Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm?
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Frequency of Bacterial Strains Implicated in the Etiology of UTIs
3.2. Evolution of Resistance Patterns of Gram-Negative Bacteria
3.3. Evolution of Resistance Patterns of Gram-Positive Bacteria
3.4. The Implication of COVID Pandemic in AMR of Uropathogens
3.5. Limitations
4. Materials and Methods
4.1. Study Design and Sample Population
4.2. Inclusion and Exclusion Criteria
- Positive uroculture ≥ 105 CFU/mL;
- Single bacteria strain on the standard urine culture;
- Female patients;
- Age ≥ 18 years old.
- Less than 105 CFU/mL on urine culture;
- Inoculation of more than one bacterial strain on urine culture;
- Male patients;
- Patients with urinary catheters
4.3. Sample Collection, Bacterial Culture, Identification of Uropathogens, Antibiotic Susceptibility Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis. 2001, 183 (Suppl. 1), S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals; European Centre for Disease prevention and Control: Stockholm, Sweden, 2013. [Google Scholar]
- Chu, C.M.; Lowder, J.L. Diagnosis and treatment of urinary tract infections across age groups. Am. J. Obstet. Gynecol. 2018, 219, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am. J. Med. 2002, 113 (Suppl. 1A), 5S–13S. [Google Scholar] [CrossRef]
- Flores-Mireles, A.; Walker, J.; Caparon, M.; Hultgren, S. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Minardi, D.; d’Anzeo, G.; Cantoro, D.; Conti, A.; Muzzonigro, G. Urinary tract infections in women: Etiology and treatment options. Int. J. Gen. Med. 2011, 4, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Levison, M.E.; Kaye, D. Treatment of complicated urinary tract infections with an emphasis on drug-resistant Gram-negative uropathogens. Curr. Infect. Dis. Rep. 2013, 15, 109–115. [Google Scholar] [CrossRef]
- Petca, R.C.; Popescu, R.I.; Mares, C.; Petca, A.; Mehedintu, C.; Sandu, I.; Maru, N. Antibiotic resistance profile of common uropathogens implicated in urinary tract infections in Romania. Farmacia 2019, 67, 994–1004. [Google Scholar] [CrossRef]
- Bouza, E.; San Juan, R.; Muñoz, P.; Voss, A.; Kluytmans, J.; Co-operative Group of the European Study Group on Nosocomial Infections. A European perspective on nosocomial urinary tract infections I. Report on the microbiology workload, etiology and antimicrobial susceptibility (ESGNI-003 study). European Study Group on Nosocomial Infections. Clin. Microbiol. Infect. 2001, 7, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Chibelean, C.B.; Petca, R.-C.; Mares, C.; Popescu, R.-I.; Eniko, B.; Mehedintu, C.; Petca, A. A clinical perspective on the antimicrobial resistance spectrum of uropathogens in a Romanian male population. Microorganisms 2020, 8, 848. [Google Scholar] [CrossRef]
- Kline, K.A.; Lewis, A.L. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Jellheden, B.; Norrby, R.S.; Sandberg, T. Symptomatic urinary tract infection in women in primary health care. Bacteriological, clinical and diagnostic aspects in relation to host response to infection. Scand. J. Prim. Health Care 1996, 14, 122–128. [Google Scholar] [CrossRef]
