Antibiotics and ECMO in the Adult Population—Persistent Challenges and Practical Guides
Abstract
:1. Introduction
2. The ECMO Ins and Outs
Infection and ECMO
3. Antibiotics Therapy Principles
3.1. Pharmacokinetics and Pharmacodynamics of Antibiotics
3.2. Limitations of Current Approaches to Monitoring Antibiotic Dosing
4. Critical Care Illness-Induced Changes in Antibiotics Levels
5. Antibiotics in ECMO
5.1. Pharmacokinetics
5.2. ECMO Specific Patient-Related Factors Affecting Antibiotics Distribution
5.3. Performance of the Immune System
5.4. ECMO Specific Hardware-Related Factors Affecting Antibiotics Distribution
5.4.1. Circuit-Related Factors
5.4.2. Drug-Related Factors
6. Selected Antibiotics
7. Interaction of Antibiotics with Other Treatments
8. Effectiveness of Antibiotic Therapy in ECMO Patients
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Combes, A.; Peek, G.J.; Hajage, D.; Hardy, P.; Abrams, D.; Schmidt, M.; Dechartres, A.; Elbourne, D. ECMO for severe ARDS: Systematic review and individual patient data meta-analysis. Intensive Care Med. 2020, 46, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Dagan, O.; Klein, J.; Gruenwald, C.; Bohn, D.; Barker, G.; Koren, G. Preliminary studies of the effects of extracorporeal membrane oxygenator on the disposition of common pediatric drugs. Ther. Drug Monit. 1993, 15, 263–266. [Google Scholar] [CrossRef]
- Wildschut, E.D.; Ahsman, M.J.; Allegaert, K.; Mathot, R.A.; Tibboel, D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010, 36, 2109–2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapol, W.M.; Snider, M.T.; Hill, J.D.; Fallat, R.J.; Bartlett, R.H.; Edmunds, L.H.; Morris, A.H.; Peirce, E.C.; Thomas, A.N.; Proctor, H.J. Extracorporeal membrane oxygenation in severe acute respiratory failure: A randomized prospective study. JAMA 1979, 242, 2193–2196. [Google Scholar] [CrossRef] [PubMed]
- Tramm, R.; Ilic, D.; Davies, A.R.; Pellegrino, V.A.; Romero, L.; Hodgson, C. Extracorporeal membrane oxygenation for critically ill adults. Cochrane Database Syst. Rev. 2015, 1, Cd010381. [Google Scholar] [CrossRef] [PubMed]
- Boeken, U.; Assmann, A.; Beckmann, A.; Schmid, C.; Werdan, K.; Michels, G.; Miera, O.; Schmidt, F.; Klotz, S.; Starck, C.; et al. Extracorporeal Circulation (ECLS/ECMO) for Cardio-circulatory Failure—Summary of the S3 Guideline. Thorac. Cardiovasc. Surg. 2021, 69, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Bercker, S.; Petroff, D.; Polze, N.; Karagianidis, C.; Bein, T.; Laudi, S.; Stehr, S.N.; Voelker, M.T. ECMO use in Germany: An analysis of 29,929 ECMO runs. PLoS ONE 2021, 16, e0260324. [Google Scholar] [CrossRef]
- Raffa, G.; Kowalewski, M.; Meani, P.; Pilato, M.; Lorusso, R. Oc39 meta-analysis of peripheral or central ECMO in postcardiotomy and non-postcardiotomy shock. J. Cardiovasc. Med. 2018, 19, e27. [Google Scholar] [CrossRef]
- Kim, J.H.; Pieri, M.; Landoni, G.; Scandroglio, A.M.; Calabrò, M.G.; Fominskiy, E.; Lembo, R.; Heo, M.H.; Zangrillo, A. Venovenous ECMO treatment, outcomes, and complications in adults according to large case series: A systematic review. Int. J. Artif. Organs 2020, 44, 481–488. [Google Scholar] [CrossRef]
- Butt, W.; MacLaren, G. Extracorporeal membrane oxygenation and sepsis. Crit. Care Resusc. 2007, 9, 76–80. [Google Scholar]
- Abrams, D.; MacLaren, G.; Lorusso, R.; Price, S.; Yannopoulos, D.; Vercaemst, L.; Bělohlávek, J.; Taccone, F.S.; Aissaoui, N.; Shekar, K.; et al. Extracorporeal cardiopulmonary resuscitation in adults: Evidence and implications. Intensive Care Med. 2022, 48, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, D.; Charlesworth, M.; Rubino, A.; Madden, S. The rise of organ donation after circulatory death: A narrative review. Anaesthesia 2020, 75, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, R.; Vashisht, R. Sepsis and ECMO. Indian J. Thorac. Cardiovasc. Surg. 2021, 37 (Suppl. 2), 267. [Google Scholar] [CrossRef]
