Antimicrobial Susceptibility, Virulence, and Genomic Features of a Hypervirulent Serotype K2, ST65 Klebsiella pneumoniae Causing Meningitis in Italy
Abstract
:1. Introduction
2. Case Description
3. Laboratory Findings
3.1. Strain Identification and Antibiotic Susceptibility Test
3.2. Genomic Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.C.; Cheng, D.L.; Lin, C.L. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch. Intern. Med. 1986, 146, 1913–1916. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, M.; Tu, J.; Jiang, J.; Bi, Y.; You, W.; Zhang, Y.; Ren, J.; Zhu, T.; Cao, Z.; Yu, Z.; et al. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes. Front. Cell Infect. Microbiol. 2016, 6, 165. [Google Scholar] [CrossRef] [Green Version]
- Pomakova, D.K.; Hsiao, C.B.; Beanan, J.M.; Olson, R.; MacDonald, U.; Keynan, Y.; Russo, T.A. Clinical and phenotypic differences between classic and hypervirulent Klebsiella pneumoniae: An emerging and under-recognized pathogenic variant. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Siu, L.K.; Yeh, K.M.; Lin, J.C.; Fung, C.P.; Chang, F.Y. Klebsiella pneumoniae liver abscess: A new invasive syndrome. Lancet Infect. Dis. 2012, 12, 881–887. [Google Scholar] [CrossRef]
- Hu, D.; Li, Y.; Ren, P.; Tian, D.; Chen, W.; Fu, P.; Wang, W.; Li, X.; Jiang, X. Molecular Epidemiology of Hypervirulent Carbapenemase-Producing Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 2021, 11, 661218. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Lan, P.; Huang, D.; Hua, X.; Jiang, Y.; Zhou, J.; Yu, Y. Diversity of virulence level phenotype of hypervirulent Klebsiella pneumoniae from different sequence type lineage. BMC Microbiol. 2018, 18, 94. [Google Scholar] [CrossRef]
- Rastegar, S.; Moradi, M.; Kalantar-Neyestanaki, D.; Ali Golabi, D.; Hosseini-Nave, H. Virulence Factors, Capsular Serotypes and Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae and Classical Klebsiella pneumoniae in Southeast Iran. Infect. Chemother. 2021, 53, e39. [Google Scholar] [CrossRef]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.A.; Korobeynikov, A.; Lapidus, A.; Prjibelski, A.D.; Pyshkin, A.; Sirotkin, A.; Sirotkin, Y.; et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 2013, 20, 714–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darling, A.E.; Mau, B.; Perna, N.T. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef] [Green Version]
- Gona, F.; Comandatore, F.; Battaglia, S.; Piazza, A.; Trovato, A.; Lorenzin, G.; Cichero, P.; Biancardi, A.; Nizzero, P.; Moro, M.; et al. Comparison of core-genome MLST, coreSNP and PFGE methods for Klebsiella pneumoniae cluster analysis. Microb. Genom. 2020, 6, e000347. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Uz Zaman, T.; Aldrees, M.; Al Johani, S.M.; Alrodayyan, M.; Aldughashem, F.A.; Balkhy, H.H. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh, Saudi Arabia. Int. J. Infect. Dis. 2014, 28, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, E.; Ocampo-Sosa, A.A.; Rezusta, A.; Revillom, M.J.; Román, E.; Torres, C.; Martínez-Martínez, L. Acquisition of carbapenem resistance in multiresistant Klebsiella pneumoniae strains harbouring blaCTX-M-15, qnrS1 and aac(6′)-Ib-cr genes. J. Med. Microbiol. 2012, 61 Pt 5, 672–677. [Google Scholar] [CrossRef]
- Schneiders, T.; Amyes, S.G.; Levy, S.B. Role of AcrR and ramA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob. Agents Chemother. 2003, 47, 2831–2837. [Google Scholar] [CrossRef] [Green Version]