- Bonkat, G.; Bartoletti, R.; Bruyere, F.; Cai, T.; Geerlings, S.E.; Köves, B.; Schubert, S.; Wagenlehner, F. EAU Guidelines on Urological Infections; European Association of Urology: Arnhem, The Netherlands, 2021. [Google Scholar]
- Petca, R.-C.; Mareș, C.; Petca, A.; Negoiță, S.; Popescu, R.-I.; Boț, M.; Barabás, E.; Chibelean, C.B. Spectrum and Antibiotic Resistance of Uropathogens in Romanian Females. Antibiotics 2020, 9, 472. [Google Scholar] [CrossRef]
- Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. World Health Organ 2020, 98, 442. [Google Scholar] [CrossRef]
- Abdela, S.G.; Liesenborghs, L.; Tadese, F.; Abegaz, S.H.; Bayuh, F.B.; Asmamaw, E.A.; Mebrate, T.A.; Mamo, A.E.; Embiale, W.; Hunegnaw, S.; et al. Antibiotic overuse for COVID-19: Are we adding insult to injury? Am. J. Trop. Med. Hyg. 2021, 105, 1519–1520. [Google Scholar] [CrossRef]
- Zavala-Flores, E.; Salcedo-Matienzo, J. Medicación prehospitalaria en pacientes hospitalizados por COVID-19 en un hospital público de Lima-Perú. Acta Médica Peru. 2020, 37, 393–395. [Google Scholar] [CrossRef]
- Gasperini, B.; Cherubini, A.; Lucarelli, M.; Espinosa, E.; Prospero, E. Multidrug-resistant bacterial infections in geriatric hospitalized patients before and after the COVID-19 outbreak: Results from a retrospective observational study in two geriatric wards. Antibiotics 2021, 10, 95. [Google Scholar] [CrossRef]
- Petca, R.-C.; Negoiță, S.; Mareș, C.; Petca, A.; Popescu, R.-I.; Chibelean, C.B. Heterogeneity of antibiotics multidrug-resistance profile of uropathogens in Romanian population. Antibiotics 2021, 10, 523. [Google Scholar] [CrossRef]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance; HM Government Welcome Trust: London, UK, 2014. [Google Scholar]
- Salvatore, S.; Salvatore, S.; Cattoni, E.; Siesto, G.; Serati, M.; Sorice, P.; Torella, M. Urinary tract infections in women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 156, 131–136. [Google Scholar] [CrossRef]
- Foxman, B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef]
- Hooton, T.M.; Scholes, D.; Hughes, J.P.; Winter, C.; Roberts, P.L.; Stapleton, A.E.; Stergachis, A.; Stamm, W.E. A prospective study of risk factors for symptomatic urinary tract infection in young women. N. Engl. J. Med. 1996, 335, 468–474. [Google Scholar] [CrossRef]
- Scholes, D.; Hooton, T.M.; Roberts, P.L.; Stapleton, A.E.; Gupta, K.; Stamm, W.E. Risk factors for recurrent urinary tract infection in young women. J. Infect. Dis. 2000, 182, 1177–1182. [Google Scholar] [CrossRef] [Green Version]
- Storme, O.; Tirán Saucedo, J.; Garcia-Mora, A.; Dehesa-Dávila, M.; Naber, K.G. Risk factors and predisposing conditions for urinary tract infection. Ther. Adv. Urol. 2019, 11, 1756287218814382. [Google Scholar] [CrossRef]
