Does the Fetus Limit Antibiotic Treatment in Pregnant Patients with COVID-19?
Abstract
:1. Introduction
2. Physiological Changes Related to the Medication Administration
3. Passage through the Placenta
4. The Risks of Using Antibiotics during the First Trimester
- Pre-embryonic phase: Extends from conception to 17 days after conception. During this period, any adverse effect is an “all or nothing phenomenon,” and the result of an insult will be embryonic death or intact survival through the multiplication of totipotent cells.
- Embryonic phase: Comprises from day 18 to day 55. It is the period of greatest vulnerability for the embryo due to the rapid differentiation of tissues.
- Fetal phase (from the eighth week of gestation to term): The cerebral cortex and renal glomeruli continue to develop and remain susceptible to damage. Functional abnormalities such as deafness may occur, and drugs that can cross the placenta can affect fetal growth and development rather than causing structural malformations [29].
5. Causal Agents
6. Maternal, Fetal and Neonatal Microbiota
7. Antibiotics and COVID-19
8. Bacterial Resistance
9. Findings in the HRAEI Cultures
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 1 December 2021).
- Mendez-Dominguez, N.; Santos-Zaldívar, K.; Gomez-Carro, S.; Datta-Banik, S.; Carrillo, G. Maternal mortality during the COVID-19 pandemic in Mexico: A preliminary analysis during the first year. BMC Public Health 2021, 21, 1297. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 1 December 2021).
- Di Toro, F.; Gjoka, M.; Di Lorenzo, G.; De Santo, D.; De Seta, F.; Maso, G.; Risso, F.M.; Romano, F.; Wiesenfeld, U.; Levi-D’Ancona, R.; et al. Impact of COVID-19 on maternal and neonatal outcomes: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 36–46. [Google Scholar] [CrossRef]
- de Oliveira, K.F.; de Oliveira, J.F.; Wernet, M.; Carvalho-Paschoini, M.; Ruiz, M.T. COVID-19, and pregnancy: A scoping review on pregnancy characteristics and outcomes. Int. J. Nurs. Pract. 2021, 27, e12956. [Google Scholar] [CrossRef] [PubMed]
- Abu-raya, B.; Michalski, C.; Sadarangani, M.; Lavoie, P.M. Maternal Immunological Adaptation during Normal Pregnancy. Front. Immunol. 2020, 11, 2627. [Google Scholar] [CrossRef] [PubMed]
- Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available online: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf (accessed on 1 December 2021).
- Sutton, D.; Fuchs, K.; D’Alton, M.; Goffman, D. Universal Screening for SARS-CoV-2 in Women Admitted for Delivery. N. Engl. J. Med. 2020, 382, 2163–2164. [Google Scholar] [CrossRef] [PubMed]
- Silasi, M.; Cardenas, I.; Kwon, J.Y.; Racicot, K.; Aldo, P.; Mor, G. Viral Infections During Pregnancy. Am. J. Reprod. Immunol. 2015, 73, 199–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberca, R.W.; Pereira, N.Z.; Oliveira, L.M.D.S.; Gozzi-Silva, S.C.; Sato, M.N. Pregnancy, Viral Infection, and COVID-19. Front. Immunol. 2020, 11, 1672. [Google Scholar] [CrossRef]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. Can. Med. Assoc. J. 2021, 193, E540–E548. [Google Scholar] [CrossRef]
- Caparros-Gonzalez, R.A. Maternal and neonatal consequences of coronavirus COVID-19 infection during pregnancy: A scoping review. Rev Esp Salud Publica 2020, 94, e202004033. [Google Scholar] [CrossRef]