- Shon, A.S.; Russo, T.A. Hypervirulent Klebsiella pneumoniae: The next superbug? Future Microbiol. 2012, 7, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae—Clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doud, M.S.; Grimes-Zeppegno, R.; Molina, E.; Miller, N.; Balachandar, D.; Schneper, L.; Poppiti, R.; Mathee, K. A k2A-positive Klebsiella pneumoniae causes liver and brain abscess in a Saint Kitt’s man. Int. J. Med. Sci. 2009, 6, 301–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, G.; Shah, N.; Sharma, R. Pyogenic Liver Abscess, Bacteremia, and Meningitis with Hypermucoviscous Klebsiella pneumoniae: An Unusual Case Report in a Human T-Cell Lymphotropic Virus Positive Patient of Caribbean Origin in the United States. Case Rep. Infect. Dis. 2013, 2013, 676340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsaedi, A.; Janower, A.; Wang, J.T.; Nichol, K.; Karlowsky, J.; Orr, P.; Keynan, Y. Hypermucoviscous Klebsiella syndrome without liver abscess in a patient with immunoglobulin g2 immune deficiency. Open Forum Infect. Dis. 2014, 1, ofu080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melot, B.; Brisse, S.; Breurec, S.; Passet, V.; Malpote, E.; Lamaury, I.; Thiery, G.; Hoen, B. Community-acquired meningitis caused by a CG86 hypervirulent Klebsiella pneumoniae strain: First case report in the Caribbean. BMC Infect. Dis. 2016, 16, 736. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, Y.; Inokuchi, R.; Harada, S.; Aoki, K.; Ishii, Y.; Shinohara, K. Bacterial Meningitis Caused by Hypervirulent Klebsiella pneumoniae Capsular Genotype K54 with Development of Granuloma-like Nodal Enhancement in the Brain during the Subacute Phase. Intern. Med. 2017, 56, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Khaertynov, K.S.; Anokhin, V.A.; Davidyuk, Y.N.; Nicolaeva, I.V.; Khalioullina, S.V.; Semyenova, D.R.; Alatyrev, E.Y.; Skvortsova, N.N.; Abrahamyan, L.G. Case of Meningitis in a Neonate Caused by an Extended-Spectrum-Beta-Lactamase-Producing Strain of Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2017, 8, 1576. [Google Scholar] [CrossRef]
- Maheswaranathan, M.; Ngo, T.; Rockey, D.C. Identification and Management of the Hypervirulent Invasive Klebsiella pneumoniae Syndrome: A Unique and Distinct Clinical Entity. J. Investig. Med. High Impact Case Rep. 2018, 6, 2324709618806552. [Google Scholar] [CrossRef] [Green Version]
- Hosoda, T.; Sakamoto, M.; Orikasa, H.; Kubomura, A.; Misaki, T.; Okabe, N. Septic Meningitis and Liver Abscess due to Hypermucoviscous Klebsiella pneumoniae Complicated with Chronic Strongyloidiasis in a Human T-lymphotropic Virus 1 Carrier. Intern. Med. 2020, 59, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.F.; Wang, Y.K.; Wang, Y.H.; Liu, H.; Shi, X.H.; Li, X.J.; Wu, B.Q. Metastatic infection caused by hypervirulent Klebsiella pneumoniae and co-infection with Cryptococcus meningitis: A case report. World J. Clin. Cases 2019, 7, 3812–3820. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; d’Humières, C.; Papin, G.; Passet, V.; Ruppé, E.; Brisse, S. Community-acquired infection caused by the uncommon hypervirulent Klebsiella pneumoniae ST66-K2 lineage. Microb. Genom. 2020, 6, mgen000419. [Google Scholar] [CrossRef]
- Macleod, C.K.; Khokhar, F.A.; Warne, B.; Wick, R.; Butcher, R.; Cassimon, B.; Hayden, P.; Holt, K.; Török, M.E. Rapid Whole Genome Sequencing of Serotype K1 Hypervirulent Klebsiella pneumoniae from an Undocumented Chinese Migrant. Case Rep. Infect. Dis. 2021, 2021, 6638780. [Google Scholar] [CrossRef]
- Marinakis, G.; Kassianidis, G.; Kafkoula, E.; Stamatopoulou, C.; Kavallieratos, F.; Patrani, M.; Katsenos, C. Community-acquired Klebsiella spp. Meningitis/Invasive Infection in Filipino-descent Patients Living in Greece: A Case Series. Eur. J. Case Rep. Intern. Med. 2021, 8, 002576. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Heo, S.T.; Kim, M.; Kang, C.H.; Yoo, J.R. Devastating Community-Acquired Bacterial Meningitis Caused by Hypervirulent Klebsiella pneumoniae in an Immunocompetent Patient. J. Clin. Neurol. 2021, 17, 484–486. [Google Scholar] [CrossRef] [PubMed]
