Cell Differentiation of Bovine Milk Control Samples to Improve Prognosis of Mastitis Cure
Abstract
:1. Introduction
2. Results
2.1. Study 1—Cytological Cure
2.2. Study 2—Bacteriological Cure
3. Discussion
4. Materials and Methods
4.1. Definitions
4.2. Animals and Milk Sampling
4.3. Somatic Cell Counts and Bacteriological Examinations
4.4. Differential Cell Count—Sample Preparation
4.5. Differential Cell Count—Flow Cytometric Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deluyker, H.A.; van Oye, S.N.; Boucher, J.F. Factors affecting cure and somatic cell count after pirlimycin treatment of subclinical mastitis in lactating cows. J. Dairy Sci. 2005, 88, 604–614. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian-Aust. J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- German Veterinary Medical Association. Leitlinien Bekämpfung der Mastitis des Rindes als Bestandsproblem, 5th ed.; German Veterinary Medical Association: Gießen, Germany, 2012; Available online: https://www.dvg.net/index.php?id=302&no_cache=1&tt_products%5BbackPID%5D=282&tt_products%5Bproduct%5D=296 (accessed on 20 January 2022).
- Krömker, V.; Friedrich, J. Modernes Monitoring zur Entwicklung der Eutergesundheit auf Herdenebene, Kompend. Nutztier; Enke Verlag: Stuttgart, Germany, 2012; pp. 18–20. [Google Scholar]
- Osteras, O. Mastitis Epidemiology Practical Approaches and Applications. In Proceedings of the XXIV World Buiatrics Congress, Nice, France, 15–19 October 2006. [Google Scholar]
- Leitner, G.; Eligulashvily, R.; Krifucks, O.; Perl, S.; Saran, A. Immune cell differentiation in mammary gland tissues and milk of cows chronically infected with Staphylococcus aureus. J. Vet. Med. B 2003, 50, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hageltorn, M.; Saad, M.A. Flow cytofluorometric characterization of bovine blood and milk leukocytes. Am. J. Vet. Res. 1986, 47, 2012–2015. [Google Scholar] [PubMed]
- Hagemann, A. Durchflusszytometrische Differenzierung Boviner Leukozyten-Populationen Sowie Boviner Maternaler Epithelzellanteile im Verlauf der Kolostralphase unter Berücksichtigung der Eutergesundheit. Ph.D. Thesis, Tierärztliche Hochschule Hannover, Hannover, Germany, 2013. Available online: https://elib.tiho-hannover.de/receive/etd_mods_00000792 (accessed on 20 January 2022).
- Dosogne, H.; Vangroenweghe, F.; Mehrzad, J.; Massart-Leën, A.M.; Burvenich, C. Differential leukocyte count method for bovine low somatic cell count milk. J. Dairy Sci. 2003, 86, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.; Diesterbeck, U.S.; König, S.; Brügemann, K.; Schlez, K.; Zschöck, M.; Wolter, W.; Czerny, C.-P. Microscopic differential cell counts in milk for the evaluation of inflammatory reactions in clinically healthy and subclinically infected bovine mammary glands. J. Dairy Res. 2011, 78, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindmark-Mansson, H.; Bränning, C.; Alden, G.; Paulsson, M. Relationship between somatic cell count, individual leukocyte populations and milk components in bovine udder quarter milk. Int. Dairy J. 2006, 16, 717–727. [Google Scholar] [CrossRef]
- Merle, R.; Schröder, A.; Hamann, J. Cell function in the bovine mammary gland: A preliminary study on interdependence of healthy and infected udder quarters. J. Dairy Res. 2007, 74, 174–179. [Google Scholar] [CrossRef]
- Piccinini, R.; Bronzo, V.; Moroni, P.; Luzzago, C.; Zecconi, A. Study on the relationship between milk immune factors and Staphylococcus aureus intramammary infections in dairy cows. J. Dairy Res. 1999, 66, 501–510. [Google Scholar] [CrossRef]
- Pilla, R.; Schwarz, D.; König, S.; Piccinini, R. Microscopic differential cell counting to identify inflammatory reactions in dairy cow quarter milk samples. J. Dairy Sci. 2012, 95, 4410–4420. [Google Scholar] [CrossRef]
- Boutet, P.; Bureau, F.; Degand, G.; Lekeux, P. Imbalance between lipoxin A4 and leukotriene B4 in chronic mastitis-affected cows. J. Dairy Sci. 2003, 86, 3430–3439. [Google Scholar] [CrossRef] [Green Version]
- Schröder, A. Untersuchungen zum Zelldifferentialbild in Milch und Blut unter Berücksichtigung des Gesundheitsstatus der bovinen Milchdrüse. Ph.D. Thesis, Tierärztliche Hochschule Hannover, Hannover, Germany, 2003. Available online: https://docplayer.org/76853728-Untersuchungen-zum-zelldifferentialbild-in-milch-und-blut-unter-beruecksichtigung-des-gesundheitsstatus-der-bovinen-milchdruese.html (accessed on 20 January 2022).
