The Antibiotics Used in Livestock and Their Impact on Resistance in Enterococcus faecium and Enterococcus hirae on Farms in Gabon
Abstract
:1. Introduction
2. Results
2.1. Number of Faecal Samples Collected
2.2. Characteristics of the Study Population
2.3. Drug Use on Livestock
2.4. Distribution of E. faecium and E. hirae
2.5. Phylogeny of E. faecium and E. hirae from Animals
2.6. Antibiotic Susceptibility Profile of E. faecium and E. hirae
2.7. Distribution of Antibiotic Susceptibility by Animal Species
2.8. Characterisation of the tet(M) Gene
3. Discussion
4. Materials and Methods
Species | Target Gene | Sequence (5′-3′) | Cycles | Product Size (bp) | Reference |
---|---|---|---|---|---|
Enterococcus spp | tuf | TACTGACAAACCATTCATGATG AACTTCGTCACCAACGCGAAC | 30 | 112 | [50] |
E. faecium | sodA | GAAAAACAATAGAAGAATTAT | 40 | 187 | [50] |
TGCTTTTTTGAATTCTTCTTTA | |||||
E. hirae | sodA | CTTTCTGATATGGATGCTGTC | 40 | 215 | [50] |
TAAATTCTTCCTTAAATGTTG |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammerum, A.M. Enterococci of animal origin and their significance for public health. Clin. Microbiol. Infect. 2012, 18, 619–625. [Google Scholar] [CrossRef]
- Chajecka-Wierzchowska, W.; Zadernowska, A.; Laniewska-Trokenheim, L. Diversity of antibiotic resistance genes in Enterococcus strains isolated from ready-to-eat meat products. J. Food Sci. 2016, 81, M2799–M2807. [Google Scholar] [CrossRef] [PubMed]
- Marinho, C.M.; Santos, T.; Goncalves, A.; Poeta, P.; Igrejas, G. A Decade-long commitment to antimicrobial resistance surveillance in Portugal. Front. Microbiol. 2016, 7, 1650. [Google Scholar] [CrossRef]
- de Jong, A.; Simjee, S.; Garch, F.E.; Moyaert, H.; Rose, M.; Youala, M.; Dry, M. Antimicrobial susceptibility of enterococci recovered from healthy cattle, pigs and chickens in nine EU countries (EASSA Study) to critically important antibiotics. Vet. Microbiol. 2018, 216, 168–175. [Google Scholar] [CrossRef]
- Garcia-Solache, M.; Rice, L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; Leon-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol. Spectr. 2018, 6, 24. [Google Scholar] [CrossRef]
- Lebreton, F.; Willems, R.J.L.; Gilmore, M.S. Enterococcus diversity, origins in nature, and gut colonization. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infarmary: Boston, MA, USA, 2014; pp. 5–63. [Google Scholar]
- Robinson, T.P.; Franceschini, G.; Wint, W. The Food and Agriculture Organization’s gridded livestock of the world. Vet. Ital. 2007, 43, 745–751. [Google Scholar]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Luiken, R.E.; Van Gompel, L.; Munk, P.; Sarrazin, S.; Joosten, P.; Dorado-García, A.; Hansen, R.B.; Knudsen, B.E.; Bossers, A.; Wagenaar, J.A. Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. J. Antimicrob. Chemother. 2019, 74, 2596–2604. [Google Scholar] [CrossRef] [PubMed]
- Canica, M.; Manageiro, V.; Jones-Dias, D.; Clemente, L.; Gomes-Neves, E.; Poeta, P.; Dias, E.; Ferreira, E. Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res. Microbiol. 2015, 166, 594–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novais, C.; Freitas, A.R.; Silveira, E.; Antunes, P.; Silva, R.; Coque, T.M.; Peixe, L. Spread of multidrug-resistant Enterococcus to animals and humans: An underestimated role for the pig farm environment. J. Antimicrob. Chemother. 2013, 68, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Rolain, J.M. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front. Microbiol. 2013, 4, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benavides, J.A.; Godreuil, S.; Bodenham, R.; Ratiarison, S.; Devos, C.; Petretto, M.-O.; Raymond, M.; Escobar-Páramo, P. No evidence for transmission of antibiotic-resistant Escherichia coli strains from humans to wild western lowland gorillas in Lopé National Park, Gabon. Appl. Environ. Microbiol. 2012, 78, 4281–4287. [Google Scholar] [CrossRef] [Green Version]
