Pharmacokinetic/Pharmacodynamic Analysis and Dose Optimization of Cefmetazole and Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales in Patients with Invasive Urinary Tract Infection Considering Renal Function
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Pharmacokinetics Parameters
4.2. Pharmacodynamics Data
4.3. Pharmacokinetic/Pharmacodynamic Target and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food. Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 15 December 2021).
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woerther, P.L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2018, 61, 185–188. [Google Scholar] [CrossRef]
- Miyazaki, M.; Yamada, Y.; Matsuo, K.; Komiya, Y.; Uchiyama, M.; Nagata, N.; Takata, T.; Jimi, S.; Imakyure, O. Change in the Antimicrobial Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli. J. Clin. Med. Res. 2019, 11, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Amann, S.; Neef, K.; Kohl, S. Antimicrobial resistance (AMR). Eur. J. Hosp. Pharm. 2019, 26, 175–177. [Google Scholar] [CrossRef]
- Bandy, A.; Tantry, B. ESBL Activity, MDR, and Carbapenem Re-sistance among Predominant Enterobac-terales Isolated in 2019. Antibiotics 2021, 10, 744. [Google Scholar] [CrossRef]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E. coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: A randomized clinical trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Tanaka, M.; Takakura, S.; Ichiyama, S. In vitro activities and detection performances of cefmetazole and flomoxef for extended-spectrum β-lactamase and plasmid-mediated AmpC β-lactamase-producing Enterobacteriaceae. Diagn Microbiol. Infect. Dis. 2016, 84, 322–327. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.; Cheng, J.; Xu, Z.; Xu, Y.; Cao, B.; Kong, H.; Ni, Y.; Yu, Y.; Sun, Z.; et al. In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extend-ed-spectrum β-lactamases in China. Int. J. Antimicrob. Agents 2015, 45, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Lee, S.S.; Song, W.; Kim, H.S.; Uh, Y. In vitro activity of flomoxef against extended-spectrum β-lactamase–producing Escherichia coli and Klebsiella pneumoniae in Korea. Diagn. Microbiol. Infect. Dis. 2019, 94, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Komori, T.; Fujita, N.; Hayashi, A.; Shimizu, T.; Watanabe, H.; Doi, S.; Tanaka, M.; et al. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-beta-lactamase-producing Escherichia coli bacteremia. Antimicrob. Agents Chemother. 2015, 59, 5107–5113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.H.; Chen, I.L.; Li, C.C.; Chien, C.C. Clinical benefit of ertapenem compared to flomoxef for the treatment of cefo-taxime-resistant enterobacteriaceae bacteremia. Infect. Drug. Resist. 2018, 11, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Su, L.H.; Chen, F.J.; Tang, Y.F.; Li, C.C.; Chien, C.C.; Liu, J.W. Comparative effectiveness of flomoxef versus car-bapenems in the treatment of bacteraemia due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae with emphasis on minimum inhibitory concentration of flomoxef: A retrospective study. Int. J. Antimicrob. Agents 2015, 46, 610–615. [Google Scholar]
- Doi, A.; Shimada, T.; Harada, S.; Iwata, K.; Kamiya, T. The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int. J. Infect. Dis. 2013, 17, e159–e163. [Google Scholar] [CrossRef] [Green Version]
- Fukuchi, T.; Iwata, K.; Kobayashi, S.; Nakamura, T.; Ohji, G. Cefmetazole for bacteremia caused by ESBL-producing enterobacteriaceae comparing with carbapenems. BMC. Infect. Dis. 2016, 16, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mawatari, M.; Hayakawa, K.; Fujiya, Y.; Yamamoto, K.; Kutsuna, S.; Takeshita, N.; Ohmagari, N. Bacteraemic urinary tract infections in a tertiary hospital in Japan: The epidemiology of community-acquired infections and the role of non-carbapenem therapy. BMC. Res Notes. 2017, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Tatsumi, Y.M.; Wajima, T.; Nakamura, R.; Tsuji, M. Evaluation of antibacterial activities of flomoxef against ESBL producing Enterobacteriaceae analyzed by Monte Carlo simulation. Jpn. J. Antibiot. 2013, 66, 71–86. [Google Scholar]
- Hamada, Y.; Matsumura, Y.; Nagashima, M.; Akazawa, T.; Doi, Y.; Hayakawa, K. Retrospective evaluation of appropriate dosing of cefmetazole for invasive urinary tract infection due to extended-spectrum β-lactamase-producing Escherichia coli. J. Infect. Chemother. 2021, 27, 1602–1606. [Google Scholar] [CrossRef]
- Shionogi, Company Limited. Flumarin (Flomoxef for Injection) Prescribing Information. Available online: https://www.pmda.go.jp/PmdaSearch/iyakuDetail/340018_6133401F1027_1_17#HDR_ContraIndications (accessed on 22 February 2022).
