Pharmacodynamics of Ceftriaxone, Ertapenem, Fosfomycin and Gentamicin in Neisseria gonorrhoeae
Abstract
:1. Introduction
2. Results
2.1. Growth of N. gonorrhoeae
2.2. Time–Kill Curves
2.3. Pharmacodynamic Parameters
3. Discussion
4. Conclusions
5. Methods
5.1. Neisseria Gonorrhoeae Strains and Media
5.2. Antimicrobial Susceptibility Testing
5.3. Viable Cell Counts
5.4. Growth Curves
5.5. Time–Kill Assay
5.6. Estimating Bacterial Growth Rates
5.7. Pharmacodynamic Model
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIC | Minimal inhibitory concentration |
Ng | Neisseria gonorrhoeae |
PK | Pharmacokinetic |
PD | Pharmacodynamic |
TKA | Time–kill assay |
CRO | Ceftriaxone |
ERT | Ertapenem |
FOSF | Fosfomycin |
GENT | Gentamicin |
PBS | Phosphate-buffered saline |
CFU | Colony forming units |
TKC | Time–kill curves |
References
- Cyr, S.S.; Barbee, L.; Workowski, K.A.; Bachmann, L.H.; Pham, C.; Schlanger, K.; Schlanger, K.; Torrone, E.; Weinstock, H.; Kersh, E.N.; et al. Update to CDC’s Treatment Guidelines for Gonococcal Infection. Morb. Mortal. Wkly. Rep. 2020, 69, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Fifer, H.; Saunders, J.; Soni, S.; Sadiq, S.T.; Fitzgerald, M. 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int. J. STD AIDS 2019, 31, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Ross, J.; Serwin, A.; Gomberg, M.; Cusini, M.; Jensen, J. 2020 European guideline for the diagnosis and treatment of gonorrhoea in adults. Int. J. STD AIDS 2020. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Sanderson, N.; Lord, E.; Regisford-Reimmer, N.; Chau, K.; Barker, L.; Morgan, M.; Newnham, R.; Golparian, D.; Unemo, M.; et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Eurosurveillance 2018, 23, 1800323. [Google Scholar] [CrossRef]
- Ohnishi, M.; Golparian, D.; Shimuta, K.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.-I.; Kitawaki, J.; Unemo, M. Is Neisseria gonorrhoeae Initiating a Future Era of Untreatable Gonorrhea?: Detailed Characterization of the First Strain with High-Level Resistance to Ceftriaxone. Antimicrob. Agents Chemother. 2011, 55, 3538–3545. [Google Scholar] [CrossRef] [Green Version]
- Poncin, T.; Fouere, S.; Braille, A.; Camelena, F.; Agsous, M.; Bebear, C.; Kumanski, S.; Lot, F.; Mercier-Delarue, S.; Ngangro, N.N.; et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Eurosurveillance 2018, 23, 1800264. [Google Scholar] [CrossRef]
- de Vries, H.J.C.; de Laat, M.; Jongen, V.; Heijman, T.; Wind, C.M.; Boyd, A.; de Korne-Elenbaas, J.; van Dam, A.P.; Schim van der Loeff, M.F. NABOGO steering group. Efficacy of ertapenem, gentamicin, fosfomycin, and ceftriaxone for the treatment of anogenital gonorrhoea (NABOGO): A randomised, non-inferiority trial. Lancet Infect. Dis. 2022. [Google Scholar] [CrossRef]
- Mueller, M.; de la Peña, A.; Derendorf, H. Issues in Pharmacokinetics and Pharmacodynamics of Anti-Infective Agents: Kill Curves versus MIC. Antimicrob. Agents Chemother 2004, 48, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Foerster, S.; Unemo, M.; Hathaway, L.J.; Low, N.; Althaus, C.L. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol. 2016, 16, 216. [Google Scholar] [CrossRef] [Green Version]
- Drusano, G.L. Antimicrobial pharmacodynamics: Critical interactions of ‘bug and drug’. Nat. Rev. Genet. 2004, 2, 289–300. [Google Scholar] [CrossRef]
- de Velde, F.; Mouton, J.W.; de Winter, B.C.M.; van Gelder, T.; Koch, B.C.P. Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives. Pharmacol. Res. 2018, 134, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Mouton, J.W.; Ambrose, P.G.; Canton, R.; Drusano, G.L.; Harbarth, S.; MacGowan, A.; Theuretzbacher, U.; Turnidge, J. Conserving antibiotics for the future: New ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist. Updat. 2011, 14, 107–117. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. EMA/CHMP/594085/2015—Guideline on the Use of Pharmacokinetics and Pharmacodynamics in the Development of Antimicrobial Medicinal Products 2016. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-use-pharmacokinetics-pharmacodynamics-development-antimicrobial-medicinal-products_en.pdf (accessed on 28 December 2021).