- Joyner, J.; Neves, L.A.; Granger, J.P.; Alexander, B.T.; Merrill, D.C.; Chappell, M.C.; Ferrario, C.M.; Davis, W.P.; Brosnihan, K.B. Temporal-spatial expression of ANG-(1-7) and angiotensin-converting enzyme 2 in the kidney of normal and hypertensive pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R169–R177. [Google Scholar] [CrossRef]
- Levy, A.; Yagil, Y.; Bursztyn, M.; Barkalifa, R.; Scharf, S.; Yagil, C. ACE2 expression and activity are enhanced during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1953–R1961. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 2000, 87, E1–E9. [Google Scholar] [CrossRef]
- Zisman, L.S.; Keller, R.S.; Weaver, B.; Lin, Q.; Speth, R.; Bristow, M.R.; Canver, C.C. Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: Evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation 2003, 108, 1707–1712. [Google Scholar] [CrossRef] [Green Version]
- Averill, D.B.; Ishiyama, Y.; Chappell, M.C.; Ferrario, C.M. Cardiac angiotensin-(1-7) in ischemic cardiomyopathy. Circulation 2003, 108, 2141–2146. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Krüger, N.; Müller, M.; Drosten, C.; Pöhlmann, S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020, arXiv:2020.01.31.929042. [Google Scholar]
- Zhao, X.; Jiang, Y.; Zhao, Y.; Xi, H.; Liu, C.; Qu, F.; Feng, X. Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2020, 39, 1209–1220. [Google Scholar] [CrossRef]
- Bartoli, A.; Gabrielli, F.; Alicandro, T.; Nascimbeni, F.; Andreone, P. COVID-19 treatment options: A difficult journey between failed attempts and experimental drugs. Intern. Emerg. Med. 2021, 16, 281–308. [Google Scholar] [CrossRef]
- Westin, A.A.; Reimers, A.; Spigset, O. Should pregnant women receive lower or higher medication doses? Tidsskr. Nor. Laegeforen. 2018, 138. [Google Scholar] [CrossRef]
- Betcher, H.K.; George, A.L. Pharmacogenomics in pregnancy. Semin. Perinatol. 2020, 44, 151222. [Google Scholar] [CrossRef]
- Pariente, G.; Leibson, T.; Carls, A.; Adams-Webber, T.; Ito, S.; Koren, G. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med. 2016, 13, e1002160. [Google Scholar] [CrossRef]
- Pinheiro, E.A.; Stika, C.S. Drugs in pregnancy: Pharmacologic and physiologic changes that affect clinical care. Semin. Perinatol. 2020, 44, 151221. [Google Scholar] [CrossRef]
- Dallmann, A.; Mian, P.; Van den Anker, J.; Allegaert, K. Clinical Pharmacokinetic Studies in Pregnant Women and the Relevance of Pharmacometrics Tools. Curr. Pharm. Des. 2019, 25, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Isoherranen, N.; Thummel, K.E. Drug Metabolism and Transport during Pregnancy: How Does Drug Disposition Change during Pregnancy and What Are the Mechanisms That Cause Such Changes? Drug Metab. Dispos. 2013, 41, 256–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stinson, L.F.; Boyce, M.C.; Payne, M.S.; Keelan, J.A. The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. Front. Microbiol. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Viel-Theriault, I.; Fell, D.B.; Grynspan, D.; Redpath, S.; Thampi, N. The transplacental passage of commonly used intrapartum antibiotics and its impact on the newborn management: A narrative review. Early Hum. Dev. 2019, 135, 6–10. [Google Scholar] [CrossRef] [PubMed]
- El Shamy, T.; Tamizian, O. Principles of prescribing in pregnancy. Obstet. Gynaecol. Reprod. Med. 2021, 31, 317–322. [Google Scholar] [CrossRef]