- Chaves, R.C.F.; Rabello Filho, R.; Timenetsky, K.T.; Moreira, F.T.; Vilanova, L.; Bravim, B.A.; Serpa Neto, A.; Correa, T.D. Extracorporeal membrane oxygenation: A literature review. Rev. Bras Ter. Intensiva. 2019, 31, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.W.; Greathouse, K.C.; Thakkar, R.K.; Sribnick, E.A.; Muszynski, J.A. Immunoparalysis in pediatric critical care. Pediatric Clin. 2017, 64, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Grigoryev, E.; Matveeva, V.; Ivkin, A.; Khanova, M. Induced Immunosuppression in Critical Care. In Immunosuppression; IntechOpen: London, UK, 2020. [Google Scholar]
- Al-Omari, A.; Aljamaan, F.; Alhazzani, W.; Salih, S.; Arabi, Y. Cytomegalovirus infection in immunocompetent critically ill adults: Literature review. Ann. Intensive Care 2016, 6, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cota, J.M.; FakhriRavari, A.; Rowan, M.P.; Chung, K.K.; Murray, C.K.; Akers, K.S. Intravenous Antibiotic and Antifungal Agent Pharmacokinetic-Pharmacodynamic Dosing in Adults with Severe Burn Injury. Clin. Ther. 2016, 38, 2016–2031. [Google Scholar] [CrossRef] [Green Version]
- Hoff, B.M.; Maker, J.H.; Dager, W.E.; Heintz, B.H. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann. Pharm. 2020, 54, 43–55. [Google Scholar] [CrossRef]
- Meng, L.; Mui, E.; Holubar, M.K.; Deresinski, S.C. Comprehensive Guidance for Antibiotic Dosing in Obese Adults. Pharmacotherapy 2017, 37, 1415–1431. [Google Scholar] [CrossRef]
- Pea, F. Pharmacokinetics and drug metabolism of antibiotics in the elderly. Expert Opin. Drug Metab. Toxicol. 2018, 14, 1087–1100. [Google Scholar] [CrossRef]
- Akil, A.; Ziegeler, S.; Reichelt, J.; Rehers, S.; Abdalla, O.; Semik, M.; Fischer, S. Combined Use of CytoSorb and ECMO in Patients with Severe Pneumogenic Sepsis. Thorac. Cardiovasc. Surg. 2021, 69, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Kavita, M.; Ramanathan, K.R. Extracorporeal Lung Assist Devices. In Thoracic Surgery: Cervical, Thoracic and Abdominal Approache; Nistor, C.E., Tsui, S., Kırali, K., Ciuche, A., Aresu, G., Kocher, G.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 995–1010. [Google Scholar]
- Barge-Caballero, G.; Castel-Lavilla, M.A.; Almenar-Bonet, L.; Garrido-Bravo, I.P.; Delgado, J.F.; Rangel-Sousa, D.; González-Costello, J.; Segovia-Cubero, J.; Farrero-Torres, M.; Lambert-Rodríguez, J.L. Venoarterial extracorporeal membrane oxygenation with or without simultaneous intra-aortic balloon pump support as a direct bridge to heart transplantation: Results from a nationwide Spanish registry. Interact. Cardiovasc. Thorac. Surg. 2019, 29, 670–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorelli, F.; Panoulas, V. Impella as unloading strategy during VA-ECMO: Systematic review and meta-analysis. Rev. Cardiovasc. Med. 2021, 22, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Delnoij, T.S.; Driessen, R.; Sharma, A.S.; Bouman, E.A.; Strauch, U.; Roekaerts, P.M. Venovenous Extracorporeal Membrane Oxygenation in Intractable Pulmonary Insufficiency: Practical Issues and Future Directions. Biomed Res. Int. 2016, 2016, 9367464. [Google Scholar] [CrossRef] [Green Version]
- Lindholm, J.A. Cannulation for veno-venous extracorporeal membrane oxygenation. J. Thorac. Dis. 2018, 10 (Suppl. 5), S606. [Google Scholar] [CrossRef]
