Antibiotic Use in Alpine Dairy Farms and Its Relation to Biosecurity and Animal Welfare
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Data Collection
4.2. Data Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bengtsson, B.; Greko, C. Antibiotic resistance—Onsequences for animal health, welfare, and food production. Ups. J. Med. Sci. 2014, 119, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food–Producing animals in the EU/EEA. EFSA J. 2021, 19, 6712. [Google Scholar]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef]
- Gelband, H.; Miller-Petrie, M.; Suraj, P.; Pant, S.; Gandra, S.; Levinson, J.; Barter, D.; White, A.; Laxminarayan, R. The state of the world’s antibiotics 2015. Wound Health S. Afr. 2015, 8, 30–34. [Google Scholar]
- Clement, M.; Olabisi, M.; David, E.; Issa, M. Veterinary pharmaceuticals and antimicrobial resistance in developing countries. IntechOpen 2019. [Google Scholar] [CrossRef] [Green Version]
- Mendelson, M.; Matsoso, M.P. The World Health Organization global action plan for antimicrobial resistance. SAMJ S. Afr. Med. J. 2015, 105, 325. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Action Plan on Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 1 December 2021).
- Food and Agriculture Organization of the United Nations. The FAO Action Plan on Antimicrobial Resistance: 2016–2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. Available online: http://www.fao.org/3/a-i5996e.pdf (accessed on 2 December 2021).
- Ministero della Salute. Piano Nazionale di Contrasto dell’Antimicrobico-Resistenza (PNCAR) 2017–2020; 2017. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2660_allegato.pdf (accessed on 20 December 2021).
- Ministero della Salute. Programma Integrato per la Categorizzazione Degli Allevamenti. Guida Interpretativa. Available online: https://www.classyfarm.it/wp-content/uploads/sites/4/2020/02/ba_check_list_bovbuf_2020-1.pdf (accessed on 24 October 2021).
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_en (accessed on 14 October 2021).
- Isomura, R.; Matsuda, M.; Sugiura, K. An epidemiological analysis of the level of biosecurity and animal welfare on pig farms in Japan and their effect on the use of veterinary antimicrobials. J. Vet. Med. Sci. 2018, 80, 1853–1860. [Google Scholar] [CrossRef] [Green Version]
- Stygar, A.H.; Chantziaras, I.; Toppari, I.; Maes, D.; Niemi, J.K. High biosecurity and welfare standards in fattening pig farms are associated with reduced antimicrobial use. Animal 2020, 14, 2178–2186. [Google Scholar] [CrossRef]
- Dewulf, J.; Immerseel, F.V. General principles of biosecurity in animal production and veterinary medicine. In Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice, 1st ed.; Acco Uitgeverij: Leuven, Belgium, 2019; pp. 64–94. [Google Scholar]
- Pandolfi, F.; Edwards, S.A.; Maes, D.; Kyriazakis, I. Connecting different data sources to assess the interconnections between biosecurity, health, welfare, and performance in commercial pig farms in Great Britain. Front. Vet. Sci. 2018, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Collineau, L.; Rojo-Gimeno, C.; Leger, A.; Backhans, A.; Loesken, S.; Okholm Nielsen, E.; Postma, M.; Emanuelson, U.; Beilage, E.; Sjölund, M.; et al. Herd-specific interventions to reduce antimicrobial usage in pig production without jeopardising technical and economic performance. Prev. Vet. Med. 2017, 144, 167–178. [Google Scholar] [CrossRef]