- Furfaro, L.L.; Chang, B.J.; Payne, M.S. Applications for Bacteriophage Therapy during Pregnancy and the Perinatal Period. Front. Microbiol. 2018, 8, 2660. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.A.; Tran, E.L.; Parker, C.M.; Kim, H.J.; Yee, E.L.; Smith, P.W.; Russell, Z.; Nelson, C.A.; Broussard, C.S.; Yu, Y.C. Safety of Antimicrobials During Pregnancy: A Systematic Review of Antimicrobials Considered for Treatment and Postexposure Prophylaxis of Plague. Clin. Infect. Dis. 2020, 70 (Suppl. 1), S37–S50. [Google Scholar] [CrossRef]
- Cantarutti, A.; Rea, F.; Franchi, M.; Beccalli, B.; Locatelli, A.; Corrao, G. Use of Antibiotic Treatment in Pregnancy and the Risk of Several Neonatal Outcomes: A Population-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 12621. [Google Scholar] [CrossRef]
- Hoque, M.N.; Akter, S.; Mishu, I.D.; Islam, M.R.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.M.; Sultana, M.; et al. Microbial coinfections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef]
- Mirzaei, R.; Goodarzi, P.; Asadi, M.; Soltani, A.; Aljanabi, H.A.A.; Jeda, A.S.; Dashtbin, S.; Jalalifar, S.; Mohammadzadeh, R.; Teimoori, A.; et al. Bacterial coinfections with SARS-CoV-2. IUBMB Life 2020, 72, 2097–2111. [Google Scholar] [CrossRef]
- Lai, C.C.; Wang, C.Y.; Hsueh, P.R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J. Microbiol. Immunol. Infect. 2020, 53, 505–512. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; Dhama, K.; Mishra, S.; Sarangi, A.K.; Kandi, V.; Tiwari, R.; Pintilie, L. The microbiota-related coinfections in COVID-19 patients: A real challenge. Beni. Suef. Univ. J. Basic Appl. Sci. 2021, 10, 47. [Google Scholar] [CrossRef]
- Zou, Y.; Qi, H.; Yin, N. Adaptations and alterations of maternal microbiota: From physiology to pathology. Med. Microecol. 2021, 9, 100045. [Google Scholar] [CrossRef]
- Nyangahu, D.D.; Jaspan, H.B. Influence of maternal microbiota during pregnancy on infant immunity. Clin. Exp. Immunol. 2019, 198, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Jašarević, E.; Hill, E.M.; Kane, P.J.; Rutt, L.; Gyles, T.; Folts, L.; Rock, K.D.; Howard, C.D.; Morrison, K.E.; Ravel, J.; et al. The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nat. Commun. 2021, 12, 6289. [Google Scholar] [CrossRef]
- Singh, A.; Mittal, M. Neonatal microbiome—A brief review. J. Matern.-Fetal Neonatal Med. 2020, 33, 3841–3848. [Google Scholar] [CrossRef]
- Louchet, M.; Sibiude, J.; Peytavin, G.; Picone, O.; Tréluyer, J.M.; Mandelbrot, L. Placental transfer and safety in pregnancy of medications under investigation to treat coronavirus disease 2019. Am. J. Obstet. Gynecol. MFM. 2020, 2, 100159. [Google Scholar] [CrossRef]
- Mate, A.; Reyes-Goya, C.; Santana-Garrido, Á.; Sobrevia, L.; Vázquez, C.M. Impact of maternal nutrition in viral infections during pregnancy. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166231. [Google Scholar] [CrossRef]
- Wastnedge, E.A.N.; Reynolds, R.M.; van Boeckel, S.R.; Stock, S.J.; Denison, F.C.; Maybin, J.A.; Critchley, H.O.D. Pregnancy and COVID-19. Physiol. Rev. 2021, 101, 303–318. [Google Scholar] [CrossRef]
- Lim, E.S.; Rodriguez, C.; Holtz, L.R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 2018, 6, 87. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.; Bose, S.; You, Y.; Park, S.; Kim, Y. Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. Int. J. Mol. Sci. 2021, 22, 8145. [Google Scholar] [CrossRef] [PubMed]