- Pooboni, S.K.; Gulla, K.M. Vascular access in ECMO. Indian J. Thorac. Cardiovasc. Surg. 2021, 37, 221–231. [Google Scholar] [CrossRef]
- Extracorporeal Life Support Organization. ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support; ELSO: Ann Arbor, MI, USA, 2017. [Google Scholar]
- Mangoush, O.; Purkayastha, S.; Haj-Yahia, S.; Kinross, J.; Hayward, M.; Bartolozzi, F.; Darzi, A.; Athanasiou, T. Heparin-bonded circuits versus nonheparin-bonded circuits: An evaluation of their effect on clinical outcomes. Eur. J. Cardiothorac. Surg. 2007, 31, 1058–1069. [Google Scholar] [CrossRef]
- He, T.; He, J.; Wang, Z.; Cui, Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). Adv. Compos. Hybrid. Mater. 2021, 4, 847–864. [Google Scholar] [CrossRef]
- Zhang, M.; Pauls, J.P.; Bartnikowski, N.; Haymet, A.B.; Chan, C.H.H.; Suen, J.Y.; Schneider, B.; Ki, K.K.; Whittaker, A.K.; Dargusch, M.S.; et al. Anti-thrombogenic Surface Coatings for Extracorporeal Membrane Oxygenation: A Narrative Review. ACS Biomater. Sci. Eng. 2021, 7, 4402–4419. [Google Scholar] [CrossRef]
- Van Dyk, M. The use of CRRT in ECMO patients. Egypt. J. Crit. Care Med. 2018, 6, 95–100. [Google Scholar] [CrossRef]
- Selewski, D.T.; Wille, K.M. Seminars in dialysis. In Continuous Renal Replacement Therapy in Patients Treated with Extracorporeal Membrane Oxygenation; Wiley Online Library: Hoboken, NJ, USA, 2021. [Google Scholar]
- Lüsebrink, E.; Stremmel, C.; Stark, K.; Joskowiak, D.; Czermak, T.; Born, F.; Kupka, D.; Scherer, C.; Orban, M.; Petzold, T. Update on weaning from veno-arterial extracorporeal membrane oxygenation. J. Clin. Med. 2020, 9, 992. [Google Scholar] [CrossRef] [Green Version]
- Connelly, J.; Blinman, T. Seminars in perinatology. In Special Equipment Considerations for Neonatal ECMO; Elsevier: Amsterdam, The Netherlands, 2018; pp. 89–95. [Google Scholar]
- Palanzo, D.A.; Baer, L.D.; El-Banayosy, A.; Wang, S.; Undar, A.; Pae, W.E. Choosing a pump for extracorporeal membrane oxygenation in the USA. Artif. Organs 2014, 38, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Moroi, M.K.; Kunselman, A.R.; Myers, J.L.; Ündar, A. Evaluation of centrifugal blood pumps in term of hemodynamic performance using simulated neonatal and pediatric ECMO circuits. Artif. Organs 2020, 44, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrisinger, W.C.; Thompson, S.L. Basics of Extracorporeal Membrane Oxygenation. Surg. Clin. 2022, 102, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Affas, Z.R.; Touza, G.G.; Affas, S. A Meta-Analysis Comparing Venoarterial (VA) Extracorporeal Membrane Oxygenation (ECMO) to Impella for Acute Right Ventricle Failure. Cureus 2021, 13, e19622. [Google Scholar] [CrossRef] [PubMed]
- Betit, P. Technical Advances in the Field of ECMO. Respir. Care 2018, 63, 1162–1173. [Google Scholar] [CrossRef]
- Biffi, S.; Di Bella, S.; Scaravilli, V.; Peri, A.M.; Grasselli, G.; Alagna, L.; Pesenti, A.; Gori, A. Infections during extracorporeal membrane oxygenation: Epidemiology, risk factors, pathogenesis and prevention. Int. J. Antimicrob. Agents 2017, 50, 9–16. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Roberts, J.A. Antibiotic dosing during extracorporeal membrane oxygenation: Does the system matter? Curr. Opin. Anaesthesiol. 2020, 33, 71–82. [Google Scholar] [CrossRef]
- Hahn, J.; Choi, J.H.; Chang, M.J. Pharmacokinetic changes of antibiotic, antiviral, antituberculosis and antifungal agents during extracorporeal membrane oxygenation in critically ill adult patients. J. Clin. Pharm. Ther. 2017, 42, 661–671. [Google Scholar] [CrossRef]