- Plate, A.; Kronenberg, A.; Risch, M.; Mueller, Y.; Di Gangi, S.; Rosemann, T.; Senn, O. Active surveillance of antibiotic resistance patterns in urinary tract infections in primary care in Switzerland. Infection 2019, 47, 1027–1035. [Google Scholar] [CrossRef]
- Al-Zahrani, J.; Al Dossari, K.; Gabr, A.H.; Ahmed, A.F.; Al Shahrani, S.A.; Al-Ghamdi, S. Antimicrobial resistance patterns of uropathogens isolated from adult women with acute uncomplicated cystitis. BMC Microbiol. 2019, 19, 237. [Google Scholar] [CrossRef]
- Kwon, K.T.; Kim, B.; Ryu, S.-Y.; Wie, S.-H.; Kim, J.; Jo, H.-U.; Park, S.Y.; Hong, K.-W.; Kim, H.I.; Kim, H.A.; et al. Changes in clinical characteristics of community-acquired acute pyelonephritis and antimicrobial resistance of uropathogenic Escherichia coli in South Korea in the past decade. Antibiotics 2020, 9, 617. [Google Scholar] [CrossRef]
- Gupta, K.; Sahm, D.F.; Mayfield, D.; Stamm, W.E. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: A nationwide analysis. Clin. Infect. Dis. 2001, 33, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Kubone, P.Z.; Mlisana, K.P.; Govinden, U.; Abia, A.L.K.; Essack, S.Y. Antibiotic susceptibility and molecular characterization of uropathogenic Escherichia coli associated with community-acquired urinary tract infections in urban and rural settings in South Africa. Trop. Med. Infect. Dis. 2020, 5, 176. [Google Scholar] [CrossRef]
- Gajdács, M.; Bátori, Z.; Ábrók, M.; Lázár, A.; Burián, K. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: A 10-year data analysis. Life 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Caskurlu, H.; Culpan, M.; Erol, B.; Turan, T.; Vahaboglu, H.; Caskurlu, T. Changes in antimicrobial resistance of urinary tract infections in adult patients over a 5-year period. Urol. Int. 2020, 104, 287–292. [Google Scholar] [CrossRef]
- Hrbacek, J.; Cermak, P.; Zachoval, R. Current antibiotic resistance trends of uropathogens in Central Europe: Survey from a tertiary hospital urology department 2011–2019. Antibiotics 2020, 9, 630. [Google Scholar] [CrossRef] [PubMed]
- Urmi, U.L.; Jahan, N.; Nahar, S.; Rana, M.; Sultana, F.; Hossain, B.; Iqbal, S.; Hossain, M.; Mossadek, A.S.M.; Islam, S. Gram-positive uropathogens: Empirical treatment and emerging antimicrobial resistance. Biomed Res. Clin. Prac. 2019, 4, 1–4. [Google Scholar]
- Shrestha, L.B.; Baral, R.; Khanal, B. Comparative study of antimicrobial resistance and biofilm formation among Gram-positive uropathogens isolated from community acquired urinary tract infections and catheter-associated urinary tract infections. Infect. Dru. Res. 2019, 12, 957–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefaniuk, E.; Suchocka, U.; Bosacka, D.; Hryniewicz, W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1363–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magyar, A.; Köves, B.; Nagy, K.; Dobák, A.; Arthanareeswaran, V.; Bálint, P.; Wagenlehner, F.; Tenke, P. Spectrum and antibiotic resistance of uropathogens between 2004 and 2015 in a tertiary care hospital in Hungary. J. Med. Microbiol. 