- Tan, J.S.; Salstrom, S.J.; Signs, S.A.; Hoffman, H.E.; File, T.M. Pharmacokinetics of intravenous cefmetazole with emphasis on comparison between predicted theoretical levels in tissue and actual skin window fluid levels. Antimicrob. Agents Chemother. 1989, 33, 924–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunin, C.M.; Craig, W.A.; Kornguth, M.; Monson, R. Influence of binding on the pharmacologic activity of antibiotics. Ann. N. Y. Acad. Sci. 1973, 226, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.A.; Suh, B. Theory and practical impact of binding of antimicrobials to serum proteins and tissue. Scand. J. Infect. Dis. 1978, 14, 92–99. [Google Scholar]
- Schentag, J.J. Cefmetazole sodium: Pharmacology, pharmacokinetics, and clinical trials. Pharmacotherapy 1991, 11, 2–19. [Google Scholar]
- Andes, D.; Craig, W.A. Treatment of infections with ESBL-producing organisms: Pharmacokinetic and pharmacodynamic considerations. Clin. Microbiol. Infect. 2005, 11, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashiro, S.; Hayashi, M.; Takemura, W.; Igarashi, Y.; Liu, X.; Mizukami, Y.; Kojima, N.; Enoki, Y.; Taguchi, K.; Yokoyama, Y.; et al. Pharmacokinetics/Pharmacodynamics Evaluation of Flomoxef against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli In Vitro and In Vivo in a Murine Thigh Infection Model. Pharm. Res. 2021, 38, 27–35. [Google Scholar] [CrossRef]
- Hamada, T.; Ueta, E.; Kodama, H.; Osaki, T. The excretion of cephem antibiotics into saliva is inversely associated with their plasma protein-binding activities. J. Oral. Pathol. Med. 2002, 31, 109–116. [Google Scholar] [CrossRef]
- Takesue, Y.; Kusachi, S.; Mikamo, H.; Sato, J.; Watanabe, A.; Kiyota, H.; Iwata, S.; Kaku, M.; Hanaki, H.; Sumiyama, Y.; et al. Antimicrobial susceptibility of pathogens isolated from surgical site infections in Japan: Comparison of data from nationwide surveillance studies conducted in 2010 and 2014–2015. J. Infect. Chemother. 2017, 23, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Nakai, H.; Hagihara, M.; Kato, H.; Hirai, J.; Nishiyama, N.; Koizumi, Y.; Sakanashi, D.; Suematsu, H.; Yamagishi, Y.; Mikamo, H. Prevalence and risk factors of infections caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. J. Infect. Chemother. 2016, 22, 319–326. [Google Scholar] [CrossRef]
- Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell'Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics 2021, 10, 1311. [Google Scholar] [CrossRef]
- Hamada, Y.; Ebihara, F.; Kikuchi, K. A Strategy for Hospital Pharmacists to Control Antimicrobial Resistance (AMR) in Japan. Antibiotics 2021, 10, 1284. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, A.; Nakamura, T.; Komatsu, T.; Inano, H.; Kondo, R.; Watanabe, M.; Atsuda, K. Optimal dosage of cefmetazole for intraoperative antimicrobial prophylaxis in patients undergoing surgery for colorectal cancer. J. Pharm. Health. Care. Sci. 2017, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.A. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 1998, 26, 1–12. [Google Scholar] [CrossRef]
- Craig, W.A. Dose the dose matter? Clin. Infect. Dis. 2001, 33, 233–237. [Google Scholar] [CrossRef] [PubMed]