- Bizzarro, M.J.; Conrad, S.A.; Kaufman, D.A.; Rycus, P.; Extracorporeal Life Support Organization Task Force on Infections, E.M.O. Infections acquired during extracorporeal membrane oxygenation in neonates, children, and adults. Pediatr. Crit. Care Med. 2011, 12, 277–281. [Google Scholar] [CrossRef]
- Levy, S.B.; Chávez, A.D.; Rosenberg, A.S. Antimicrobial Therapy. In Mount Sinai Expert Guides: Critical Care; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 429–448. [Google Scholar]
- Roberts, J.A.; Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009, 37, 840–851, quiz 859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansoor, A.; Mahabadi, N. Volume of Distribution; StatPearls: Bethesda, MD, USA, 2021. [Google Scholar]
- Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Clearance in Drug Design: Miniperspective. J. Med. Chem. 2018, 62, 2245–2255. [Google Scholar] [CrossRef] [PubMed]
- Bundtzen, R.W.; Gerber, A.U.; Cohn, D.L.; Craig, W.A. Postantibiotic suppression of bacterial growth. Rev. Infect. Dis. 1981, 3, 28–37. [Google Scholar] [CrossRef]
- Bigger, J. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 1944, 244, 497–500. [Google Scholar] [CrossRef]
- Eagle, H. The Recovery of Bacteria from the Toxic Effects of Penicillin. J. Clin. Invest. 1949, 28, 832–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munckhof, W.J.; Giles, C.; Turnidge, J.D. Post-antibiotic growth suppression of linezolid against Gram-positive bacteria. J. Antimicrob. Chemother. 2001, 47, 879–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proma, F.H.; Shourav, M.K.; Choi, J. Post-Antibiotic Effect of Ampicillin and Levofloxacin to Escherichia coli and Staphylococcus aureus Based on Microscopic Imaging Analysis. Antibiotics 2020, 9, 458. [Google Scholar] [CrossRef]
- Srimani, J.K.; Huang, S.; Lopatkin, A.J.; You, L. Drug detoxification dynamics explain the postantibiotic effect. Mol. Syst. Biol. 2017, 13, 948. [Google Scholar] [CrossRef]
- Li, R.C.; Lee, S.W.; Kong, C.H. Correlation between bactericidal activity and postantibiotic effect for five antibiotics with different mechanisms of action. J. Antimicrob. Chemother. 1997, 40, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Langevin, A.M.; Dunlop, M.J. Antibiotic export by efflux pumps affects growth of neighboring bacteria. Sci. Rep. 2018, 8, 15120. [Google Scholar] [CrossRef]
- McDonald, P.J.; Wetherall, B.L.; Pruul, H. Postantibiotic leukocyte enhancement: Increased susceptibility of bacteria pretreated with antibiotics to activity of leukocytes. Rev. Infect. Dis. 1981, 3, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.A.; Tawfik, A.F.; Shibl, A.M.; Gemmell, C.G. Post-antibiotic effect of azithromycin and erythromycin on streptococcal susceptibility to phagocytosis. J. Med. Microbiol. 1995, 42, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Novelli, A.; Fallani, S.; Cassetta, M.I.; Conti, S.; Mazzei, T. Postantibiotic leukocyte enhancement of meropenem against gram-positive and gram-negative strains. Antimicrob. Agents Chemother. 2000, 44, 3174–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horgen, L.; Jerome, A.; Rastogi, N. Pulsed-exposure and postantibiotic leukocyte enhancement effects of amikacin, clarithromycin, clofazimine, and rifampin against intracellular Mycobacterium avium. Antimicrob. Agents Chemother. 1998, 42, 3006–3008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, A.; Mazzei, T.; Fallani, S.; Cassetta, M.I.; Conti, S. In vitro postantibiotic effect and postantibiotic leukocyte enhancement of tobramycin. J. Chemother. 1995, 7, 355–362. [Google Scholar] [CrossRef]
