Alternative Pathways to Ciprofloxacin Resistance in Neisseria gonorrhoeae: An In Vitro Study of the WHO-P and WHO-F Reference Strains
Abstract
:1. Introduction
2. Methods
2.1. WHO-Reference Strains, Genetic Characteristics and Comparative Genomics
2.2. Plating Experiment and MIC Determination
2.3. Whole-Genome Sequencing (WGS) and SNP Analysis
2.4. Statistical Analysis
3. Results
3.1. Association of WHO-F and WHO-P and Ciprofloxacin MICs
3.2. In-Vitro Selection of Ciprofloxacin Resistance in WHO-F and WHO-P
3.3. Mutations in Fluoroquinolone Target Genes (gyrA, gyrB, parC and parE)—GyrA S91F Pathway Is Associated with Higher Ciprofloxacin MICs
- I.
- WHO-F
- (a)
- WHO-F1 & WHO-F3: WHO-F1 and WHO-F3 acquired the GyrA-D95N substitution at days 5 (~120 generations) and 6 (~144 generations), respectively (MIC−0.032 mg/L). The highest MICs attained by these clones was 0.125 mg/L.
- (b)
- WHO-F2: WHO-F2 acquired the S91Y substitution in the quinolone resistance-determining regions (QRDR) in GyrA at day 2 (~48 generations, MIC−0.064 mg/L) which was followed by additional substitutions in GyrA-D95N (MIC−0.38 mg/L; Day-13 and MIC−12 mg/L; Day-18) and ParC- E91K (MIC−12 mg/L; Day 18).
- II.
- WHO-P
- (a)
- WHO-P1: An insertion in GyrB (S467_G468ins) emerged by day 2 in WHO-P1 (MIC−0.008 mg/L) and persisted till day 3 (MIC−0.012 mg/L). On day 6, WHO-P1 acquired the D95N substitution in GyrA, and its MIC increased to 0.125 mg/L, which was the highest MIC attained by WHO-P1.
- (b)
- WHO-P2 & WHO-P3: The WHO-P2 and WHO-P3 clones acquired the GyrA-S91F substitution by day 2 (MIC−0.125 mg/L), followed by substitutions in ParC (ParC-D86N substitution in WHO-P2 by day 16 [MIC 4 mg/L] and ParC-R537L substitution outside the QRDR at day 11 [MIC−0.125 mg/L]). WHO-P2 and WHO-P3 attained higher MICs (4 mg/L and 32 mg/L, respectively) than WHO-P1 (0.125 mg/L).
3.4. Mutations in gyrB, uvrA and rne Frequently Occurred in WHO-F Strains, Whereas Mutations in yhgF, porB and potA Occurred in WHO-P during the Selection for Ciprofloxacin Resistance
3.4.1. Mutations in gyrB, uvrA and rne in WHO-F
3.4.2. Mutations in lldD, porB, potA and yhgF in WHO-P
3.5. Other Mutations
3.6. Genetic Characterization of Relevant Genes (potA, rne, uvrA and yhgf) in the Genomes of WHO-F and WHO-P
3.7. gyrB, parC, porB and yhgF Mutations in the GLOBAL Collection
4. Discussion
4.1. Pathway Specific Differences
4.2. Strain-Specific Differences
4.3. gyrB, uvrA and rne Mutations Detected in WHO-F
4.4. yhgF, porB and potA Mutations Detected in WHO-P
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Unemo, M.; Bradshaw, C.S.; Hocking, J.S.; de Vries, H.J.C.; Francis, S.C.; Mabey, D.; Marrazzo, J.M.; Sonder, G.J.B.; Schwebke, J.R.; Hoornenborg, E.; et al. Sexually transmitted infections: Challenges ahead. Lancet Infect. Dis. 2017, 17, e235–e279. [Google Scholar] [CrossRef]
- Allan-Blitz, L.-T.; Humphries, R.M.; Hemarajata, P.; Bhatti, A.; Pandori, M.W.; Siedner, M.J.; Klausner, J.D. Implementation of a Rapid Genotypic Assay to Promote Targeted Ciprofloxacin Therapy of Neisseria gonorrhoeae in a Large Health System. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017, 64, 1268–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belland, R.J.; Morrison, S.G.; Ison, C.; Huang, W.M. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol. Microbiol. 1994, 14, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Piddock, L.J. Mechanisms of fluoroquinolone resistance: An update 1994–1998. Drugs 1999, 58 (Suppl. 2), 11–18. [Google Scholar] [CrossRef]
