Impacts of NaHCO3 on β-Lactam Binding to PBP2a Protein Variants Associated with the NaHCO3-Responsive versus NaHCO3-Non-Responsive Phenotypes
Abstract
:1. Introduction
2. Results
2.1. Bocillin-FL Binding to Purified PBP2a
2.2. Bocillin-FL Binding to Whole JE2 and COL Cells by Flow Cytometry
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Isolation of Purified PBP2a: Plasmid Construction
4.3. Isolation of Purified PBP2a: Overexpression and Purification of S. aureus PBP2a246E and PBP2a246G
4.4. Construction of JE2 and COL mecA 246-Residue Point Mutation Strains
4.5. Bocillin-FL Binding to Purified PBP2a and β-Lactam Competition Studies
4.6. Bocillin-FL Binding to Whole Cells by Flow Cytometry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dien Bard, J.; Hindler, J.A.; Gold, H.S.; Limbago, B. Rationale for eliminating Staphylococcus breakpoints for β-lactam agents other than penicillin, oxacillin or cefoxitin, and ceftaroline. Clin. Infect. Dis. 2014, 58, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, H.; Aires-de-Sousa, M.; Boyce, J.; Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 2006, 368, 874–885. [Google Scholar] [CrossRef] [Green Version]
- Chambers, H.F.; Sachdeva, M.; Kennedy, S. Binding affinity for penicillin-binding protein 2a correlates with in vivo activity of β-Lactam antibiotics against methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 1990, 162, 705–710. [Google Scholar] [CrossRef]
- Chambers, H.F.; Sachdeva, M. Binding of β-lactam antibiotics to penicillin-binding proteins in methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 1990, 161, 1170–1176. [Google Scholar] [CrossRef]
- Ersoy, S.C.; Abdelhady, W.; Li, L.; Chambers, H.F.; Xiong, Y.Q.; Bayer, A.S. Bicarbonate resensitization of methicillin-resistant Staphylococcus aureus to β-Lactam antibiotics. Antimicrob. Agents Chemother. 2019, 63, e00496-19. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, S.C.; Otmishi, M.; Milan, V.T.; Li, L.; Pak, Y.; Mediavilla, J.; Chen, L.; Kreiswirth, B.; Chambers, H.F.; Proctor, R.A. Scope and Predictive Genetic/Phenotypic Signatures of ‘Bicarbonate [NaHCO3]-Responsiveness’ and β-Lactam Sensitization Among Methicillin- Resistant Staphylococcus aureus (MRSA). Antimicrob. Agents Chemother. 2020, 64, e02445-19. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, S.C.; Heithoff, D.M.; Barnes, L.T.; Tripp, G.K.; House, J.K.; Marth, J.D.; Smith, J.W.; Mahan, M.J. Correcting a fundamental flaw in the paradigm for antimicrobial susceptibility testing. EBioMedicine 2017, 20, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, S.C.; Chambers, H.F.; Proctor, R.A.; Rosato, A.E.; Mishra, N.N.; Xiong, Y.Q.; Bayer, A.S. Impact of bicarbonate on PBP2a production, maturation, and functionality in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2021, 65, e02621-20. [Google Scholar] [CrossRef]
- Ersoy, S.C.; Rose, W.E.; Patel, R.; Proctor, R.A.; Chambers, H.F.; Harrison, E.M.; Pak, Y.; Bayer, A.S. A Combined Phenotypic-Genotypic Predictive Algorithm for In Vitro Detection of Bicarbonate: β-Lactam Sensitization among Methicillin-Resistant Staphylococcus aureus (MRSA). Antibiotics 2021, 10, 1089. [Google Scholar] [CrossRef]