2017, 66, 788–797. [Google Scholar] [CrossRef]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Comparative epidemiology and resistance trends of common urinary pathogens in a tertiary-care hospital: A 10-year surveillance study. Medicina 2019, 55, 356. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.S.; do Trindade, G.N.C.; Machado, K.L.B.; do Santos, M.C.M.; Oliveira, E.H. Main bacteria found in urine cultures of patients with urinary tract infections (UTI) and their resistance profile to antimicrobials. Res. Soc. Dev. 2021, 10, e5310716161. [Google Scholar] [CrossRef]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Increasing relevance of Gram-positive cocci in urinary tract infections: A 10-year analysis of their prevalence and resistance trends. Sci. Rep. 2020, 10, 17658. [Google Scholar] [CrossRef]
- Knight, G.M.; Glover, R.E.; McQuaid, C.F.; Olaru, I.D.; Gallandat, K.; Leclerc, Q.J.; Fuller, N.M.; Willcocks, S.J.; Hasan, R.; van Kleef, E.; et al. Antimicrobial resistance and COVID-19: Intersections and implications. eLife 2021, 10, e64139. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.P.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta- analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Clinical Management: Living Guidance, 25 January 2021; World Health Organization: Geneva, Switzerland, 2021; pp. 1–81. [Google Scholar]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Ukuhor, H.O. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J. Infect. Public Health 2021, 14, 53–60. [Google Scholar] [CrossRef]
- Rodríguez-Álvarez, M.; López-Vidal, Y.; Soto-Hernández, J.L.; Miranda-Novales, M.G.; Flores-Moreno, K.; Ponce de León-Rosales, S. COVID-19: Clouds over the antimicrobial resistance landscape. Arch. Med. Res. 2021, 52, 123–126. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- Polly, M.; de Almeida, B.L.; Lennon, R.P.; Cortês, M.F.; Costa, S.F.; Guimarães, T. Impact of the COVID-19 pandemic on the incidence of multidrug-resistant bacterial infections in an acute care hospital in Brazil. Am. J. Infect. Control 2021, 50, 32–38. [Google Scholar] [CrossRef]
- Chibabhai, V.; Duse, A.G.; Perovic, O.; Richards, G.A. Collateral damage of the COVID-19 pandemic: Exacerbation of antimicrobial resistance and disruptions to antimicrobial stewardship programmes? S. Afr. Med. J. 2020, 110, 572–573. [Google Scholar] [CrossRef]
- Milas, S.; Poncelet, A.; Buttafuoco, F.; Pardo, A.; Lali, S.E.; Cherifi, S. Antibiotic use in patients with Coronavirus disease 2019 (COVID-19): Outcomes and associated factors. Acta Clin. Belg. 2021, 1–9. [Google Scholar] [CrossRef]
- Collignon, P.; Beggs, J. CON: COVID-19 will not result in increased antimicrobial resistance prevalence. JAC Antimicrob. Resist. 2020, 2, dlaa051. [Google Scholar] [CrossRef]
- Moya, C.; Maicas, S. Antimicrobial resistance in Klebsiella pneumoniae strains: Mechanisms and outbreaks. Proceedings 2020, 66, 11. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Benea, E.O.; Gavriliu, L.C.; Popescu, C.; Popescu, G.A. Ghidul Angelescu. Terapie Antimicrobiana 2018, 3rd ed.; Editura Bucuresti: Bucharest, Romania, 2018; pp. 181–192. [Google Scholar]