- Alcalá, B.; Arreaza, L.; Salcedo, C.; Antolín, I.; Borrell, N.; Cacho, J.; Cuevas, C.D.L.; Otero, L.; Sauca, G.; Vázquez, F.; et al. Molecular characterization of ciprofloxacin resistance of gonococcal strains in Spain. Sex. Transm. Dis. 2003, 30, 395–398. [Google Scholar] [CrossRef]
- Bodoev, I.N.; Il’ina, E.N. Molecular mechanisms of formation of drug resistance in Neisseria gonorrhoeae: History and prospects. Mol. Genet. Microbiol. Virol. 2015, 30, 132–140. [Google Scholar] [CrossRef]
- Kenyon, C.; Buyze, J.; Wi, T. Antimicrobial Consumption and Susceptibility of Neisseria gonorrhoeae: A Global Ecological Analysis. Front. Med. 2018, 5, 329. [Google Scholar] [CrossRef]
- Kenyon, C.; Laumen, J.; Van Dijck, C.; De Baetselier, I.; Abdelatti, S.; Manoharan-Basil, S.S.; Unemo, M. Gonorrhoea treatment combined with population-level general cephalosporin and quinolone consumption may select for Neisseria gonorrhoeae antimicrobial resistance at the levels of NG-MAST genogroup: An ecological study in Europe. J. Glob. Antimicrob. Resist. 2020, 23, 377–384. [Google Scholar] [CrossRef]
- Castro, R.A.D.; Ross, A.; Kamwela, L.; Reinhard, M.; Loiseau, C.; Feldmann, J.; Borrell, S.; Trauner, A.; Gagneux, S. The Genetic Background Modulates the Evolution of Fluoroquinolone-Resistance in Mycobacterium tuberculosis. Mol. Biol. Evol. 2020, 37, 195–207. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Miyajima, F.; Roberts, P.; Ellison, L.; Pickard, D.J.; Martin, M.J.; Connor, T.; Harris, S.; Fairley, D.; Bamford, K.B.; et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 2013, 45, 109–113. [Google Scholar] [CrossRef]
- Holden, M.T.G.; Hsu, L.Y.; Kurt, K.; Weinert, L.A.; Mather, A.E.; Harris, S.R.; Strommenger, B.; Layer, F.; Witte, W.; de Lencastre, H.; et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013, 23, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Manoharan-Basil, S.S.; González, N.; Laumen, J.G.E.; Kenyon, C. Horizontal gene transfer of fluoroquinolone resistance-conferring genes from commensal Neisseria to Neisseria gonorrhoeae: A global phylogenetic analysis of 20,047 isolates. Front. Microbiol. 2022, 13, 793612. [Google Scholar] [CrossRef]
- Unemo, M.; Golparian, D.; Sánchez-Busó, L.; Grad, Y.; Jacobsson, S.; Ohnishi, M.; Lahra, M.M.; Limnios, A.; Sikora, A.E.; Wi, T.; et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: Phenotypic, genetic and reference genome characterization. J. Antimicrob. Chemother. 2016, 71, 3096–3108. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; Machado, M.P.; Silva, D.N.; Rossi, M.; Moran-Gilad, J.; Santos, S.; Ramirez, M.; Carriço, J.A. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb. Genom. 2018, 4, e000166. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. Grapetree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Busó, L.; Yeats, C.A.; Taylor, B.; Goater, R.J.; Underwood, A.; Abudahab, K.; Argimón, S.; Ma, K.C.; Mortimer, T.D.; Golparian, D.; et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med. 2021, 13, 61. [Google Scholar] [CrossRef]
- Dillard, J.P. Genetic Manipulation of Neisseria gonorrhoeae. Curr. Protoc. Microbiol. 2021, 23, Unit4A.2. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. 2015. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 14 March 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Shovill. 2019. Available online: https://github.com/tseemann/shovill (accessed on 14 March 2022).
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Snippy-Rapid Haploid Variant Calling and Core Genome Alignment. 2015. Available online: https://github.com/tseemann/snippy (accessed on 14 March 2022).