- Rose, W.E.; Bienvenida, A.M.; Xiong, Y.Q.; Chambers, H.F.; Bayer, A.S.; Ersoy, S.C. Ability of bicarbonate supplementation to sensitize selected methicillin-resistant Staphylococcus aureus (MRSA) strains to β-Lactam antibiotics in an ex vivo simulated endocardial vegetation model. Antimicrob. Agents Chemother. 2020, 64, e02072-19. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, S.C.; Hanson, B.M.; Proctor, R.A.; Arias, C.A.; Tran, T.T.; Chambers, H.F.; Bayer, A.S. Impact of Bicarbonate-β-Lactam Exposures on Methicillin-Resistant Staphylococcus aureus (MRSA) Gene Expression in Bicarbonate-β-Lactam-Responsive vs. Non-Responsive Strains. Genes 2021, 12, 1650. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.M.; Ba, X.; Coll, F.; Blane, B.; Restif, O.; Carvell, H.; Köser, C.U.; Jamrozy, D.; Reuter, S.; Lovering, A. Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nat. Microbiol. 2019, 4, 1680–1691. [Google Scholar] [CrossRef] [Green Version]
- Fey, P.D.; Endres, J.L.; Yajjala, V.K.; Widhelm, T.J.; Boissy, R.J.; Bose, J.L.; Bayles, K.W. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 2013, 4, e00537-12. [Google Scholar] [CrossRef] [Green Version]
- Jousselin, A.; Manzano, C.; Biette, A.; Reed, P.; Pinho, M.; Rosato, A.; Kelley, W.L.; Renzoni, A. The Staphylococcus aureus chaperone PrsA is a new auxiliary factor of oxacillin resistance affecting penicillin-binding protein 2A. Antimicrob. Agents Chemother. 2015, 60, 1656–1666. [Google Scholar] [CrossRef] [Green Version]
- Renzoni, A.; Kelley, W.L.; Rosato, R.R.; Martinez, M.P.; Roch, M.; Fatouraei, M.; Haeusser, D.P.; Margolin, W.; Fenn, S.; Turner, R.D.; et al. Molecular bases determining daptomycin resistance-mediated resensitization to β-lactams (seesaw effect) in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2017, 61, e01634-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.H.; Li, C.C.; Shu, J.C.; Chu, H.W.; Liu, C.C.; Wu, C.C. Exoproteome profiling reveals the involvement of the foldase PrsA in the cell surface properties and pathogenesis of Staphylococcus aureus. Proteomics 2018, 18, 1700195. [Google Scholar] [CrossRef]
- de Carvalho, C.C.; Taglialegna, A.; Rosato, A.E. Impact of PrsA on membrane lipid composition during daptomycin-resistance-mediated β-lactam sensitization in clinical MRSA strains. J. Antimicrob. Chemother. 2022, 77, 135–147. [Google Scholar] [CrossRef]
- Fan, S.-H.; Ebner, P.; Reichert, S.; Hertlein, T.; Zabel, S.; Lankapalli, A.K.; Nieselt, K.; Ohlsen, K.; Götz, F. MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels. Nat. Commun. 2019, 10, 3627. [Google Scholar] [CrossRef]
- Otero, L.H.; Rojas-Altuve, A.; Llarrull, L.I.; Carrasco-López, C.; Kumarasiri, M.; Lastochkin, E.; Fishovitz, J.; Dawley, M.; Hesek, D.; Lee, M. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl. Acad. Sci. USA 2013, 110, 16808–16813. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, V.; Serrano, L. Elucidating the Folding Problem of Helical Peptides using Empirical Parameters. III> Temperature and pH Dependence. J. Mol. Biol. 1995, 245, 297–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roch, M.; Lelong, E.; Panasenko, O.O.; Sierra, R.; Renzoni, A.; Kelley, W.L. Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for Staphylococcus aureus MRSA β-lactam resistance. Commun. Biol. 2019, 2, 417. [Google Scholar] [CrossRef] [PubMed]
- Farha, M.A.; French, S.; Stokes, J.M.; Brown, E.D. Bicarbonate alters bacterial susceptibility to antibiotics by targeting the proton motive force. ACS Infect. Dis. 2017, 4, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Mahasenan, K.V.; Molina, R.; Bouley, R.; Batuecas, M.T.; Fisher, J.F.; Hermoso, J.A.; Chang, M.; Mobashery, S. Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. J. Am. Chem. Soc. 2017, 139, 2102–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuda, C.; Hesek, D.; Lee, M.; Morio, K.-I.; Nowak, T.; Mobashery, S. Activation for Catalysis of Penicillin-Binding Protein 2a from Methicillin-Resistant Staphylococcus a Ureus by Bacterial Cell Wall. J. Am. Chem. Soc. 2005, 127, 2056–2057. [Google Scholar] [CrossRef]