- Laanen, M.; Persoons, D.; Ribbens, S.; de Jong, E.; Callens, B.; Strubbe, M.; Maes, D.; Dewulf, J. Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds. Vet. J. 2013, 198, 508–512. [Google Scholar] [CrossRef]
- Postma, M.; Backhans, A.; Collineau, L.; Loesken, S.; Sjölund, M.; Belloc, C.; Emanuelson, U.; Beilage, E.; Okholm Nielsen, E.; Stärk, K.D.C.; et al. Evaluation of the relationship between the biosecurity status, production parameters, herd characteristics and antimicrobial usage in farrow-to-finish pig production in four EU countries. Porc. Health Manag. 2016, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Diana, A.; Lorenzi, V.; Penasa, M.; Magni, E.; Alborali, G.L.; Bertocchi, L.; De Marchi, M. Effect of welfare standards and biosecurity practices on antimicrobial use in beef cattle. Sci. Rep. 2020, 10, 20939. [Google Scholar] [CrossRef]
- Hyde, R.M.; Remnant, J.G.; Bradley, A.J.; Breen, J.E.; Hudson, C.D.; Davies, P.L.; Clarke, T.; Critchell, Y.; Hylands, M.; Linton, E.; et al. Quantitative analysis of antimicrobial use on British dairy farms. Vet. Rec. 2017, 181, 683. [Google Scholar] [CrossRef]
- Obritzhauser, W.; Trauffler, M.; Raith, J.; Kopacka, I.; Fuchs, K.; Köfer, J. Antimicrobial drug use on Austrian dairy farms with special consideration of the use of highest priority critically important antimicrobials. Berl. Münch. Tierärztl. Wochenschr. 2016, 129, 185–195. [Google Scholar]
- Hommerich, K.; Ruddat, I.; Hartmann, M.; Werner, N.; Käsbohrer, A.; Kreienbrock, L. Monitoring antibiotic usage in german dairy and beef cattle farms—A longitudinal analysis. Front. Vet. Sci. 2019, 6, 244. [Google Scholar] [CrossRef] [Green Version]
- Pereyra, V.G.; Pol, M.; Pastorino, F.; Herrero., A. Quantification of antimicrobial usage in dairy cows and preweaned calves in Argentina. Prev. Vet. Med. 2015, 122, 273–279. [Google Scholar] [CrossRef]
- Ginestreti, J.; Lorenzi, V.; Fusi, F.; Ferrara, G.; Scali, F.; Alborali, G.L.; Bolzoni, L.; Bertocchi, L. Antimicrobial usage, animal welfare and biosecurity in 16 dairy farms in Lombardy. Large Anim. Rev. 2020, 26, 3–11. [Google Scholar]
- Ferroni, L.; Lovito, C.; Scoccia, E.; Dalmonte, G.; Sargenti, M.; Pezzotti, G.; Maresca, C.; Forte, C.; Magistrali, C.F. Antibiotic Consumption on Dairy and Beef Cattle Farms of Central Italy Based on Paper Registers. Antibiotics 2020, 9, 273. [Google Scholar] [CrossRef]
- EMA. Sales of Veterinary Antimicrobial Agents in Europe in 31 European Countries in 2018. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018-tenth-esvac-report_en.pdf (accessed on 10 December 2021).
- Mazza, F.; Scali, F.; Formenti, N.; Romeo, C.; Tonni, M.; Ventura, V.; Bertocchi, L.; Lorenzi, V.; Fusi, F.; Tolini, C.; et al. The Relationship between Animal Welfare and Antimicrobial Use in Italian Dairy Farms. Animals 2021, 11, 2575. [Google Scholar] [CrossRef]
- Ministero della Salute. Metodologia diCalcolo e di Valutazione del Consumo Degli Antimicrobici nel Settore Veterinario. DDD e DCD Defined Daily Dose Animal for Italy (DDDAit). Available online: https://ddd.veterinariodifiducia.it/MetodologiaDDDConsumoAntimicrobiciV1_2.pdf (accessed on 14 October 2021).
- Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef] [Green Version]
- Firth, C.L.; Käsbohrer, A.; Schleicher, C.; Fuchs, K.; Egger-Danner, C.; Mayerhofer, M.; Schobersberger, H.; Köfer, J.; Obritzhauser, W. Antimicrobial consumption on Austrian dairy farms: An observational study of udder disease treatments based on veterinary medication records. Peer J. 2017, 5, e4072. [Google Scholar]
- De Campos, J.L.; Kates, A.; Steinberger, A.; Sethi, A.; Suen, G.; Shutske, J.; Safdar, N.; Goldberg, T.; Ruegg, P.L. Quantification of antimicrobial usage in adult cows and preweaned calves on 40 large Wisconsin dairy farms using dose-based and mass-based metrics. J. Dairy Sci. 2021, 104, 4727–4745. [Google Scholar] [CrossRef]
- Zuliani, A.; Lora, I.; Brščić, M.; Rossi, A.; Piasentier, E.; Gottardo, F.; Contiero, B.; Bovolenta, S. Do Dairy Farming Systems Differ in Antimicrobial Use? Animals 2021, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Oltenacu, P.A.; Broom, D.M. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 2010, 19, 39–49. [Google Scholar]
- Green, M.J.; Green, L.E.; Medley, G.F.; Schukken, Y.H.; Bradley, A.J. Influence of dry period bacterial intramammary infection on clinical mastitis in dairy cows. J. Dairy Sci. 2002, 85, 2589–2599. [Google Scholar] [CrossRef] [Green Version]
- Krattley-Roodenburg, B.; Huybens, L.J.; Nielen, M.; van Werven, T. Dry period management and new high somatic cell count during the dry period in Dutch dairy herds under selective dry cow therapy. J. Dairy Sci. 2021, 104, 6975–6984. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Kremer, W.D.; Lohuis, J.A. Escherichia coli mastitis in cattle. I. Clinical diagnosis and epidemiological aspects. Tijdschr. Diergeneeskd. 1989, 114, 829–838. [Google Scholar]
- Fulwider, W.K.; Grandin, T.; Garrick, D.J.; Engle, T.E.; Lamm, W.D.; Dalsted, N.L.; Rollin, B.E. Influence of Free-Stall Base on Tarsal Joint Lesions and Hygiene in Dairy Cows. J. Dairy Sci. 2007, 90, 3559–3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, C.B.; Weary, D.M.; von Keyserlingk, M.A.G.; Beauchemin, K.A. Cow comfort in tie-stalls: Increased depth of shavings or straw bedding increases lying time. J. Dairy Sci. 2009, 92, 2684–2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechsler, B.; Schaub, J.; Friedli, K.; Hauser, R. Behaviour and leg injuries in dairy cows kept in cubicle systems with straw bedding or soft lying mats. Appl. Anim. Behav. Sci. 2000, 69, 189–197. [Google Scholar] [CrossRef]
- Manninen, E.; de Passillé, A.M.; Rushen, J.; Norring, M.; Saloniemi, H. Preferences of dairy cows kept in unheated buildings for different kind of cubicle flooring. Appl. Anim. Behav. Sci. 2002, 75, 281–292. [Google Scholar] [CrossRef]
- Lardy, R.; Des Roches, A.D.B.; Capdeville, J.; Bastien, R.; Mounier, L.; Veissier, I. Refinement of international recommendations for cubicles, based on the identification of associations between cubicle characteristics and dairy cow welfare measures. J. Dairy Sci. 2021, 104, 2164–2184. [Google Scholar] [CrossRef]
- Potterton, S.L.; Green, M.J.; Harris, J.; Millar, K.M.; Whay, H.R.; Huxley, J.N. Risk factors associated with hair loss, ulceration, and swelling at the hock in freestall-housed UK dairy herds. J. Dairy Sci. 2011, 94, 2952–2963. [Google Scholar] [CrossRef] [Green Version]
- Postma, M.; Vanderhaeghen, W.; Sarrazin, S.; Maes, D.; Dewulf, J. Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health 2017, 64, 63–74. [Google Scholar] [CrossRef]
- Tarakdjian, J.; Capello, K.; Pasqualin, D.; Santini, A.; Cunial, G.; Scollo, A.; Mannelli, A.; Tomao, P.; Vonesch, N.; Di Martino, G. Antimicrobial use on Italian pig farms and its relationship with husbandry practices. Animals 2020, 10, 417. [Google Scholar] [CrossRef] [Green Version]
- Bertocchi, L.; Fusi, F.; Angelucci, A.; Bolzoni, L.; Pongolini, S.; Strano, R.M.; Ginestreti, J.; Riuzzi, G.; Moroni, P.; Lorenzi, V. Characterization of hazards, welfare promoters and animal-based measures for the welfare assessment of dairy cows: Elicitation of expert opinion. Prev. Vet. Med. 2018, 150, 8–18. [Google Scholar] [CrossRef]
- Ministero della Salute. Sistema Informativo Veterinario. Available online: https://www.vetinfo.it (accessed on 16 November 2021).