- Pérez Fernández, P.; Herrera, I.; Martínez, P.; Gómez-Lus, M.L.; Prieto, J. Enhancement of the susceptibility of Staphylococcus aureus to phagocytosis after treatment with fosfomycin compared with other antimicrobial agents. Chemotherapy 1995, 41, 45–49. [Google Scholar] [CrossRef]
- Bernardo, K.; Pakulat, N.; Fleer, S.; Schnaith, A.; Utermöhlen, O.; Krut, O.; Müller, S.; Krönke, M. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob. Agents Chemother. 2004, 48, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Atshan, S.S.; Hamat, R.A.; Coolen, M.J.L.; Dykes, G.; Sekawi, Z.; Mullins, B.J.; Than, L.T.L.; Abduljaleel, S.A.; Kicic, A. The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics 2021, 10, 39. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, H.; Huang, J.; Zhang, R.; Rao, X. Virulence alterations in staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics. J. Adv. Res. 2021, 31, 165–175. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Alikhani, M.Y.; Imani Fooladi, A.A. Synergistic antimicrobial activity of melittin with clindamycin on the expression of encoding exfoliative toxin in Staphylococcus aureus. Toxicon 2020, 183, 11–19. [Google Scholar] [CrossRef]
- Evans, S.J.; Roberts, A.E.L.; Morris, A.C.; Simpson, A.J.; Harris, L.G.; Mack, D.; Jenkins, R.E.; Wilkinson, T.S. Contrasting effects of linezolid on healthy and dysfunctional human neutrophils: Reducing C5a-induced injury. Sci. Rep. 2020, 10, 16377. [Google Scholar] [CrossRef] [PubMed]
- Schilcher, G.; Eisner, F.; Hackl, G.; Eller, P.; Valentin, T.; Zollner-Schwetz, I.; Krause, R.; Brcic, L. Candida infection of membrane oxygenator during ECMO therapy. J. Infect. 2019, 78, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Kobuchi, S.; Kabata, T.; Maeda, K.; Ito, Y.; Sakaeda, T. Pharmacokinetics of macrolide antibiotics and transport into the interstitial fluid: Comparison among erythromycin, clarithromycin, and azithromycin. Antibiotics 2020, 9, 199. [Google Scholar] [CrossRef]
- Fernandes, P.; Pereira, D.; Watkins, P.B.; Bertrand, D. Differentiating the Pharmacodynamics and Toxicology of Macrolide and Ketolide Antibiotics. J. Med. Chem. 2020, 63, 6462–6473. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Long Journey on Daptomycin. Synlett 2022, 33, 27–33. [Google Scholar] [CrossRef]
- Charlton, M.; Thompson, J. Pharmacokinetics in sepsis. BJA Educ. 2019, 19, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, K.M.; Au, S.Y.; Ng, G.W.Y.; Leung, A.K.H. Positive fluid balance and mortality in adult patients treated with extracorporeal membrane oxygenation: A retrospective study. J. Intensive Care Soc. 2020, 21, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Donadello, K.; Antonucci, E.; Cristallini, S.; Roberts, J.A.; Beumier, M.; Scolletta, S.; Jacobs, F.; Rondelet, B.; de Backer, D.; Vincent, J.L.; et al. beta-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: A case-control study. Int. J. Antimicrob. Agents 2015, 45, 278–282. [Google Scholar] [CrossRef]
- Elena Puerto, E.; Guido Tavazzi, G.; Alessia Gambaro, A.; Chiara Cirillo, C.; Alessandro Pecoraro, A.; Roberto Martin-Asenjo, R.; Juan Delgado, J.; Hector Bueno, H.; Susanna Price, S. Interaction between veno-arterial extracorporeal membrane oxygenation and the right ventricle. Eur. Heart J. Acute Cardiovasc. Care 2021, 10 (Suppl. 1), zuab020-173. [Google Scholar] [CrossRef]
- Coleman, R.D.; Chartan, C.A.; Mourani, P.M. Intensive care management of right ventricular failure and pulmonary hypertension crises. Pediatric Pulmonol. 2021, 56, 636–648. [Google Scholar] [CrossRef]