- Hauser, C.; Furrer, H.; Endimiani, A.; Hirzberger, L.; Unemo, M. In vitro Activity of Fosfomycin Alone and in Combination with Ceftriaxone or Azithromycin Against Clinical Neisseria gonorrhoeae Isolates. Antimicrob. Agents Chemother. 2015, 59, 1605–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unemo, M.; Golparian, D.; Limnios, A.; Whiley, D.; Ohnishi, M.; Lahra, M.M.; Tapsall, J.W. In Vitro Activity of Ertapenem versus Ceftriaxone against Neisseria gonorrhoeae Isolates with Highly Diverse Ceftriaxone MIC Values and Effects of Ceftriaxone Resistance Determinants: Ertapenem for Treatment of Gonorrhea? Antimicrob. Agents Chemother. 2012, 56, 3603–3609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaye, N.; Cole, M.J.; Ison, C.A. Evaluation of the activity of ertapenem against gonococcal isolates exhibiting a range of susceptibilities to cefixime. J. Antimicrob. Chemother. 2014, 69, 1568–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hathorn, E.; Dhasmana, D.; Duley, L.; Ross, J.D. The effectiveness of gentamicin in the treatment of Neisseria gonorrhoeae: A systematic review. Syst. Rev. 2014, 3, 104. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.D.C.; Brittain, C.; Cole, M.; Dewsnap, C.; Harding, J.; Hepburn, T.; Jackson, L.; Keogh, M.; Lawrence, T.; Montgomery, A.A. Gentamicin compared with ceftriaxone for the treatment of gonorrhoea (G-ToG): A randomised non-inferiority trial. Lancet 2019, 393, 2511–2520. [Google Scholar] [CrossRef] [Green Version]
- Reffert, J.L.; Smith, W.J. Fosfomycin for the Treatment of Resistant Gram-Negative Bacterial Infections. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, 845–857. [Google Scholar] [CrossRef]
- Regoes, R.R.; Wiuff, C.; Zappala, R.M.; Garner, K.N.; Baquero, F.; Levin, B.R. Pharmacodynamic Functions: A Multiparameter Approach to the Design of Antibiotic Treatment Regimens. Antimicrob. Agents Chemother. 2004, 48, 3670–3676. [Google Scholar] [CrossRef] [Green Version]
- Tomberg, J.; Fedarovich, A.; Vincent, L.R.; Jerse, A.E.; Unemo, M.; Davies, C.; Nicholas, R.A. Alanine 501 Mutations in Penicillin-Binding Protein 2 from Neisseria gonorrhoeae: Structure, Mechanism, and Effects on Cephalosporin Resistance and Biological Fitness. Biochemistry 2017, 56, 1140–1150. [Google Scholar] [CrossRef] [Green Version]
- Unemo, M.; del Rio, C.; Shafer, W.M. Antimicrobial Resistance Expressed by Neisseria gonorrhoeae: A Major Global Public Health Problem in the 21st Century. Microbiol. Spectr. 2016, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unemo, M.; Bradshaw, C.S.; Hocking, J.; de Vries, H.J.C.; Francis, S.C.; Mabey, D.; Marrazzo, J.M.; Sonder, G.J.B.; Schwebke, J.R.; Hoornenborg, E.; et al. Sexually transmitted infections: Challenges ahead. Lancet Infect. Dis. 2017, 17, e235–e279. [Google Scholar] [CrossRef]
- Yuk, J.H.; Nightingale, C.H.; Quintiliani, R. Clinical Pharmacokinetics of Ceftriaxone. Clin. Pharmacokinet. 1989, 17, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Seifert, H.S.; Hook, E.W.; Hawkes, S.; Ndowa, F.; Dillon, J.R. Gonorrhoea. Nat. Rev. Dis. Primers 2019, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yin, Y.; Dai, X.; Chen, S.; Yang, L.; Zhu, B.; Zhong, N.; Cao, W.; Zhang, X.; Wu, Z.; et al. Widespread Use of High-dose Ceftriaxone Therapy for Uncomplicated Gonorrhea Without Reported Ceftriaxone Treatment Failure: Results from 5 Years of Multicenter Surveillance Data in China. Clin. Infect. Dis. 2019, 70, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-Q.; Zheng, X.-L.; Liu, J.-W.; Zhou, Q.; Zhu, X.-Y.; Zhang, J.; Han, Y.; Chen, K.; Chen, S.-C.; Chen, X.-S.; et al. Antimicrobial Susceptibility of Ertapenem in Neisseria gonorrhoeae Isolates Collected within the China Gonococcal Resistance Surveillance Programme (China-GRSP) 2018. Infect. Drug Resist. 2021, 14, 4183–4189. [Google Scholar] [CrossRef]