- Troché, G.; Henry, A.; Sarfati, F.; Hickel, C.; Amara, M.; Bruneel, F. A 54-year-old healthy patient with meningitis and conjunctivitis. J. Am. Coll. Emerg. Physicians Open 2021, 2, e12425. [Google Scholar] [CrossRef]
Isolate from Blood | Isolate from CSF a | Isolate from Urine | |
---|---|---|---|
Antimicrobial Agent | MIC b (Interpretation) | MIC (Interpretation) | MIC (Interpretation) |
Amoxicillin/clavulanic acid | ≤2 (S) | ≤2 (S) | ≤2 (S) |
Piperacillin/Tazobactam | ≤4 (S) | ≤4 (S) | ≤4 (S) |
Cefotaxime | ≤0.25 (S) | ≤0.25 (S) | ≤0.25 (S) |
Ceftazidime | ≤0.5 (S) | ≤0.5 (S) | ≤0.5 (S) |
Ertapenem | ≤0.12 (S) | ≤0.12 (S) | ≤0.12 (S) |
Meropenem | ≤0.12 (S) | ≤0.12 (S) | ≤0.12 (S) |
Imipenem | ≤0.5 (S) | ≤0.5 (S) | ≤0.5 (S) |
Amikacin | ≤4 (S) | ≤4 (S) | ≤4 (S) |
Gentamycin | ≤0.5 (S) | ≤0.5 (S) | ≤0.5 (S) |
Ciprofloxacin | ≤0.06 (S) | ≤0.06 (S) | ≤0.06 (S) |
Ceftazidime/Avibactam | ≤0.5 (S) | ≤0.5 (S) | ≤0.5 (S) |
Ceftolozane/Tazobactam | ≤0.5 (S) | ≤0.5 (S) | ≤0.5 (S) |
Colistin | 0.5 (S) | 0.5 (S) | 0.5 (S) |
Tigecycline | 0.5 (S) | 0.5 (S) | 0.5 (S) |
Trimethoprim/Sulfametoxazole | ≤20 (S) | ≤20 (S) | ≤20 (S) |
Features of Virulence and Resistance | |
---|---|
HM phenotype | Positive |
Capsule serotype | K2 |
Sequence type | ST65 |
HM phenotype regulator genes | |
rmpA | + |
rmpA2 | + |
Siderophore systems | |
Enterobactin (entABCEF) | + |
Aerobactin (iucABCDcluster) | + |
Aerobactin receptor (iutA) | + |
Yersiniabactin (ybt and irp complex) | + |
Salmochelin (iroBCD) | + |
Salmochelin receptor (iroN) | + |
Fimbrial genes | |
Type 3 fimbrial genes (mrk cluster) | + |
Type 1 fimbrial genes (fim cluster) | + |
Genotoxin | |
Colibactin (clbA to clbQ cluster) | + |
Ferric uptake | |
kfuABC cluster | – |
Antibiotic-resistant genes | |
β-lactamases | blaSHV-11, blaSHV-67, ompK36, ompK37 |
Aminoglycoside resistance genes | – |
Other resistance genes | fosA |
Efflux pump associated genes | acrR, oqxA, oqxB |
Reference | Gender, Age, Nationality | Underlying Illness | Other Risk Factors | Medical History | Other Findings | Treatment | Outcome |
---|---|---|---|---|---|---|---|
This work | M, 75, Peruvian | No chronic illness | None | No significant medical history | Urinary tract infection, bloodstream infection | On admission: ceftriaxone and ampicillin then changed to meropenem, gentamycin and colistin. After laboratory findings and improvement of clinical conditions treatment was switched to ceftriaxone and gentamycin | Clinical improvement |
Doud at al., 2009 [23] | M, 49, Afro-Carribean | Positive IgM and IgG for Dengue fever | None | No significant medical history | Multiple liver abscess | Meropenem, subsequently changed to ceftriaxone | Clinical resolution |
Patel et al., 2013 [24] | F, 68, Guyanese | HTLV-1 positive, Alzheimer’s dementia, depression | None | Cervical cancer (treated 20 years before) | Multiloculated pyogenic liver abscess | Meropenem (2 g tid for 7 days), subsequently changed to ceftriaxone (2 g bid for 2 weeks) and then to amoxicillin/clavulanate (875 mg bid for 3 weeks) | Clinical resolution |
Alsaedi et al., 2014 [25] | M, 62, Filipino | Chronic HBV infection | IgG2 deficiency | Treated pulmonary tuberculosis when he was 12, hypertension, mild chronic renal insufficiency, chronic obstructive lung disease | No foci of infection | Cefazolin (on admission) subsequently changed to ceftriaxone (>6 weeks therapy) | Clinical resolution |
Melot et al., 2016 [26] | M, 55, Guadeloupean | Hypertension | Alcoholism | Benign prostate hyperplasia, hyperlipidemia, obstructive sleep apnea | Left mastoiditis, no liver abscess | Cefotaxime (4 g qid for 21 days) | Clinical resolution |