- Zoratti, C.; Moretti, R.; Rebuzzi, L.; Albergati, I.V.; Di Somma, A.; Decorti, G.; Di Bella, S.; Crocè, L.S.; Giuffrè, M. Antibiotics and Liver Cirrhosis: What the Physicians Need to Know. Antibiotics 2022, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Ulldemolins, M.; Roberts, J.A.; Lipman, J.; Rello, J. Antibiotic dosing in multiple organ dysfunction syndrome. Chest 2011, 139, 1210–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, D.; Metz, C.; Seiler, F.; Wehrfritz, H.; Roth, S.; Alqudrah, M.; Becker, A.; Bracht, H.; Wagenpfeil, S.; Hoffmann, M.; et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: A prospective, observational single-center study. Crit. Care 2020, 24, 664. [Google Scholar] [CrossRef]
- Shekar, K.; Fraser, J.F.; Smith, M.T.; Roberts, J.A. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J. Crit. Care 2012, 27, 741.e9–741.e18. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.; Abdul-Aziz, M.H.; Roberts, J.A.; Shekar, K. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J. Thorac. Dis. 2018, 10 (Suppl. 5), S629–S641. [Google Scholar] [CrossRef]
- Worku, B.; Khin, S.; Gaudino, M.; Gambardella, I.; Iannacone, E.; Ebrahimi, H.; Savy, S.; Voevidko, L.; Oribabor, C.; Hadjiangelis, N.; et al. Renal replacement therapy in patients on extracorporeal membrane oxygenation support: Who and how. Int. J. Artif. Organs 2021, 44, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, I.; Erac, Y.; Ballar Kirmizibayrak, P.; Ermertcan, S. Nonsteroidal antiinflammatory drugs alter antibiotic susceptibility and expression of virulence-related genes and protein A of Staphylococcus aureus. Turk. J. Med. Sci. 2021, 51, 835–847. [Google Scholar] [CrossRef]
- Riordan, J.T.; Dupre, J.M.; Cantore-Matyi, S.A.; Kumar-Singh, A.; Song, Y.; Zaman, S.; Horan, S.; Helal, N.S.; Nagarajan, V.; Elasri, M.O.; et al. Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.W.L.; Yee, Z.Y.; Raja, I.; Yap, J.K.Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2017, 10, 70–74. [Google Scholar] [CrossRef]
- da Rosa, T.F.; Foletto, V.S.; Serafin, M.B.; Bottega, A.; Horner, R. Anti-infective properties of proton pump inhibitors: Perspectives. Int. Microbiol. 2022, 25, 217–222. [Google Scholar] [CrossRef]
- Bertholee, D.; ter Horst, P.G.; Hijmering, M.L.; Spanjersberg, A.J.; Hospes, W.; Wilffert, B. Blood concentrations of cefuroxime in cardiopulmonary bypass surgery. Int. J. Clin. Pharm. 2013, 35, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Denooz, R.; Charlier, C. Simultaneous determination of five beta-lactam antibiotics (cefepim, ceftazidim, cefuroxim, meropenem and piperacillin) in human plasma by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 2008, 864, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Fraser, J.F.; Taccone, F.S.; Welch, S.; Wallis, S.C.; Mullany, D.V.; Lipman, J.; Roberts, J.A. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: A matched cohort study. Crit. Care 2014, 18, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cies, J.J.; Nikolos, P.; Moore, W.S.; Giliam, N.; Low, T.; Marino, D.; Deacon, J.; Enache, A.; Chopra, A. Oxygenator impact on meropenem/vaborbactam in extracorporeal membrane oxygenation circuits. Perfusion 2021, 02676591211018985. [Google Scholar] [CrossRef] [PubMed]
- Moffett, B.S.; Morris, J.; Galati, M.; Munoz, F.M.; Arikan, A.A. Population Pharmacokinetic Analysis of Gentamicin in Pediatric Extracorporeal Membrane Oxygenation. Ther. Drug Monit. 2018, 40, 581–588. [Google Scholar] [CrossRef]