Cefmetazole | 1-Compartment Model | Final Model | |
Pharmacokinetic Parameters | |||
CL (L/h) = 0.0704 × CCR | |||
Vd (L) = 0.163 × BW | |||
Variability | |||
ωCL (%) = 21.0 | |||
ωVd (%) = 8.4 | |||
σ (%) = 13.5 | |||
Flomoxef | 2-Compartment Model | Final Model | |
Pharmacokinetic Parameters | |||
Vc (L) = 7.14 | |||
K10 (h−1) = 2.12 | |||
K12 (h−1) = 2.45 | |||
K21 (h−1) = 2.57 | |||
Variability | |||
ωVc (%) = 20.0 | |||
ωK10 (%) = 20.0 | |||
ωK12 (%) = 20.0 | |||
ωK21 (%) = 20.0 |
Dose (1 h Infusion) | Cefmetazole PK/PD Breakpoint (mg/L) | ||||
mL/min | CCR 10 | CCR30 | CCR 50 | CCR70 | |
500 mg | q12 | 16 | 4 | 1 | 0.125 |
1000 mg | 32 | 8 | 2 | 0.25 | |
500 mg | q8 | 16 | 8 | 2 | 1 |
1000 mg | 32 | 16 | 4 | 2 | |
500 mg | q6 | 32 | 16 | 4 | 2 |
1000 mg | 64 | 32 | 8 | 4 | |
Dose (1 h Infusion) | Flomoxef PK/PD Breakpoint (mg/L) | ||||
mL/min | CCR 10 | CCR30 | CCR 50 | CCR70 | |
500 mg | q12 | 8 | 0.5 | 0.125 | <0.0625 |
1000 mg | 16 | 1 | 0.125 | <0.0625 | |
500 mg | q8 | 8 | 2 | 0.5 | <0.0625 |
1000 mg | 16 | 4 | 1 | 0.0625 | |
500 mg | q6 | 8 | 4 | 1 | 0.25 |
1000 mg | 16 | 8 | 2 | 0.25 |
Pharmacokinetics Parameter Calculation Formula for Flomoxef by Renal Function; as a 1 h Infusion of Flomoxef 1 g | ||||
n | T1/2 (β) (h) | Model | ||
Healthy | 25 | 0.82 | CL (L/h) = Vc × K10 | |
Renal dysfunction | CL conversion formula | |||
5 ≦ CCR ≦ 20 | 4 | 6.95 | CL severe = CL healthy × (1/0.82)/6.95 | |
(severe) | ||||
20 < CCR ≦ 40 | 10 | 2.48 | CL mild = CL healthy × (1/0.82)/2.48 | |
(mild) | ||||
40 < CCR ≦ 70 | 10 | 1.57 | CL medium = CL healthy × (1/0.82)/1.57 | |
(medium) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamada, Y.; Kasai, H.; Suzuki-Ito, M.; Matsumura, Y.; Doi, Y.; Hayakawa, K. Pharmacokinetic/Pharmacodynamic Analysis and Dose Optimization of Cefmetazole and Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales in Patients with Invasive Urinary Tract Infection Considering Renal Function. Antibiotics 2022, 11, 456. https://doi.org/10.3390/antibiotics11040456
Hamada Y, Kasai H, Suzuki-Ito M, Matsumura Y, Doi Y, Hayakawa K. Pharmacokinetic/Pharmacodynamic Analysis and Dose Optimization of Cefmetazole and Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales in Patients with Invasive Urinary Tract Infection Considering Renal Function. Antibiotics. 2022; 11(4):456. https://doi.org/10.3390/antibiotics11040456
Chicago/Turabian StyleHamada, Yukihiro, Hidefumi Kasai, Moeko Suzuki-Ito, Yasufumi Matsumura, Yohei Doi, and Kayoko Hayakawa. 2022. "Pharmacokinetic/Pharmacodynamic Analysis and Dose Optimization of Cefmetazole and Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales in Patients with Invasive Urinary Tract Infection Considering Renal Function" Antibiotics 11, no. 4: 456. https://doi.org/10.3390/antibiotics11040456
APA StyleHamada, Y., Kasai, H., Suzuki-Ito, M., Matsumura, Y., Doi, Y., & Hayakawa, K. (2022). Pharmacokinetic/Pharmacodynamic Analysis and Dose Optimization of Cefmetazole and Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales in Patients with Invasive Urinary Tract Infection Considering Renal Function. Antibiotics, 11(4), 456. https://doi.org/10.3390/antibiotics11040456