- World Health Organization. Guidelines for the Collection of Clinical Specimens during Field Investigation of Outbreaks; World Health Organization: Geneva, Switzerland, 2000; pp. 1–51. [Google Scholar]
- Clinical and Laboratory Standards Institute® (CLSI). M 100 Performance Standards for Antimicrobial Susceptibility Testing, 28th ed. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 10 May 2020).
- The European Committee on Antimicrobial Susceptibility Testing. 2017. Disk Diffusion Method for Antimicrobial Susceptibility Testing—Version 6.0. 2017. Available online: http://www.eucast.org/ast_of_bacteria/ (accessed on 10 December 2021).
- World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2020; World Health Organization: Geneva, Switzerland, 2020; pp. 1–132. [Google Scholar]
Isolated Bacteria | BCH | EUH | Total | TOTAL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Pandemic | Pandemic | Pre-Pandemic | Pandemic | Pre-Pandemic | Pandemic | |||||||||
n | % | n | % | n | % | n | % | n | % | n | % | n | % | |
Gram-negative | 584 | 79.02 | 368 | 82.69 | 697 | 90.99 | 483 | 93.06 | 1281 | 85.11 | 851 | 88.27 | 2132 | 86.35 |
Escherichia coli | 400 | 54.12 | 234 | 52.58 | 525 | 68.53 | 346 | 66.66 | 925 | 61.46 | 580 | 60.16 | 1505 | 60.95 |
Klebsiella spp. | 110 | 14.88 | 75 | 16.85 | 133 | 17.36 | 108 | 20.80 | 243 | 16.14 | 183 | 18.98 | 426 | 17.25 |
Proteus spp. | 56 | 7.57 | 36 | 8.08 | 24 | 3.13 | 21 | 4.04 | 80 | 5.31 | 57 | 5.91 | 137 | 5.54 |
Pseudomonas spp. | 18 | 2.43 | 23 | 5.16 | 15 | 1.95 | 8 | 1.54 | 33 | 2.19 | 31 | 3.21 | 64 | 2.59 |
Gram-positive | 155 | 20.97 | 77 | 17.30 | 69 | 9.0 | 36 | 6.93 | 224 | 14.88 | 113 | 11.72 | 337 | 13.64 |
Enterococcus spp. | 127 | 17.18 | 58 | 13.03 | 64 | 8.35 | 36 | 6.93 | 191 | 12.69 | 94 | 9.75 | 285 | 11.54 |
Staphilococcus spp. | 28 | 3.78 | 19 | 4.26 | 5 | 0.65 | - | - | 33 | 2.19 | 19 | 1.97 | 52 | 2.1 |
Isolated Bacteria | BCH | EUH | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Pandemic | Pandemic | Pre-Pandemic | Pandemic | |||||||||||||||||||||
≤40 | 41–55 | >55 | ≤40 | 41–55 | >55 | ≤40 | 41–55 | >55 | ≤40 | 41–55 | >55 | |||||||||||||
n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | |
E. coli | 66 | 8.93 | 60 | 8.11 | 274 | 37.07 | 38 | 8.53 | 55 | 12.35 | 141 | 31.68 | 50 | 6.52 | 44 | 5.74 | 431 | 56.26 | 39 | 7.51 | 46 | 8.86 | 261 | 50.28 |
Klebsiella spp. | 15 | 2.02 | 16 | 2.16 | 79 | 10.69 | 14 | 3.14 | 14 | 3.14 | 47 | 10.56 | 9 | 1.17 | 9 | 1.17 | 115 | 15.01 | 7 | 1.34 | 13 | 2.50 | 88 | 16.95 |
Proteus spp. | 11 | 1.48 | 9 | 1.21 | 36 | 4.87 | 9 | 2.02 | 9 | 2.02 | 18 | 4.04 | - | - | 2 | 0.26 | 22 | 2.87 | 1 | 0.19 | 2 | 0.38 | 18 | 3.46 |
Pseudomonas spp. | 2 | 0.27 | 1 | 0.13 | 15 | 2.02 | - | - | 8 | 1.79 | 15 | 3.37 | - | - | 3 | 0.39 | 12 | 1.56 | - | - | 2 | 0.38 | 6 | 1.15 |