- Riollet, C.; Rainard, P.; Poutrel, B. Cell subpopulations and cytokine expression in cow milk in response to chronic Staphylococcus aureus infection. J. Dairy Sci. 2001, 84, 1077–1084. [Google Scholar] [CrossRef]
- Sladek, Z.; Rysanek, D. Neutrophil apoptosis during the resolution of bovine mammary gland injury. Res. Vet. Sci. 2001, 70, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrzad, J.; Duchateau, L.; Burvenich, C. Viability of milk neutrophils and severity of bovine coliform mastitis. J. Dairy Sci. 2004, 87, 4150–4162. [Google Scholar] [CrossRef] [Green Version]
- Schröder, A.C.; Hamann, J. The influence of technical factors on differential cell count in milk. J. Dairy Res. 2005, 72, 153–158. [Google Scholar] [CrossRef]
- Blagitz, M.G.; Souza, F.N.; Batista, C.F.; Diniz, S.A.; Azevedo, L.F.F.; Silva, M.X.; Haddad, J.P.A.; Heinemann, M.B.; Cerqueira, M.M.O.P.; Della Libera, A.M.M.P. Flow cytometric analysis: Interdependence of healthy and infected udder quarters. J. Dairy Sci. 2015, 98, 2401–2408. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.; Günther, J.; Talbot, R.; Petzl, W.; Zerbe, H.; Schuberth, H.J.; Seyfert, H.-M.; Glass, E.J. Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters. BMC Genom. 2013, 14, 36–55. [Google Scholar] [CrossRef] [Green Version]
- Zarrin, M.; Wellnitz, O.; van Dorland, H.A.; Bruckmaier, R.M. Induced hyperketonemia affects the mammary immune response during lipopolysaccharide challenge in dairy cows. J. Dairy Sci. 2014, 97, 330–339. [Google Scholar] [CrossRef] [Green Version]
- van Oostveldt, K.; Paape, M.; Dosogne, H.; Burvenich, C. Effect of apoptosis on phagocytosis, respiratory burst and CD18 adhesion receptor expression of bovine neutrophils. Domest. Anim. Endocrinol. 2002, 22, 37–50. [Google Scholar] [CrossRef]
- Van Oostveldt, K.; Vangroenweghe, F.; Dosogne, H.; Burvenich, C. Apoptosis and necrosis of blood and milk polymorphonuclear leukocytes in early and midlactating healthy cows. Vet. Res. 2001, 32, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Savill, J.; Haslett, C. Granulocyte clearance by apoptosis in the resolution of inflammation. Semin. Cell Biol. 1995, 6, 385–393. [Google Scholar] [CrossRef]
- Boutet, P.; Boulanger, D.; Gillet, L.; Vanderplasschen, A.; Closset, R.; Bureau, F.; Lekeux, P. Delayed neutrophil apoptosis in bovine subclinical mastitis. J. Dairy Sci. 2004, 87, 4104–4114. [Google Scholar] [CrossRef]
- Colotta, F.; Re, F.; Polentarutti, N.; Sozzani, S.; Mantovani, A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 1992, 80, 2012–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savill, J.S.; Wyllie, A.H.; Henson, J.E.; Walport, M.J.; Henson, P.M.; Haslett, C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Investig. 1989, 83, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Sladek, Z.; Rysanek, D.; Ryznarova, H.; Faldyna, M. Neutrophil apoptosis during experimentally induced Staphylococcus aureus mastitis. Vet. Res. 2005, 36, 629–643. [Google Scholar] [CrossRef] [Green Version]
- Savill, J.; Dransfield, I.; Gregory, C.; Haslett, C. A blast from the past: Clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2002, 2, 965–975. [Google Scholar] [CrossRef]
- Nathan, C.; Ding, A. Nonresolving Inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Godson, C.; Mitchell, S.; Harvey, K.; Petasis, A.; Hogg, N.; Brady, H.R. Cutting edge: Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 2000, 164, 1663–1667. [Google Scholar] [CrossRef]
- Serhan, C.N. Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 2007, 25, 101–137. [Google Scholar] [CrossRef] [Green Version]
- Piepers, S.; de Vliegher, S.; Demeyere, K.; Lambrecht, B.N.; de Kruif, A.; Meyer, E.; Opsomer, G. Technical note: Flow cytometric identification of bovine milk neutrophils and simultaneous quantification of their viability. J. Dairy Sci. 2009, 92, 626–631. [Google Scholar] [CrossRef]