- Nguema, P.P.M.; Okubo, T.; Tsuchida, S.; Fujita, S.; Yamagiwa, J.; Tamura, Y.; Ushida, K. Isolation of multiple drug-resistant enteric bacteria from feces of wild Western Lowland Gorilla (Gorilla gorilla gorilla) in Gabon. J. Vet. Med. Sci. 2015, 77, 619–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaumburg, F.; Alabi, A.S.; Frielinghaus, L.; Grobusch, M.P.; Köck, R.; Becker, K.; Issifou, S.; Kremsner, P.G.; Peters, G.; Mellmann, A. The risk to import ESBL-producing Enterobacteriaceae and Staphylococcus aureus through chicken meat trade in Gabon. BMC Microbiol. 2014, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Alabi, A.; Kokou, C.; Grobusch, M.P.; Köck, R.; Kaba, H.; Becker, K.; Adegnika, A.A.; Kremsner, P.G.; Peters, G. High burden of extended-spectrum β-lactamase-producing Enterobacteriaceae in Gabon. J. Antimicrob. Chemother. 2013, 68, 2140–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikoumba, A.C.; Onanga, R.; Boundenga, L.; Bignoumba, M.; Ngoungou, E.B.; Godreuil, S. Prevalence and characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae in major Hospitals in Gabon. Microb. Drug Resist. 2021. [Google Scholar] [CrossRef] [PubMed]
- Nguema, P.P.M.; Onanga, R.; Atome, G.R.N.; Mbeang, J.C.O.; Mabika, A.; Yaro, M.; Lounnas, M.; Dumont, Y.; Zohra, Z.F.; Godreuil, S. Characterization of ESBL-producing enterobacteria from fruit bats in an unprotected area of Makokou, Gabon. Microorganisms 2020, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Katakweba, A.; Mtambo, M.; Olsen, J.; Muhairwa, A. Awareness of human health risks associated with the use of antibiotics among livestock keepers and factors that contribute to selection of antibiotic resistance bacteria within livestock in Tanzania. Livest. Res. Rural. Dev. 2012, 24, 170. [Google Scholar]
- FAO. Rapport De La Géolocalisation Des Elévages Au Gabon; Organisation des Nations unies pour l’Alimentation et l’Agriculture: Rome, Italy, 2017; p. 57. [Google Scholar]
- Njoga, E.O.; Onunkwo, J.I.; Okoli, C.E.; Ugwuoke, W.I.; Nwanta, J.A.; Chah, K.F. Assessment of antimicrobial drug administration and antimicrobial residues in food animals in Enugu State, Nigeria. Trop. Anim. Health Prod. 2018, 50, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Hammerum, A.M.; Lester, C.H.; Heuer, O.E. Antimicrobial-resistant enterococci in animals and meat: A human health hazard? Foodborne Pathog. Dis. 2010, 7, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, R.; Tago, D.; Treich, N. Infectious diseases and meat production. Environ. Resour. Econ. 2020, 76, 1019–1044. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, M.H. Can stress in farm animals increase food safety risk? Foodborne Pathog. Dis. 2009, 6, 767–776. [Google Scholar] [CrossRef]
- Condoleo, R.; Taylor, R.A.; Simons, R.R.; Gale, P.; Mezher, Z.; Roberts, H. A semi-quantitative model for ranking the risk of incursion of exotic animal pathogens into a European Union Member State. Microb. Risk Anal. 2021, 18, 100175. [Google Scholar] [CrossRef]
- Ferdous, J.; Sachi, S.; Al Noman, S.Z.; Hussani, Y.A.S.; Sikder, M.H. Assessing farmers’ perspective on antibiotic usage and management practices in small-scale layer farms of Mymensingh district, Bangladesh. Vet. World 2019, 12, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.H.; Nyirabahizi, E.; Crarey, E.; Kabera, C.; Lam, C.; Rice-Trujillo, C.; McDermott, P.F.; Tate, H. Prevalence and antimicrobial resistance of Enterococci isolated from retail meats in the United States, 2002 to 2014. Appl. Environ. Microbiol. 2018, 84, e01902-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, S.W.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech. 2012, 31, 145–188. [Google Scholar] [CrossRef] [PubMed]