- Meisel, J.E.; Fisher, J.F.; Chang, M.; Mobashery, S. Allosteric inhibition of bacterial targets: An opportunity for discovery of novel antibacterial classes. In Antibacterials; Springer International Publishing: Cham, Switzerland, 2018; pp. 119–147. [Google Scholar]
- Fishovitz, J.; Rojas-Altuve, A.; Otero, L.H.; Dawley, M.; Carrasco-López, C.; Chang, M.; Hermoso, J.A.; Mobashery, S. Disruption of allosteric response as an unprecedented mechanism of resistance to antibiotics. J. Am. Chem. Soc. 2014, 136, 9814–9817. [Google Scholar] [CrossRef] [Green Version]
- Cockerill, F.R. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012. [Google Scholar]
- Weinstein, M.P.; Patel, J.B.; Campeau, S.; Eliopoulos, G.M.; Galas, M.F.; Humphries, R.M.; Jenkins, S.G.; Lewis, J.S., II; Limbago, B.; Mathers, A.J.; et al. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018. [Google Scholar]
- Kim, S.; Reyes, D.; Beaume, M.; Francois, P.; Cheung, A. Contribution of teg49 small RNA in the 5′ upstream transcriptional region of sarA to virulence in Staphylococcus aureus. Infect. Immun. 2014, 82, 4369–4379. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, M.; Chastanet, A.; Débarbouillé, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 2004, 70, 6887–6891. [Google Scholar] [CrossRef] [Green Version]
- Monk, I.R.; Tree, J.J.; Howden, B.P.; Stinear, T.P.; Foster, T.J. Complete bypass of restriction systems for major Staphylococcus aureus lineages. MBio 2015, 6, e00308-15. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Meier, T.I.; Kahl, S.D.; Gee, K.R.; Blaszczak, L.C. Bocillin-FL, a sensitive commercially available reagent for detection of penicillin-binding proteins. Antimicrob. Agents Chemother. 1999, 43, 1124–1128. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ersoy, S.C.; Chan, L.C.; Yeaman, M.R.; Chambers, H.F.; Proctor, R.A.; Ludwig, K.C.; Schneider, T.; Manna, A.C.; Cheung, A.; Bayer, A.S. Impacts of NaHCO3 on β-Lactam Binding to PBP2a Protein Variants Associated with the NaHCO3-Responsive versus NaHCO3-Non-Responsive Phenotypes. Antibiotics 2022, 11, 462. https://doi.org/10.3390/antibiotics11040462
Ersoy SC, Chan LC, Yeaman MR, Chambers HF, Proctor RA, Ludwig KC, Schneider T, Manna AC, Cheung A, Bayer AS. Impacts of NaHCO3 on β-Lactam Binding to PBP2a Protein Variants Associated with the NaHCO3-Responsive versus NaHCO3-Non-Responsive Phenotypes. Antibiotics. 2022; 11(4):462. https://doi.org/10.3390/antibiotics11040462
Chicago/Turabian StyleErsoy, Selvi C., Liana C. Chan, Michael R. Yeaman, Henry F. Chambers, Richard A. Proctor, Kevin C. Ludwig, Tanja Schneider, Adhar C. Manna, Ambrose Cheung, and Arnold S. Bayer. 2022. "Impacts of NaHCO3 on β-Lactam Binding to PBP2a Protein Variants Associated with the NaHCO3-Responsive versus NaHCO3-Non-Responsive Phenotypes" Antibiotics 11, no. 4: 462. https://doi.org/10.3390/antibiotics11040462
APA StyleErsoy, S. C., Chan, L. C., Yeaman, M. R., Chambers, H. F., Proctor, R. A., Ludwig, K. C., Schneider, T., Manna, A. C., Cheung, A., & Bayer, A. S. (2022). Impacts of NaHCO3 on β-Lactam Binding to PBP2a Protein Variants Associated with the NaHCO3-Responsive versus NaHCO3-Non-Responsive Phenotypes. Antibiotics, 11(4), 462. https://doi.org/10.3390/antibiotics11040462