- European Medicines Agency (EMA). Defined Daily Doses for Animals (DDDvet) and Defined Course Doses for Animals (DCDvet): European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Available online: http://www.ema.europa.eu/docs/en_GB/document_lbrary/Other/2016/04/WC500205410.pdf.45 (accessed on 6 December 2021).
- European Medicines Agency (EMA). Categorisation of Antibiotics Used in Animals Promotes Responsible Use to Protect Public And Animal Health. Available online: https://www.ema.europa.eu/en/news/categorisation-antibioticsused-animals-promotes-responsible-use-protect-public-animal-health (accessed on 9 November 2021).
- WHO. Critically Important Antimicrobials for Human Medicine, 6th ed.; WHO: Geneva, Switzerland, 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (accessed on 6 December 2021).
DDDAit % | DDDvet % | |||||
---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |
HPCIA | 23.52 | 11.03 | 5.32 | 27.50 | 13.26 | 6.05 |
Cephalosporins 3rd gen. | 10.40 | 7.05 | 3.49 | 14.42 | 9.14 | 4.52 |
Cephalosporins 4th gen. | 3.76 | 0.61 | 0.00 | 5.18 | 0.21 | 0.00 |
Fluoroquinolones | 6.74 | 2.09 | 1.00 | 5.98 | 2.19 | 0.97 |
Macrolides | 2.62 | 1.29 | 0.83 | 1.92 | 1.72 | 0.56 |
Polymyxins | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
CIA | 45.41 | 47.12 | 47.55 | 42.15 | 46.27 | 49.91 |
Aminoglycosides | 7.18 | 7.40 | 7.32 | 4.95 | 5.55 | 6.06 |
Ansamycin | 5.34 | 3.55 | 4.50 | 6.72 | 5.38 | 5.47 |
Penicillins | 32.90 | 36.16 | 35.72 | 30.49 | 35.35 | 38.38 |
HIA | 25.01 | 35.72 | 36.69 | 26.55 | 36.64 | 37.50 |
Amphenicols | 0.22 | 0.14 | 0.12 | 0.43 | 0.26 | 0.22 |
Cephalosporins 1st and 2nd gen. | 11.26 | 15.81 | 11.91 | 14.39 | 17.65 | 14.81 |
Lincosamides | 6.09 | 6.18 | 10.18 | 4.13 | 4.19 | 7.03 |
Sulphonamides | 3.82 | 9.74 | 9.92 | 3.62 | 9.94 | 10.18 |
Tetracyclines | 3.62 | 3.84 | 4.56 | 3.97 | 4.60 | 5.26 |
IA | 6.17 | 6.14 | 10.44 | 3.79 | 3.82 | 6.54 |
Aminocyclitols | 6.17 | 6.14 | 10.44 | 3.79 | 3.82 | 6.54 |
2018 | 2019 | 2020 | Year (Y) | Phase (P) | Y × F | |||||
---|---|---|---|---|---|---|---|---|---|---|
Phase | n. | Mean ± sd | % HPCIA | Mean ± sd | %HPCIA | Mean ± sd | % HPCIA | |||
dry-off | 34 | 2.21 ± 1.21 | 20.59% | 2.45 ± 1.73 | 5.88% | 1.51 ± 1.08 | 2.94% | <0.001 | <0.001 | 0.14 |
lactation | 34 | 1.42 ± 1.11 | 35.29% | 1.21 ± 0.96 | 14.71% | 1.05 ± 0.80 | 5.88% | |||
not IMM | 34 | 3.10 ± 1.68 | 94.12% | 2.91 ± 1.81 | 76.47% | 2.74 ± 1.96 | 52.94% |
n | Mean ± sd | p Value | |
---|---|---|---|