Enterococcus spp. | 19 | 2.57 | 28 | 3.78 | 80 | 10.82 | 8 | 1.79 | 10 | 2.24 | 40 | 8.98 | 6 | 0.78 | 6 | 0.78 | 52 | 6.78 | 2 | 0.38 | 7 | 1.34 | 27 | 5.2 |
Staphylococcus spp. | 4 | 0.54 | 8 | 1.08 | 16 | 2.16 | 2 | 0.44 | 6 | 1.34 | 11 | 2.47 | 2 | 0.26 | - | - | 3 | 0.39 | - | - | - | - | - | - |
Total | 117 | 15.83 | 122 | 16.5 | 500 | 67.65 | 71 | 15.95 | 102 | 22.92 | 272 | 61.12 | 67 | 8.74 | 64 | 8.35 | 635 | 82.89 | 49 | 9.44 | 70 | 13.48 | 400 | 77.07 |
Antibiotics | Escherichia coli | Klebsiella spp. | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Pandemic | Pandemic | Pre-Pandemic | Pandemic | |||||||||||||||||
R | S | NA | R | S | NA | R | S | NA | R | S | NA | |||||||||
n | % | n | % | % | n | % | n | % | % | n | % | n | % | % | n | % | n | % | % | |
Amikacin | 34 | 3.67 | 809 | 87.45 | 8.86 | 28 | 4.82 | 470 | 81.03 | 14.13 | 26 | 10.69 | 217 | 89.3 | - | 35 | 19.12 | 145 | 79.23 | 1.63 |
Amoxicillin– Clavulanic Ac. | 132 | 14.27 | 718 | 77.62 | 8.1 | 124 | 21.37 | 373 | 64.31 | 14.31 | 71 | 29.21 | 169 | 69.54 | 1.23 | 71 | 38.79 | 105 | 57.37 | 3.82 |
Aztreonam | 30 | 3.24 | 362 | 39.13 | 57.67 | 23 | 3.96 | 170 | 29.31 | 66.72 | 24 | 9.87 | 82 | 33.74 | 56.37 | 24 | 13.11 | 45 | 24.59 | 62.29 |
Ceftazidime | 66 | 7.13 | 766 | 82.81 | 10.05 | 47 | 8.1 | 449 | 77.41 | 14.48 | 39 | 16.04 | 198 | 81.48 | 2.46 | 46 | 25.13 | 136 | 74.31 | 0.54 |
Fosfomycin | 2 | 0.21 | 847 | 91.56 | 8.21 | 4 | 0.68 | 533 | 91.89 | 7.41 | 3 | 1.23 | 46 | 18.93 | 79.83 | - | - | - | - | - |
Imipenem | 0 | 404 | 43.67 | 56.32 | 3 | 0.51 | 262 | 45.17 | 54.31 | 11 | 4.52 | 205 | 84.36 | 11.11 | 14 | 7.65 | 134 | 73.22 | 19.12 | |
Levofloxacin | 254 | 27.45 | 587 | 63.45 | 9.08 | 167 | 28.79 | 329 | 56.72 | 14.48 | 41 | 16.87 | 199 | 81.89 | 1.23 | 65 | 35.51 | 115 | 62.84 | 1.63 |
Meropenem | 1 | 0.1 | 414 | 44.75 | 55.13 | 1 | 0.17 | 267 | 46.03 | 53.79 | 18 | 7.4 | 203 | 83.53 | 9.05 | 21 | 11.47 | 128 | 69.94 | 18.57 |
Nitrofurantoin | 45 | 4.86 | 631 | 68.21 | 26.91 | 39 | 6.72 | 411 | 70.86 | 22.41 | 38 | 15.63 | 105 | 43.2 | 41.15 | 38 | 20.76 | 72 | 39.34 | 39.89 |
Antibiotics | Pseudomonas spp. | Proteus spp. | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Pandemic | Pandemic | Pre-Pandemic | Pandemic | |||||||||||||||||
R | S | NA | R | S | NA | R | S | NA | R | S | NA | |||||||||
n | % | n | % | % | n | % | n | % | % | n | % | n | % | % | n | % | n | % | % | |
Amikacin | 5 | 15.15 | 27 | 81.81 | 3.03 | 16 | 51.61 | 14 | 45.16 | 3.22 | 7 | 8.75 | 73 | 91.25 | - | 7 | 12.28 | 48 | 84.21 | 3.5 |
Amoxicillin– Clavulanic Ac. | 6 | 18.18 | 10 | 30.3 | 51.51 | 8 | 25.8 | 2 | 6.45 | 67.74 | 22 | 27.5 | 55 | 68.75 | 3.75 | 16 | 28.07 | 33 | 57.89 | 14.03 |
Aztreonam | 3 | 9.09 | 15 | 45.45 | 45.45 | 13 | 41.93 | 7 | 22.58 | 35.48 | 4 | 5.0 | 51 | 63.75 | 31.25 | 2 | 3.5 | 29 | 50.87 | 45.61 |
Ceftazidime | 9 | 27.27 | 23 | 69.69 | 3.03 | 21 | 67.74 | 10 | 32.25 | - | 12 | 15.0 | 68 | 85.0 | - | 9 | 15.78 | 48 | 84.21 | - |
Fosfomycin | 6 | 18.18 | 26 | 78.78 | 3.03 | 21 | 67.74 | 10 | 32.25 | - | 0 | 0 | 55 | 68.75 | 31.25 | 4 | 7.01 | 32 | 56.14 | 36.84 |