- Klibi, N.; Said, L.B.; Jouini, A.; Slama, K.B.; Lopez, M.; Sallem, R.B.; Boudabous, A.; Torres, C. Species distribution, antibiotic resistance and virulence traits in enterococci from meat in Tunisia. Meat Sci. 2013, 93, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Iweriebor, B.C.; Obi, L.C.; Okoh, A.I. Virulence and antimicrobial resistance factors of Enterococcus spp. isolated from fecal samples from piggery farms in Eastern Cape, South Africa. BMC Microbiol. 2015, 15, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, A.R.; Tedim, A.P.; Novais, C.; Coque, T.M.; Peixe, L. Distribution of putative virulence markers in Enterococcus faecium: Towards a safety profile review. J. Antimicrob. Chemother. 2018, 73, 306–319. [Google Scholar] [CrossRef]
- O’Dea, M.; Sahibzada, S.; Jordan, D.; Laird, T.; Lee, T.; Hewson, K.; Pang, S.; Abraham, R.; Coombs, G.W.; Harris, T.; et al. Genomic, antimicrobial resistance, and public health insights into Enterococcus spp. from Australian Chickens. J. Clin. Microbiol. 2019, 57, e00319-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manson, A.L.; Van Tyne, D.; Straub, T.J.; Clock, S.; Crupain, M.; Rangan, U.; Gilmore, M.S.; Earl, A.M. Chicken meat-associated Enterococci: Influence of agricultural antibiotic use and connection to the clinic. Appl. Environ. Microbiol. 2019, 85, e01559-19. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.; Novais, C.; Freitas, A.R.; Dias, A.R.; Ribeiro, T.G.; Antunes, P.; Peixe, L. Filling the map for antimicrobial resistance in sub-Saharan Africa: Ampicillin-resistant Enterococcus from non-clinical sources in Angola. J. Antimicrob. Chemother. 2015, 70, 2914–2916. [Google Scholar] [CrossRef] [Green Version]
- Ayeni, F.A.; Odumosu, B.T.; Oluseyi, A.E.; Ruppitsch, W. Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. J. Pharm. Bioallied Sci. 2016, 8, 69–73. [Google Scholar] [CrossRef]
- Katakweba, A.A.; Moller, K.S.; Muumba, J.; Muhairwa, A.P.; Damborg, P.; Rosenkrantz, J.T.; Minga, U.M.; Mtambo, M.M.; Olsen, J.E. Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania. J. Appl. Microbiol. 2015, 118, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Madoshi, B.P.; Mtambo, M.M.A.; Muhairwa, A.P.; Lupindu, A.M.; Olsen, J.E. Isolation of vancomycin-resistant Enterococcus from apparently healthy human animal attendants, cattle and cattle wastes in Tanzania. J. Appl. Microbiol. 2018, 124, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Katakweba, A.A.S.; Muhairwa, A.P.; Lupindu, A.M.; Damborg, P.; Rosenkrantz, J.T.; Minga, U.M.; Mtambo, M.M.A.; Olsen, J.E. First Report on a randomized investigation of antimicrobial resistance in fecal Iindicator bacteria from livestock, poultry, and humans in Tanzania. Microb. Drug Resist. 2018, 24, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anyanwu, M.; Okorie-Kanu, O.; Ogugua, A.; Ezenduka, E.; Anidebe, C. Occurrence, antibiogram and vancomycin resistance of generic enterococci in horses in Nigeria. Rev. Médécine Vétérinaire 2019, 170, 46–52. [Google Scholar]
- Alame-Emane, A.K.; Xu, P.; Pierre-Audigier, C.; Cadet-Daniel, V.; Shen, X.; Sraouia, M.; Siawaya, J.F.; Takiff, H.; Gao, Q.; Gicquel, B. Pyrazinamide resistance in Mycobacterium tuberculosis arises after rifampicin and fluoroquinolone resistance. Int. J. Tuberc. Lung Dis. 2015, 19, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Gendrel, D.; Nardou, M.; Mouba, J.F.; Gahouma, D.; Moussavou, A.; Boguikouma, J.B. Hepatotoxicity of the combination of isoniazid-rifampicin in African children. Role of malnutrition and HB virus. Arch. Fr. Pediatrie 1989, 46, 645–648. [Google Scholar]