Quarantine box | |||
absent | 13 | 5.87 ± 3.25 | ns |
present | 21 | 4.95 ± 2.19 | |
Mortality | |||
<5% | 27 | 5.42 ± 2.76 | na |
≥5% | 7 | 4.85 ± 2.18 | |
Sickbay | |||
present | 31 | 5.14 ± 2.70 | na |
absent | 3 | 6.98 ± 0.85 | |
Space available (heifers) | |||
≥3.5 m2/animal | 20 | 5.35 ± 2.21 | ns |
<3.5 m2/animal | 14 | 5.23 ± 3.24 | |
Water supply | |||
≥1 drinker/10 animals | 19 | 5.08 ± 2.06 | ns |
<1 drinker/10 animals | 15 | 5.57 ± 3.28 | |
Cleanliness | |||
<20% of dirty animals | 25 | 5.65 ± 2.72 | ns |
≥20% of dirty animals | 9 | 4.32 ± 2.23 | |
Ventilation alarm | |||
Absent | 19 | 5.43 ± 2.98 | ns |
present | 15 | 5.13 ± 2.21 | |
Access to pasture | |||
No | 7 | 4.62 ± 2.17 | na |
Yes | 26 | 5.61 ± 2.72 | |
DCT | |||
Blanket | 5 | 7.85 ± 4.20 | na |
Selective | 29 | 4.86 ± 2.07 | |
Somatic cell count | |||
>150,000 cells/mL | 21 | 5.66 ± 2.84 | ns |
≤150,000 cells/mL | 13 | 4.72 ± 2.26 | |
Cubicles material | |||
Other | 10 | 6.92 ± 3.17 | 0.05 |
Straw/sawdust | 23 | 4.74 ± 2.07 | |
Microbiological tests for mastitis | |||
Absent | 3 | 4.04 ± 2.15 | |
Not on a routine basis | 3 | 6.03 ± 0.61 | na |
For all problematic cows | 28 | 5.36 ± 2.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menegon, F.; Capello, K.; Tarakdjian, J.; Pasqualin, D.; Cunial, G.; Andreatta, S.; Dellamaria, D.; Manca, G.; Farina, G.; Di Martino, G. Antibiotic Use in Alpine Dairy Farms and Its Relation to Biosecurity and Animal Welfare. Antibiotics 2022, 11, 231. https://doi.org/10.3390/antibiotics11020231
Menegon F, Capello K, Tarakdjian J, Pasqualin D, Cunial G, Andreatta S, Dellamaria D, Manca G, Farina G, Di Martino G. Antibiotic Use in Alpine Dairy Farms and Its Relation to Biosecurity and Animal Welfare. Antibiotics. 2022; 11(2):231. https://doi.org/10.3390/antibiotics11020231
Chicago/Turabian StyleMenegon, Francesca, Katia Capello, Jacopo Tarakdjian, Dario Pasqualin, Giovanni Cunial, Sara Andreatta, Debora Dellamaria, Grazia Manca, Giovanni Farina, and Guido Di Martino. 2022. "Antibiotic Use in Alpine Dairy Farms and Its Relation to Biosecurity and Animal Welfare" Antibiotics 11, no. 2: 231. https://doi.org/10.3390/antibiotics11020231
APA StyleMenegon, F., Capello, K., Tarakdjian, J., Pasqualin, D., Cunial, G., Andreatta, S., Dellamaria, D., Manca, G., Farina, G., & Di Martino, G. (2022). Antibiotic Use in Alpine Dairy Farms and Its Relation to Biosecurity and Animal Welfare. Antibiotics, 11(2), 231. https://doi.org/10.3390/antibiotics11020231