- Leitner, G.; Shoshani, E.; Krifucks, O.; Chaffer, M.; Saran, A. Milk leucocyte population patterns in bovine udder infection of different aetiology. J. Vet. Med. B 2000, 47, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Anwer, A.M.; Asfour, H.A.E.; Gamal, I.M. Apoptosis in somatic cells and immunological bioactive parameters of cows´s milk and their relation to subclinical mastitis. Alex. J. Vet. Sci. 2016, 49, 31–41. [Google Scholar] [CrossRef]
- Günther, J.; Esch, K.; Poschadel, N.; Petzl, W.; Zerbe, H.; Mitterhuemer, S.; Blum, H.; Seyfert, H.-M. Comparative kinetics of Escherichia coli- and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha. Infect. Immun. 2011, 79, 695–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, F.B.; Cunha, P.; Jensen, K.; Glass, E.J.; Foucras, G.; Robert-Granié, C.; Rupp, R.; Rainard, P. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet. Res. 2013, 44, 2–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schukken, Y.H.; Günther, J.; Fitzpatrick, J.; Fontaine, M.C.; Goetze, L.; Holst, O.; Leigh, J.; Petzl, W.; Schuberth, H.-J.; Members of the Pfizer Mastitis Research Consortium; et al. Host-response patterns of intramammary infections in dairy cows. Vet. Immunol. Immunopathol. 2011, 144, 270–289. [Google Scholar] [CrossRef] [PubMed]
- Krömker, V.; Friedrich, J. Empfehlungen zum diagnostischen Aufwand im Rahmen der Mastitisbekämpfung auf Bestandsebene. Prakt. Tierarzt 2011, 92, 516–524. [Google Scholar]
- German Veterinary Medical Association. Leitlinien zur Entnahme von Milchproben unter Antiseptischen Bedingungen und Isolierung und Identifizierung von Mastitiserregern. In Guidelines for Aseptic Milk Sampling and Guidelines to Isolate and Identify Mastitis Pathogens, 2nd ed.; German Veterinary Medical Association: Gießen, Germany, 2009; Available online: https://www.dvg.net/desinfektion/leitlinien-zur-entnahme-von-milchproben/ (accessed on 17 June 2020).
- Laboratory Handbook on Bovine Mastitis; Revised edition; National Mastitis Council: Madison, WI, USA, 1999.
Coefficient | |||||
---|---|---|---|---|---|
Variable | X | SE 1 | OR 2 | 95 % CI 3 | p-value |
Intercept | 0.597 | 0.236 | 1.816 | 1.144–2.883 | 0.011 |
Highly granulated cells % | −0.002 | 0.011 | 0.998 | 0.976–1.020 | 0.839 |
Highly granulated non-vital cells % | −0.024 | 0.007 | 0.976 | 0.962–0.991 | 0.001 |
Total non-vital cells % | 0.062 | 0.009 | 1.064 | 1.045–1.083 | <0.001 |
Lactation number 1 | −1.002 | 0.222 | 0.367 | 0.237–0.568 | <0.001 |
Lactation number 2 | −0.687 | 0.188 | 0.503 | 0.348–0.727 | <0.001 |
Lactation number > 2 (reference) | 0 |
Microorganism | Number | % |
---|---|---|
Streptococcus uberis | 10 | 20.8 |
Coliform bacteria | 9 | 18.8 |
Escherichia coli | 7 | 14.6 |
NAS 1 | 7 | 14.6 |
Enterococcus spp. | 3 | 6.3 |
Others | 5 | 10.4 |
Mixed infections | 7 | 14.5 |
Total | 48 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunge, A.; Dreyer, S.; Paduch, J.-H.; Klocke, D.; Leimbach, S.; Wente, N.; Nitz, J.; Krömker, V. Cell Differentiation of Bovine Milk Control Samples to Improve Prognosis of Mastitis Cure. Antibiotics 2022, 11, 259. https://doi.org/10.3390/antibiotics11020259
Bunge A, Dreyer S, Paduch J-H, Klocke D, Leimbach S, Wente N, Nitz J, Krömker V. Cell Differentiation of Bovine Milk Control Samples to Improve Prognosis of Mastitis Cure. Antibiotics. 2022; 11(2):259. https://doi.org/10.3390/antibiotics11020259
Chicago/Turabian StyleBunge, Anne, Sonja Dreyer, Jan-Hendrik Paduch, Doris Klocke, Stefanie Leimbach, Nicole Wente, Julia Nitz, and Volker Krömker. 2022. "Cell Differentiation of Bovine Milk Control Samples to Improve Prognosis of Mastitis Cure" Antibiotics 11, no. 2: 259. https://doi.org/10.3390/antibiotics11020259
APA StyleBunge, A., Dreyer, S., Paduch, J. -H., Klocke, D., Leimbach, S., Wente, N., Nitz, J., & Krömker, V. (2022). Cell Differentiation of Bovine Milk Control Samples to Improve Prognosis of Mastitis Cure. Antibiotics, 11(2), 259. https://doi.org/10.3390/antibiotics11020259