- Neu, J. The microbiome during pregnancy and early postnatal life. Semin. Fetal Neonatal Med. 2016, 21, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfari, T.; Norooznezhad, A.H.; Javidan, S.; Norouz, L.; Farzanehdoust, A.; Mansouri, K.; Ahmadi, M.H.; Mostafaei, S.; Javadian, P.; Sheikh, M.; et al. Indicated and non-indicated antibiotic administration during pregnancy and its effect on pregnancy outcomes: Role of inflammation. Int. Immunopharmacol. 2020, 89, 107081. [Google Scholar] [CrossRef]
- Patangia, D.V.; Ryan, C.A.; Dempsey, E.; Stanton, C.; Ross, R.P. Vertical transfer of antibiotics and antibiotic-resistant strains across the mother/baby axis. Trends Microbiol. 2021, 22, 47–56. [Google Scholar] [CrossRef]
- Arco-Torres, A.; Cortés-Martín, J.; Tovar-Gálvez, M.I.; Montiel-Troya, M.; Riquelme-Gallego, B.; Rodríguez-Blanque, R. Pharmacological Treatments against COVID-19 in Pregnant Women. J. Clin. Med. 2021, 10, 4896. [Google Scholar] [CrossRef]
- Qu, W.; Liu, L.; Miao, L. Exposure to antibiotics during pregnancy alters offspring outcomes. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1165–1174. [Google Scholar] [CrossRef]
- Popp, M.; Stegemann, M.; Riemer, M.; Metzendorf, M.I.; Romero, C.S.; Mikolajewska, A.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Antibiotics for the treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 10, CD015025. [Google Scholar] [CrossRef]
- Sieswerda, E.; de Boer, M.G.J.; Bonten, M.M.J.; Boersma, W.G.; Jonkers, R.E.; Aleva, R.M.; Kullberg, B.J.; Schouten, J.A.; van de Garde, E.M.W.; Verheij, T.J.; et al. Recommendations for antibacterial therapy in adults with COVID-19—An evidence based guideline. Clin. Microbiol. Infect. 2021, 27, 61–66. [Google Scholar] [CrossRef]
- Oldenburg, C.E.; Pinsky, B.A.; Brogdon, J.; Chen, C.; Ruder, K.; Zhong, L.; Nyatigo, F.; Cook, C.A.; Hinterwirth, A.; Lebas, E.; et al. Effect of Oral Azithromycin vs. Placebo on COVID-19 Symptoms in Outpatients with SARS-CoV-2 Infection a Randomized Clinical Trial. JAMA. 2021, 326, 490–498. [Google Scholar] [CrossRef]
- Hinks, T.S.C.; Cureton, L.; Knight, R.; Wang, A.; Cane, J.L.; Barber, V.S.; Black, J.; Dutton, S.J.; Melhorn, J.; Jabeen, M.; et al. azithromycin versus standard care in patients with mild-to-moderate COVID-19 (ATOMIC2): An open-label, randomised trial. Lancet Respir. Med. 2021, 9, 1130–1140. [Google Scholar] [CrossRef]
- Frías-De-León, M.G.; Pinto-Almazán, R.; Hernández-Castro, R.; García-Salazar, E.; Meza-Meneses, P.; Rodríguez-Cerdeira, C.; Arenas, R.; Conde-Cuevas, E.; Acosta-Altamirano, G.; Martínez-Herrera, E. Epidemiology of Systemic Mycoses in the COVID-19 Pandemic. J. Fungi 2021, 7, 556. [Google Scholar] [CrossRef]
Body System | Physiological Change | Effect |
---|---|---|
Digestive System | Slower intestinal transit, delayed gastric emptying, increased gastric pH and increased gastrointestinal blood flow | Altered drug bioavailability and delayed timing of peak levels after oral administration; although stable oral bioavailability for most drugs |
Decreased plasma albumin concentration | Increase in the drug-free fraction | |
Altered CYP450 and UGT activity | Altered oral bioavailability and hepatic elimination | |
Cardiovascular System | Increased cardiac output | Increased hepatic blood flow; increase in the elimination of some drugs; affects changes in skin and muscle blood flow, which supposedly increases subcutaneous and intramuscular drug absorption; increased blood flow accelerates the rate of initiation of intravenous drugs |
Decreased epidural space due to venous engorgement | Decreases the required dose of local anesthetics | |