Iwasakiet al., 2017 [27] | M, 72, Japanese | Hypertension, DM, cerebral hemorrhage without neurosurgical intervention, chronic pancreatitis | Alcoholism, heavy smoking (20 cigarettes daily) | 5 days before admission, he was diagnosed with otitis media and underwent myringotomy (the discharge was not cultured) | No foci of infection | On admission: ampicillin, ceftriaxone, vancomycin; therefore changed with ceftriaxone alone | Clinical resolution |
Khaertynov et al., 2017 [28] | M, 12-day-old, Russian | No illness | None | Full-term (40-week-gestation) neonate, born by cesarean delivery from a 24-year-old woman. The mother had no history of infections before delivery and no complications during pregnancy | No foci of infection | Ampicillin (200 mg/kg/day) and amikacin (10 mg/kg/day) on admission, then changed to meropenem (120 mg/kg/day) for 15 days and then to cefoperazone (100 mg/kg/day) | Cerebral edema and death |
Maheswaranathan et al., 2018 [29] | F, 61, Chinese | No chronic illness | Impaired glucose tolerance without diagnostic criteria for DM | No significant medical history | Liver abscess | On admission: meropenem and intrathecal gentamycin. Meropenem was changed to cefepime and ciprofloxacin | She developed diabetes insipidus, uncal herniation and progressed to brain death |
Hosoda et al., 2019 [30] | M, 71, Japanese | HBV and HTLV-1 | Alcoholism | No significant medical history | Liver abscess. Chronic, but not disseminated, strongyloidiasis | Meropenem | Death due to cardiopulmonary arrest |
Shi et al., 2019 [31] | M, 58, Chinese | No chronic illness | None | No significant medical history | Pulmonary abscess and bacteremia. Coinfection with Cryptococcus neoformans | On admission: imipenem-cilastatin, tigecycline, voriconazole then changed to meropenem combined with 5-fluorocytosine and fluconazole | Death due to respiratory and cardiac arrest caused by cerebral hernia |
Rodrigues et al., 2020 [32] | Unknown | HIV infection, DM | Alcoholism | No recent hospital admissions | No foci of infection | Cefotaxime (2 g × 6 then increased to 3 g × 6) and ofloxacin. Treatment with cefotaxime was continued for 21 days. | Clinical resolution |
Macleod et al., 2021 [33] | F, 60, Chinese | DM | None | No significant medical history | Liver and pulmonary abscess | On admission amoxicillin/clavulanate (1.2 g tid), empirical changed to cefotaxime (2 g qid) and acyclovir (10 mg/kg tid) | Death |
Marinakis et al., 2021 [34] | F, 57, Filipino | DM untreated | None | No significant medical history | Abscess in liver segment VII and spleen | On admission: ceftriaxone, vancomycin, ampicillin/sulbactam, dexamethasone then de-escalated to ceftriaxone and subsequently changed to meropenem and tigecycline | Death in ICU due to MOF |
M, 50, Filipino | DM untreated | Alcoholism | No significant medical history | Abscess in both lungs and liver segment VII | On admission: ceftriaxone, vancomycin, dexamethasone | Death in ICU due to cerebral oedema | |
M, 45, Filipino | DM untreated | Drug user | Deep neck abscess sustained by K. pneumoniae, successfully treated 9 months previously | Negative for liver abscess | On admission: meropenem, vancomycin, colistin, dexamethasone | Death in ICU due to MOF | |
Oh et al., 2021 [35] | F, 57, Unknown | No chronic illness- | None | No significant medical history | Liver abscess and cholecystitis | On admission: cefotaxime (2 g × 6), vancomycin (25 mg/kg every 24 h) followed by 18 mg/kg every 12 h) + dexamethasone (10 mg qid) then changed to ciprofloxacin (400 mg bid) | Death in ICU due to MOF |
Troché et al., 2021 [36] | M, 54, Unknown | No chronic illness | None | No significant medical history | Liver abscess, multiple pulmonary nodules, endophthalmitis, hyperdense prostatic lesion and soft tissue abscess of both limbs | On admission: cefotaxime (200 mg/kg/die), acyclovir (30 mg/kg/die) then changed to ofloxacin and cefotaxime. After 6 weeks, cefotaxime was switched to trimethoprim-sulfamethoxazole with ofloxacin continuation | Clinical resolution |