Imipenem | 10 | 30.3 | 22 | 66.66 | 3.03 | 24 | 77.41 | 6 | 19.35 | 3.22 | 19 | 23.75 | 55 | 68.75 | 7.5 | 19 | 33.33 | 33 | 57.89 | 8.77 |
Levofloxacin | 6 | 18.18 | 26 | 78.78 | 3.03 | 20 | 64.51 | 10 | 32.25 | 3.22 | 1 | 1.25 | 57 | 71.25 | 27.5 | 1 | 1.75 | 42 | 73.68 | 24.56 |
Meropenem | 0 | 0 | 10 | 30.3 | 69.69 | 3 | 9.67 | 4 | 12.9 | 77.41 | - | - | - | - | - | - | - | - | - | - |
Nitrofurantoin | 5 | 15.15 | 27 | 81.81 | 3.03 | 16 | 51.61 | 14 | 45.16 | 3.22 | 7 | 8.75 | 73 | 91.25 | - | 7 | 12.28 | 48 | 84.21 | 3.5 |
Antibiotics | Enterococcus spp. | Staphylococcus spp. | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Pandemic | Pandemic | Pre-Pandemic | Pandemic | |||||||||||||||||
R | S | NA | R | S | NA | R | S | NA | R | S | NA | |||||||||
n | % | n | % | % | n | % | n | % | % | n | % | n | % | % | n | % | n | % | % | |
Amikacin | - | - | - | - | - | - | - | - | - | - | 1 | 3.03 | 31 | 93.93 | 3.03 | 0 | 0 | 6 | 31.57 | 68.42 |
Ampicillin | 34 | 17.8 | 147 | 76.96 | 5.23 | 17 | 18.08 | 75 | 79.78 | 2.12 | - | - | - | - | - | - | - | - | - | - |
Trimetoprim/Sulfamethoxazol | - | - | - | - | - | - | - | - | - | - | 6 | 18.18 | 19 | 57.57 | 24.24 | 1 | 5.26 | 17 | 89.47 | 5.26 |
Ceftazidime | - | - | - | - | - | - | - | - | - | - | 7 | 21.21 | 20 | 60.6 | 18.18 | - | - | - | - | - |
Fosfomycin | 1 | 0.52 | 135 | 70.68 | 28.79 | 6 | 6.38 | 56 | 59.57 | 34.04 | - | - | - | - | - | - | - | - | - | - |
Levofloxacin | 61 | 31.93 | 123 | 64.39 | 3.66 | 33 | 35.1 | 57 | 60.63 | 4.25 | 7 | 21.21 | 22 | 66.66 | 12.12 | 5 | 26.31 | 12 | 63.15 | 10.52 |
Linezolid | 4 | 2.09 | 165 | 86.38 | 11.51 | 4 | 4.25 | 77 | 81.92 | 13.82 | 2 | 6.06 | 25 | 75.75 | 18.18 | 0 | 0 | 17 | 89.47 | 10.52 |
Nitrofurantoin | 6 | 3.14 | 166 | 86.91 | 9.94 | 4 | 4.25 | 86 | 91.48 | 4.25 | 2 | 6.06 | 24 | 72.72 | 21.21 | 1 | 5.26 | 15 | 78.94 | 15.78 |
Penicillin | 56 | 29.31 | 111 | 58.11 | 12.56 | 24 | 25.53 | 58 | 61.7 | 12.76 | 15 | 45.45 | 11 | 33.33 | 21.21 | 9 | 47.36 | 9 | 47.36 | 5.26 |
Vancomycin | 3 | 1.57 | 171 | 89.52 | 8.9 | 2 | 2.12 | 79 | 84.04 | 13.82 | - | - | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mareș, C.; Petca, R.-C.; Petca, A.; Popescu, R.-I.; Jinga, V. Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm? Antibiotics 2022, 11, 376. https://doi.org/10.3390/antibiotics11030376
Mareș C, Petca R-C, Petca A, Popescu R-I, Jinga V. Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm? Antibiotics. 2022; 11(3):376. https://doi.org/10.3390/antibiotics11030376
Chicago/Turabian StyleMareș, Cristian, Răzvan-Cosmin Petca, Aida Petca, Răzvan-Ionuț Popescu, and Viorel Jinga. 2022. "Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm?" Antibiotics 11, no. 3: 376. https://doi.org/10.3390/antibiotics11030376
APA StyleMareș, C., Petca, R. -C., Petca, A., Popescu, R. -I., & Jinga, V. (2022). Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm? Antibiotics, 11(3), 376. https://doi.org/10.3390/antibiotics11030376