- Booke, H.; Frey, O.R.; Röhr, A.C.; Chiriac, U.; Zacharowski, K.; Holubec, T.; Adam, E.H. Excessive unbound cefazolin concentrations in critically ill patients receiving veno-arterial extracorporeal membrane oxygenation (vaECMO): An observational study. Sci. Rep. 2021, 11, 16981. [Google Scholar] [CrossRef]
- Raffaeli, G.; Cavallaro, G.; Allegaert, K.; Koch, B.C.; Mosca, F.; Tibboel, D.; Wildschut, E.D. Sequestration of voriconazole and vancomycin into contemporary extracorporeal membrane oxygenation circuits: An in vitro study. Front. Pediatrics 2020, 8, 468. [Google Scholar] [CrossRef]
- Dhanani, J.A.; Lipman, J.; Pincus, J.; Townsend, S.; Livermore, A.; Wallis, S.C.; Abdul-Aziz, M.H.; Roberts, J.A. Pharmacokinetics of Total and Unbound Cefazolin during Veno-Arterial Extracorporeal Membrane Oxygenation: A Case Report. Chemotherapy 2019, 64, 115–118. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S.; Giliam, N.; Low, T.; Enache, A.; Chopra, A. Oxygenator Impact on Ceftolozane and Tazobactam in Extracorporeal Membrane Oxygenation Circuits. Pediatric Crit. Care Med. 2020, 21, 276–282. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S.I.; Giliam, N.; Low, T.; Enache, A.; Chopra, A. Oxygenator Impact on Ceftaroline in Extracorporeal Membrane Oxygenation Circuits. Pediatric Crit. Care Med. 2018, 19, 1077–1082. [Google Scholar] [CrossRef]
- Cies, J.; Moore, W.; Marino, D.; Deacon, J.; Enache, A.; Chopra, A. 1005: Oxygenator impact on peramivir in extracorporeal membrane oxygenation circuits. Crit. Care Med. 2022, 50, 499. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, J.C.; Molnar, Z.; Deliargyris, E.N.; Ferrer, R. The Use of CytoSorb Therapy in Critically Ill COVID-19 Patients: Review of the Rationale and Current Clinical Experiences. Crit. Care Res. Pract. 2021, 2021, 7769516. [Google Scholar] [CrossRef] [PubMed]
- Gacitua, I.; Frias, A.; Sanhueza, M.E.; Bustamante, S.; Cornejo, R.; Salas, A.; Guajardo, X.; Torres, K.; Figueroa Canales, E.; Tobar, E.; et al. Extracorporeal CO2 removal and renal replacement therapy in acute severe respiratory failure in COVID-19 pneumonia: Case report. Semin. Dial. 2021, 34, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Cau, A.; Cheng, M.P.; Lee, T.; Levin, A.; Lee, T.C.; Vinh, D.C.; Lamontagne, F.; Singer, J.; Walley, K.R.; Murthy, S.; et al. Acute Kidney Injury and Renal Replacement Therapy in COVID-19 Versus Other Respiratory Viruses: A Systematic Review and Meta-Analysis. Can. J. Kidney Health Dis. 2021, 8, 20543581211052185. [Google Scholar] [CrossRef] [PubMed]
- Van Daele, R.; Bekkers, B.; Lindfors, M.; Broman, L.M.; Schauwvlieghe, A.; Rijnders, B.; Hunfeld, N.G.M.; Juffermans, N.P.; Taccone, F.S.; Coimbra Sousa, C.A.; et al. A Large Retrospective Assessment of Voriconazole Exposure in Patients Treated with Extracorporeal Membrane Oxygenation. Microorganisms 2021, 9, 1543. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, W.; Wang, Q.; Li, M.; Zhang, Z.; Cui, G.; Li, P.; Zhang, X.; Ma, Y.; Zhan, Q.; et al. Influence of venovenous extracorporeal membrane oxygenation on pharmacokinetics of vancomycin in lung transplant recipients. J. Clin. Pharm. Ther. 2020, 45, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Donadello, K.; Roberts, J.A.; Cristallini, S.; Beumier, M.; Shekar, K.; Jacobs, F.; Belhaj, A.; Vincent, J.L.; de Backer, D.; Taccone, F.S. Vancomycin population pharmacokinetics during extracorporeal membrane oxygenation therapy: A matched cohort study. Crit. Care 2014, 18, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.; Lee, D.H.; Kim, H.S. Prospective Cohort Study of Population Pharmacokinetics and Pharmacodynamic Target Attainment of Vancomycin in Adults on Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2021, 65, e02408-20. [Google Scholar] [CrossRef]
