; Arshad, M. The Pandemic Escherichia Coli Sequence Type 131 Strain Is Acquired Even in the Absence of Antibiotic Exposure. PLoS Pathog. 2019, 15, e1008162. [Google Scholar] [CrossRef]
- Morales Barroso, I.; López-Cerero, L.; Navarro, M.D.; Gutiérrez-Gutiérrez, B.; Pascual, A.; Rodríguez-Baño, J. Intestinal Colonization Due to Escherichia Coli ST131: Risk Factors and Prevalence. Antimicrob. Resist. Infect. Control 2018, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Prevel, R.; Boyer, A.; M’Zali, F.; Lasheras, A.; Zahar, J.-R.; Rogues, A.-M.; Gruson, D. Is Systematic Fecal Carriage Screening of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Still Useful in Intensive Care Unit: A Systematic Review. Crit. Care 2019, 23, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulenok, T.; Ferroni, A.; Bille, E.; Lécuyer, H.; Join-Lambert, O.; Descamps, P.; Nassif, X.; Zahar, J.-R. Risk Factors for Developing ESBL E. Coli: Can Clinicians Predict Infection in Patients with Prior Colonization? J. Hosp. Infect. 2013, 84, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Razazi, K.; Rosman, J.; Phan, A.-D.; Carteaux, G.; Decousser, J.-W.; Woerther, P.L.; de Prost, N.; Brun-Buisson, C.; Mekontso Dessap, A. Quantifying Risk of Disease Due to Extended-Spectrum β-Lactamase Producing Enterobacteriaceae in Patients Who Are Colonized at ICU Admission. J. Infect. 2020, 80, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Rottier, W.C.; Bamberg, Y.R.P.; Dorigo-Zetsma, J.W.; van der Linden, P.D.; Ammerlaan, H.S.M.; Bonten, M.J.M. Predictive Value of Prior Colonization and Antibiotic Use for Third-Generation Cephalosporin-Resistant Enterobacteriaceae Bacteremia in Patients with Sepsis. Clin. Infect. Dis. 2015, 60, 1622–1630. [Google Scholar] [CrossRef] [Green Version]
- Vodovar, D.; Marcadé, G.; Rousseau, H.; Raskine, L.; Vicaut, E.; Deye, N.; Baud, F.J.; Mégarbane, B. Predictive Factors for Extended-Spectrum Beta-Lactamase Producing Enterobacteriaceae Causing Infection among Intensive Care Unit Patients with Prior Colonization. Infection 2014, 42, 743–748. [Google Scholar] [CrossRef]
- Cho, S.Y.; Kang, C.-I.; Cha, M.K.; Wi, Y.M.; Ha, Y.E.; Chung, D.R.; Lee, N.Y.; Peck, K.R.; Song, J.-H.; on behalf of the Korean Network for Study on Infectious Diseases (KONSID). Clinical Features and Treatment Outcomes of Bloodstream Infections Caused by Extended-Spectrum β-Lactamase-Producing Escherichia Coli Sequence Type 131. Microb. Drug Resist. 2015, 21, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, Y.A.; Park, Y.S.; Choi, M.H.; Lee, G.I.; Lee, K. Risk Factors and Molecular Features of Sequence Type (ST) 131 Extended-Spectrum β-Lactamase-Producing Escherichia Coli in Community-Onset Bacteremia. Sci. Rep. 2017, 7, 14640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardini, R.; Di Carlo, S.; Politano, G.; Benso, A. Modeling Antibiotic Resistance in the Microbiota Using Multi-Level Petri Nets. BMC Syst. Biol. 2018, 12, 108. [Google Scholar] [CrossRef]
- Knight, G.M.; Davies, N.G.; Colijn, C.; Coll, F.; Donker, T.; Gifford, D.R.; Glover, R.E.; Jit, M.; Klemm, E.; Lehtinen, S.; et al. Mathematical Modelling for Antibiotic Resistance Control Policy: Do We Know Enough? BMC Infect. Dis. 2019, 19, 1011. [Google Scholar] [CrossRef]
|
Control Group | Case Group | Question Addressed |
---|---|---|
Uncolonized hosts | Hosts colonized with a given species | Assess the impact of antibiotic exposure on the risk of colonization. |
Hosts colonized with the susceptible bacteria | Hosts colonized with the resistant bacteria | Assess the impact of antibiotic exposure on the apparition of a resistant strain within the colonizing susceptible strain. |
Hosts colonized with a bacterial strain | Hosts infected with the same bacterial strain | Assess the impact of antibiotic exposure on the progression from colonization to infection. |
Uninfected hosts | Hosts infected with the resistant bacteria | Assess the overall impact of antibiotic exposure on the process leading an uninfected host to present an infection to the studied resistant bacteria. |
Control group 1: uninfected hosts Control group 2 @: hosts infected with the susceptible bacteria | Hosts infected with the resistant bacteria | Assess whether antibiotic exposure selectively impacts the risk of developing a resistant infection, or the risk of having an infection, whether it is susceptible or resistant. |
Hosts infected with the susceptible bacteria | Hosts infected with the resistant bacteria | Determine the most appropriate empiric treatment for a patient with a presumed infection to the studied bacteria. Assess the differential impact of antibiotic exposure on the processes leading a host to present with an antibiotic susceptible or resistant infection. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbara, S.; Guillemot, D.; Brun-Buisson, C.; Watier, L. From Pathophysiological Hypotheses to Case–Control Study Design: Resistance from Antibiotic Exposure in Community-Onset Infections. Antibiotics 2022, 11, 201. https://doi.org/10.3390/antibiotics11020201
Abbara S, Guillemot D, Brun-Buisson C, Watier L. From Pathophysiological Hypotheses to Case–Control Study Design: Resistance from Antibiotic Exposure in Community-Onset Infections. Antibiotics. 2022; 11(2):201. https://doi.org/10.3390/antibiotics11020201
Chicago/Turabian StyleAbbara, Salam, Didier Guillemot, Christian Brun-Buisson, and Laurence Watier. 2022. "From Pathophysiological Hypotheses to Case–Control Study Design: Resistance from Antibiotic Exposure in Community-Onset Infections" Antibiotics 11, no. 2: 201. https://doi.org/10.3390/antibiotics11020201
APA StyleAbbara, S., Guillemot, D., Brun-Buisson, C., & Watier, L. (2022). From Pathophysiological Hypotheses to Case–Control Study Design: Resistance from Antibiotic Exposure in Community-Onset Infections. Antibiotics, 11(2), 201. https://doi.org/10.3390/antibiotics11020201