- Wenzler, E.; Ellis-Grosse, E.J.; Rodvold, K.A. Pharmacokinetics, Safety, and Tolerability of Single-Dose Intravenous (ZTI-01) and Oral Fosfomycin in Healthy Volunteers. Antimicrob. Agents Chemother. 2017, 61, e00775-17. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Wang, S.; Lu, Y.; Neculai, D.; Sun, Q.; Van Der Veen, S. A Subpopulation of Intracellular Neisseria gonorrhoeae Escapes Autophagy-Mediated Killing Inside Epithelial Cells. J. Infect. Dis. 2018, 219, 133–144. [Google Scholar] [CrossRef]
- Czock, D.; Keller, F. Mechanism-based pharmacokinetic–pharmacodynamic modeling of antimicrobial drug effects. J. Pharmacokinet. Pharmacodyn. 2007, 34, 727–751. [Google Scholar] [CrossRef]
- Foerster, S.; Desilvestro, V.; Hathaway, L.J.; Althaus, C.L.; Unemo, M. A new rapid resazurin-based microdilution assay for antimicrobial susceptibility testing of Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2017, 72, 1961–1968. [Google Scholar] [CrossRef]
- Unemo, M.; Fasth, O.; Fredlund, H.; Limnios, A.; Tapsall, J. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J. Antimicrob. Chemother. 2009, 63, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Graver, M.; Wade, J. A fully defined, clear and protein-free liquid medium permitting dense growth of Neisseria gonorrhoeae from very low inocula. FEMS Microbiol. Lett. 2007, 273, 35–37. [Google Scholar] [CrossRef]
Antibiotic | Parameter (95%CI) | Strain | ||
---|---|---|---|---|
WHOF | WHOX | CS03307 | ||
Ceftriaxone | ψmax | 0.79 (0.40, 1.19) | 0.54 (0.44, 0.63) | 0.59 (0.54, 0.64) |
ψmin | −2.00 (−2.44, −1.55) | −0.76 (−0.84, −0.68) | −0.84 (−0.89, −0.79) | |
Κ | 0.78 (0.41, 1.16) | 1.70 (1.13, 2.28) | 3.94 (2.60, 5.29) | |
zMIC (µg/mL) | 0.00012 (0.00007, 0.00017) | 0.42 (0.34, 0.49) | 0.0029 (0.0027, 0.0031) | |
MIC (µg/mL) | <0.002 | 1.5 | 0.012 | |
Ertapenem | ψmax | 0.55 (0.49, 0.61) | 0.61 (0.48, 0.73) | 0.74 (0.67, 0.81) |
ψmin | −1.13 (−1.23, −1.02) | −0.54 (−0.72, −0.37) | −0.85 (−0.94, −0.76) | |
Κ | 2.60 (1.85, 3.35) | 1.26 (0.56, 1.96) | 3.78 (2.47, 5.06) | |
zMIC (µg/mL) | 0.0012 (0.0010, 0.0013) | 0.020 (0.013, 0.026) | 0.0045 (0.0040, 0.0051) | |
MIC (µg/mL) | <0.002 | 0.032 | 0.006 | |
Fosfomycin | ψmax | 0.54 (0.39, 0.72) | 0.58 (0.52, 0.64) | 0.66 (0.57, 0.75) |
ψmin | −1.66 (−2.14, −1.18) | −0.37 (−0.48, −0.25) | −1.55 (−1.74, −1.36) | |
Κ | 1.36 (0.58, 2.15) | 1.73 (1.00, 2.47) | 2.31 (1.54, 3.08) | |
zMIC (µg/mL) | 17.4 (10.5, 24.3) | 24.5 (18.9, 30.1) | 3.79 (3.17, 4.40) | |
MIC (µg/mL) | 24 | 12 | 4 | |
Gentamicin | ψmax | 0.50 (0.09, 0.92) | 0.57 (0.28, 0.86) | 0.80 (0.59, 1.01) |
ψmin | −6.86 (−8.71, −5.00) | −7.91 (−11.69, −4.14) | −5.44 (−6.36, −4.51) | |
Κ | 1.92 (0.76, 3.08) | 1.82 (0.81, 2.84) | 1.86 (1.24, 2.49) | |
zMIC (µg/mL) | 1.6 (0.6, 2.6) | 3.9 (2.0, 5.9) | 4.2 (3.0, 5.4) | |
MIC (µg/mL) | 1.5 | 2 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubenšek, U.; de Laat, M.; Foerster, S.; Boyd, A.; van Dam, A.P. Pharmacodynamics of Ceftriaxone, Ertapenem, Fosfomycin and Gentamicin in Neisseria gonorrhoeae. Antibiotics 2022, 11, 299. https://doi.org/10.3390/antibiotics11030299
Gubenšek U, de Laat M, Foerster S, Boyd A, van Dam AP. Pharmacodynamics of Ceftriaxone, Ertapenem, Fosfomycin and Gentamicin in Neisseria gonorrhoeae. Antibiotics. 2022; 11(3):299. https://doi.org/10.3390/antibiotics11030299
Chicago/Turabian StyleGubenšek, Urša, Myrthe de Laat, Sunniva Foerster, Anders Boyd, and Alje Pieter van Dam. 2022. "Pharmacodynamics of Ceftriaxone, Ertapenem, Fosfomycin and Gentamicin in Neisseria gonorrhoeae" Antibiotics 11, no. 3: 299. https://doi.org/10.3390/antibiotics11030299
APA StyleGubenšek, U., de Laat, M., Foerster, S., Boyd, A., & van Dam, A. P. (2022). Pharmacodynamics of Ceftriaxone, Ertapenem, Fosfomycin and Gentamicin in Neisseria gonorrhoeae. Antibiotics, 11(3), 299. https://doi.org/10.3390/antibiotics11030299