- Birkegard, A.C.; Graesboll, K.; Clasen, J.; Halasa, T.; Toft, N.; Folkesson, A. Continuing occurrence of vancomycin resistance determinants in Danish pig farms 20 years after removing exposure to avoparcin. Vet. Microbiol. 2019, 232, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Novais, C.; Coque, T.M.; Costa, M.J.; Sousa, J.C.; Baquero, F.; Peixe, L.V. High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J. Antimicrob. Chemother. 2005, 56, 1139–1143. [Google Scholar] [CrossRef]
- Bortolaia, V.; Mander, M.; Jensen, L.B.; Olsen, J.E.; Guardabassi, L. Persistence of vancomycin resistance in multiple clones of Enterococcus faecium isolated from Danish broilers 15 years after the ban of avoparcin. Antimicrob. Agents Chemother. 2015, 59, 2926–2929. [Google Scholar] [CrossRef] [Green Version]
- Sorum, M.; Johnsen, P.J.; Aasnes, B.; Rosvoll, T.; Kruse, H.; Sundsfjord, A.; Simonsen, G.S. Prevalence, persistence, and molecular characterization of glycopeptide-resistant enterococci in Norwegian poultry and poultry farmers 3 to 8 years after the ban on avoparcin. Appl. Environ. Microbiol. 2006, 72, 516–521. [Google Scholar] [CrossRef] [Green Version]
- Frazzon, A.P.G.; Gama, B.A.; Hermes, V.; Bierhals, C.G.; Pereira, R.I.; Guedes, A.G.; d’Azevedo, P.A.; Frazzon, J. Prevalence of antimicrobial resistance and molecular characterization of tetracycline resistance mediated by tet(M) and tet(L) genes in Enterococcus spp. isolated from food in Southern Brazil. World J. Microbiol. Biotechnol. 2010, 26, 365–370. [Google Scholar] [CrossRef]
- Peng, X.; Yu, K.-Q.; Deng, G.-H.; Jiang, Y.-X.; Wang, Y.; Zhang, G.-X.; Zhou, H.-W. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags. J. Microbiol. Methods 2013, 95, 455–462. [Google Scholar] [CrossRef]
- Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B. Use of a genus and species-specific multiplex PCR for identification of enterococci. J. Clin. Microbiol. 2004, 42, 3558–3565. [Google Scholar] [CrossRef] [Green Version]
- Iweriebor, B.C.; Obi, L.C.; Okoh, A.I. Macrolide, Glycopeptide resistance and virulence genes in Enterococcus species isolates from dairy cattle. J. Med. Microbiol. 2016, 65, 641–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. Soc. Clin. Pathol. 1966, 45, 149–158. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekore, D.O.; Onanga, R.; Nguema, P.P.M.; Lozano, C.; Kumulungui, B.S. The Antibiotics Used in Livestock and Their Impact on Resistance in Enterococcus faecium and Enterococcus hirae on Farms in Gabon. Antibiotics 2022, 11, 224. https://doi.org/10.3390/antibiotics11020224
Ekore DO, Onanga R, Nguema PPM, Lozano C, Kumulungui BS. The Antibiotics Used in Livestock and Their Impact on Resistance in Enterococcus faecium and Enterococcus hirae on Farms in Gabon. Antibiotics. 2022; 11(2):224. https://doi.org/10.3390/antibiotics11020224
Chicago/Turabian StyleEkore, Désiré Otsaghe, Richard Onanga, Pierre Phillipe Mbehang Nguema, Chloé Lozano, and Brice Serge Kumulungui. 2022. "The Antibiotics Used in Livestock and Their Impact on Resistance in Enterococcus faecium and Enterococcus hirae on Farms in Gabon" Antibiotics 11, no. 2: 224. https://doi.org/10.3390/antibiotics11020224
APA StyleEkore, D. O., Onanga, R., Nguema, P. P. M., Lozano, C., & Kumulungui, B. S. (2022). The Antibiotics Used in Livestock and Their Impact on Resistance in Enterococcus faecium and Enterococcus hirae on Farms in Gabon. Antibiotics, 11(2), 224. https://doi.org/10.3390/antibiotics11020224