Reference | Gender, Age, Nationality | Resistance Profile | Antibiotic Resistance Determinants | Virulence Factors | Capsule Serotype | Sequence Type | Note |
---|---|---|---|---|---|---|---|
This work | M, 75, Peruvian | - | blaSHV-11, blaSHV-67, fosA, oqxA, oqxB, acrR | rmpA, rmpA2, mrkABCDFHJ, fimH27, wzi-72, iutA, iucABCD, iroBCDEN, fyuA, irp1, irp2, ybtSXQPAUET, fepABCDG, entABCDFSE, wabG, uge, clbA-Q, | K2 | ST65 | String test positive |
Doud et al., 2009 [23] | M, 49, Afro-Carribean | Ampicillin, ampicillin/sulbactam | - | (magA negative) | K2 | - | String test positive |
Patel et al., 2013 [24] | F, 68, Guyanese | - | - | rmpA | - | - | String test positive |
Alsaedi et al., 2014 [25] | M, 62, Filipino | Ampicillin, piperacillin | - | rmpA (magA negative) | K1 | - | String test positive |
Melot et al., 2016 [26] | M, 55, Guadeloupean | Ampicillin, piperacillin | blaSHV-1 | rmpA, rmpA2, iroBCDN, iucABCD, iutA, kvgAS, mrkABCDFHIJ, wzi-2, wzc-2 | K2 | ST86 | - |
Iwasaki et al., 2017 [27] | M, 72, Japanese | Ampicillin, piperacillin | - | rmpA, terA, iroN, iucA | K54 | ST29 | String test positive |
Khaertynov et al., 2017 [28] | M, 12-day-old, Russian | Ampicillin, amoxicillin/clavulanate, ceftazidime, cefotaxime, ceftriaxone, amikacin, gentamicin, ciprofloxacin | ESBL positive | rmpA | - | - | String test positive |
Maheswaranathanet al., 2018 [29] | F, 61, Chinese | - | - | - | - | - | String test positive |
Hosoda et al., 2019 [30] | M, 71, Japanese | - | - | magA, rmpA, iutA, fimH, aerobactin, iroN | K1 | ST23 | String test positive |
Shi et al., 2019 [31] | M, 58, Chinese | Ampicillin | - | - | - | - | String test positive |
Rodrigues et al., 2020 [32] | Unknown | - | Isolate did not carry the intrinsic blaSHV typical of Kp1, explaining the susceptibility to ampicillin. No acquired antimicrobial resistance gene was observed. | clb1, ybt12, mrk cluster, pld1 | K2 | ST66 | - |
Macleod et al., 2021 [33] | F, 60s, Chinese | Ampicillin | - | rmpA, rmpA2, iuc1, iro1, clb/pks, ybt | K1 | Single-locus variant of ST23 | String test positive |
Marinakis et al., 2021 [34] | F, 57, Filipino | - | - | - | - | - | - |
M, 50, Filipino | Amoxicillin/clavulanate, cefotaxime, ceftazidime, cefepime, ceftriaxone | ESBL positive | - | - | - | - | |
M, 45, Filipino | - | - | - | - | - | - | |
Oh et al., 2021 [35] | F, 57, Unknown | - | - | - | K1 | - | String test positive |
Troché et al., 2021 [36] | M, 54, Unknown | - | - | - | - | - | String test positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piazza, A.; Perini, M.; Mauri, C.; Comandatore, F.; Meroni, E.; Luzzaro, F.; Principe, L. Antimicrobial Susceptibility, Virulence, and Genomic Features of a Hypervirulent Serotype K2, ST65 Klebsiella pneumoniae Causing Meningitis in Italy. Antibiotics 2022, 11, 261. https://doi.org/10.3390/antibiotics11020261
Piazza A, Perini M, Mauri C, Comandatore F, Meroni E, Luzzaro F, Principe L. Antimicrobial Susceptibility, Virulence, and Genomic Features of a Hypervirulent Serotype K2, ST65 Klebsiella pneumoniae Causing Meningitis in Italy. Antibiotics. 2022; 11(2):261. https://doi.org/10.3390/antibiotics11020261
Chicago/Turabian StylePiazza, Aurora, Matteo Perini, Carola Mauri, Francesco Comandatore, Elisa Meroni, Francesco Luzzaro, and Luigi Principe. 2022. "Antimicrobial Susceptibility, Virulence, and Genomic Features of a Hypervirulent Serotype K2, ST65 Klebsiella pneumoniae Causing Meningitis in Italy" Antibiotics 11, no. 2: 261. https://doi.org/10.3390/antibiotics11020261
APA StylePiazza, A., Perini, M., Mauri, C., Comandatore, F., Meroni, E., Luzzaro, F., & Principe, L. (2022). Antimicrobial Susceptibility, Virulence, and Genomic Features of a Hypervirulent Serotype K2, ST65 Klebsiella pneumoniae Causing Meningitis in Italy. Antibiotics, 11(2), 261. https://doi.org/10.3390/antibiotics11020261