- Mulla, H.; Pooboni, S. Population pharmacokinetics of vancomycin in patients receiving extracorporeal membrane oxygenation. Br. J. Clin. Pharmacol. 2005, 60, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Yang, J.H.; Park, H.J.; In, Y.W.; Lee, Y.M.; Cho, Y.H.; Chung, C.R.; Park, C.-M.; Jeon, K.; Suh, G.Y. Trough Concentrations of Vancomycin in Patients Undergoing Extracorporeal Membrane Oxygenation. PLoS ONE 2015, 10, e0141016. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-C.; Shen, L.-J.; Hsu, L.-F.; Ko, W.-J.; Wu, F.-L.L. Pharmacokinetics of vancomycin in adults receiving extracorporeal membrane oxygenation. J. Formos. Med. Assoc. 2016, 115, 560–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, N.M.; Halwick, D.R.; Dodson, B.L.; Thompson, J.E.; Arnold, J.H. Potential drug sequestration during extracorporeal membrane oxygenation: Results from an ex vivo experiment. Intensive Care Med. 2007, 33, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, H.; Zhang, Q.; Ou, Q.; Zhou, H.; Sha, T.; Zeng, Z.; Wu, J.; Lu, J.; Chen, Z. Effects of ex vivo Extracorporeal Membrane Oxygenation Circuits on Sequestration of Antimicrobial Agents. Front. Med. 2021, 8, 748769. [Google Scholar] [CrossRef] [PubMed]
- Duceppe, M.A.; Kanji, S.; Do, A.T.; Ruo, N.; Cavayas, Y.A.; Albert, M.; Robert-Halabi, M.; Zavalkoff, S.; Dupont, P.; Samoukovic, G.; et al. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review. Drugs 2021, 81, 1307–1329. [Google Scholar] [CrossRef]
- Roberts, J.A.; Joynt, G.M.; Lee, A.; Choi, G.; Bellomo, R.; Kanji, S.; Mudaliar, M.Y.; Peake, S.L.; Stephens, D.; Taccone, F.S.; et al. The Effect of Renal Replacement Therapy and Antibiotic Dose on Antibiotic Concentrations in Critically Ill Patients: Data From the Multinational Sampling Antibiotics in Renal Replacement Therapy Study. Clin. Infect. Dis. 2021, 72, 1369–1378. [Google Scholar] [CrossRef]
- Kroh, U.F.; Holl, T.; Feussner, K.D. Pharmacokinetics and dosage adjustment of antibiotics during continuous extracorporeal lung assistance and hemofiltration. Artif. Organs 1992, 16, 457–460. [Google Scholar] [CrossRef]
- Wi, J.; Noh, H.; Min, K.L.; Yang, S.; Jin, B.H.; Hahn, J.; Bae, S.K.; Kim, J.; Park, M.S.; Choi, D.; et al. Population Pharmacokinetics and Dose Optimization of Teicoplanin during Venoarterial Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2017, 61, e01015-17. [Google Scholar] [CrossRef] [Green Version]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef]
Hydrophilic | Lipophilic |
---|---|
Aminoglycosides | Fluoroquinolones * |
β-lactams | Clindamycin |
Glycopeptides | Tigecycline |
Linezolid | Caspofungin |
Colistin | Voriconazole |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez, F.; Veita, J.; Laudanski, K. Antibiotics and ECMO in the Adult Population—Persistent Challenges and Practical Guides. Antibiotics 2022, 11, 338. https://doi.org/10.3390/antibiotics11030338
Gomez F, Veita J, Laudanski K. Antibiotics and ECMO in the Adult Population—Persistent Challenges and Practical Guides. Antibiotics. 2022; 11(3):338. https://doi.org/10.3390/antibiotics11030338
Chicago/Turabian StyleGomez, Francisco, Jesyree Veita, and Krzysztof Laudanski. 2022. "Antibiotics and ECMO in the Adult Population—Persistent Challenges and Practical Guides" Antibiotics 11, no. 3: 338. https://doi.org/10.3390/antibiotics11030338
APA StyleGomez, F., Veita, J., & Laudanski, K. (2022). Antibiotics and ECMO in the Adult Population—Persistent Challenges and Practical Guides. Antibiotics, 11(3), 338. https://doi.org/10.3390/antibiotics11030338