Respiratory System | Increased pulmonary blood flow and increased respiratory rate | Allow a higher rate of uptake of volatile anesthetics and a decrease in the time until the onset of the effect |
Endocrine System | Increased body fat | Decreased elimination of fat-soluble drugs; increased Vd for hydrophobic drugs |
Urinary System | Increased renal blood flow and glomerular filtration rate | Increased renal clearance |
Increased total body water and extracellular fluid | Altered disposition of the drug; increased Vd for hydrophilic drugs |
# | Cervicovaginal | Blood Culture | Urine Culture | Stool Culture | Antibiotic Sensitivity | Antibiotic Resistance |
---|---|---|---|---|---|---|
1 | S. haemolyticus | Rifampicin Tigecycline Vancomycin | TMP/SMX^ Doxycycline Gentamicin | |||
2 | S. epidermidis | Clindamycin Daptomycin Tigecycline | Gentamicin Oxacillin Erythromycin | |||
Antigen GDH* for C. difficile | Metronidazole Vancomycin | |||||
A. johnsonii | Imipenem Meropenem Doripenem | Ceftazidime | ||||
3 | E. faecium | Vancomycin Doxycycline Linezolid | Ampicillin Ciprofloxacin Levofloxacin | |||
E. coli | Meropenem Amikacina Norfloxacin | TMP/SMX^ Cefuroxime Ceftriaxone | ||||
4 | E. coli (biotype1) | Meropem Ertapenem Gentamicin | TMP/SMX^ Ampicillin Norfloxacin | |||
E. coli (biotype2) | Meropem Ertapenem Gentamicin | TMP/SMX^ Ceftriaxone Cefuroxime | ||||
5 | S. agalactiae | S. agalactiae | Benzylpenicillin Ampicillin Vancomycin | Clindamycin | ||
6 | E. coli | Meropenem Ciprofloxacin Ertapenem | ||||
7 | E. coli ESBL + | Ciprofloxacin Meropenem Ertapenem | Ceftriaxone Cefuroxime Ampicillin | |||
E. coli (Biotype1) | Meropenem Ertapenem Gentamicin | Ceftriaxone Cefuroxime Ampicillin | ||||
E. coli (Biotype2) | Meropenem Ertapenem Gentamicin | TMP/SMX Ceftriaxone Ampicillin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Lozada, T.; Loranca-García, M.C.; Fuentes-Venado, C.E.; Rodríguez-Cerdeira, C.; Ocharan-Hernández, E.; Soriano-Ursúa, M.A.; Farfán-García, E.D.; Chávez-Gutiérrez, E.; Ramírez-Magaña, X.; Robledo-Cayetano, M.; et al. Does the Fetus Limit Antibiotic Treatment in Pregnant Patients with COVID-19? Antibiotics 2022, 11, 252. https://doi.org/10.3390/antibiotics11020252
Ramírez-Lozada T, Loranca-García MC, Fuentes-Venado CE, Rodríguez-Cerdeira C, Ocharan-Hernández E, Soriano-Ursúa MA, Farfán-García ED, Chávez-Gutiérrez E, Ramírez-Magaña X, Robledo-Cayetano M, et al. Does the Fetus Limit Antibiotic Treatment in Pregnant Patients with COVID-19? Antibiotics. 2022; 11(2):252. https://doi.org/10.3390/antibiotics11020252
Chicago/Turabian StyleRamírez-Lozada, Tito, María Concepción Loranca-García, Claudia Erika Fuentes-Venado, Carmen Rodríguez-Cerdeira, Esther Ocharan-Hernández, Marvin A. Soriano-Ursúa, Eunice D. Farfán-García, Edwin Chávez-Gutiérrez, Xóchitl Ramírez-Magaña, Maura Robledo-Cayetano, and et al. 2022. "Does the Fetus Limit Antibiotic Treatment in Pregnant Patients with COVID-19?" Antibiotics 11, no. 2: 252. https://doi.org/10.3390/antibiotics11020252
APA StyleRamírez-Lozada, T., Loranca-García, M. C., Fuentes-Venado, C. E., Rodríguez-Cerdeira, C., Ocharan-Hernández, E., Soriano-Ursúa, M. A., Farfán-García, E. D., Chávez-Gutiérrez, E., Ramírez-Magaña, X., Robledo-Cayetano, M., Loza-Mejía, M. A., Santa-Olalla, I. A. G., Torres-Paez, O. U., Pinto-Almazán, R., & Martínez-Herrera, E. (2022). Does the Fetus Limit Antibiotic Treatment in Pregnant Patients with COVID-19? Antibiotics, 11(2), 252. https://doi.org/10.3390/antibiotics11020252