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.M.; Harold, L.K.; Almeida, D.V.; Afriat-Jurnou, L.; Aung, H.L.; Forde, B.M.; Hards, K.; Pidot, S.J.; Ahmed, F.H.; Mohamed, A.E.; et al. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathog. 2020, 16, e1008287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindbäck, E.; Rahman, M.; Jalal, S.; Wretlind, B. Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. APMIS 2002, 110, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392. [Google Scholar] [CrossRef]
- Cirz, R.T.; Jones, M.B.; Gingles, N.A.; Minogue, T.D.; Jarrahi, B.; Peterson, S.N.; Romesberg, F.E. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J. Bacteriol. 2007, 189, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Au, N.; Kuester-Schoeck, E.; Mandava, V.; Bothwell, L.E.; Canny, S.P.; Chachu, K.; Colavito, S.A.; Fuller, S.N.; Groban, E.S.; Hensley, L.A.; et al. Genetic composition of the Bacillus subtilis SOS system. J. Bacteriol. 2005, 187, 7655–7666. [Google Scholar] [CrossRef] [Green Version]
- Courcelle, J.; Khodursky, A.; Peter, B.; Brown, P.O.; Hanawalt, P.C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 2001, 158, 41–64. [Google Scholar] [CrossRef]
- Manasherob, R.; Miller, C.; Kim, K.; Cohen, S.N. Ribonuclease E modulation of the bacterial SOS response. PLoS ONE 2012, 7, e38426. [Google Scholar] [CrossRef]
- Byrne, R.T.; Chen, S.; Wood, E.A.; Cabot, E.L.; Cox, M.M. Escherichia coli Genes and Pathways Involved in Surviving Extreme Exposure to Ionizing Radiation. J. Bacteriol. 2014, 196, 3534–3545. [Google Scholar] [CrossRef] [Green Version]
- Gagarinova, A.; Stewart, G.; Samanfar, B.; Phanse, S.; White, C.A.; Aoki, H.; Deineko, V.; Beloglazova, N.; Yakunin, A.F.; Golshani, A.; et al. Systematic Genetic Screens Reveal the Dynamic Global Functional Organization of the Bacterial Translation Machinery. Cell Rep. 2016, 17, 904–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, J.E.; Kaufmann-Malaga, B.B.; Wivagg, C.N.; Kim, P.B.; Silvis, M.R.; Renedo, N.; Ioerger, T.R.; Ahmad, R.; Livny, J.; Fishbein, S.; et al. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment. Elife 2017, 6, e20420. [Google Scholar] [CrossRef] [Green Version]
- Giles, J.A.; Falconio, J.; Yuenger, J.D.; Phanse, S.; White, C.A.; Aoki, H.; Deineko, V.; Beloglazova, N.; Yakunin, A.F.; Golshani, A.; et al. Quinolone resistance-determining region mutations and por type of Neisseria gonorrhoeae isolates: Resistance surveillance and typing by molecular methodologies. J. Infect. Dis. 2004, 189, 2085–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesky, M.; Hobbs, M.; Nicholas, R.A. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2002, 46, 2811–2820. [Google Scholar] [CrossRef] [Green Version]
- Tkachenko, A.G.; Nesterova, L.Y. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry 2003, 68, 850–856. [Google Scholar] [CrossRef]
- Tenaillon, O.; Rodríguez-Verdugo, A.; Gaut, R.L.; McDonald, P.; Bennett, A.F.; Long, A.D.; Gaut, B.S. The molecular diversity of adaptive convergence. Science 2012, 335, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, M.; Kashiwagi, K.; Shigemasa, A.; Taniguchi, S.; Yamamoto, K.; Makinoshima, H.; Ishihama, A.; Igarashi, K. A Unifying Model for the Role of Polyamines in Bacterial Cell Growth, the Polyamine Modulon. J. Biol. Chem. 2004, 279, 46008–46013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, K.; Kashiwagi, K. Polyamine transport in bacteria and yeast. Biochem. J. 1999, 344 Pt 3, 633–642. [Google Scholar] [CrossRef]
- Ibacache-Quiroga, C.; Oliveros, J.C.; Couce, A.; Blázquez, J. Parallel Evolution of High-Level Aminoglycoside Resistance in Escherichia coli Under Low and High Mutation Supply Rates. Front. Microbiol. 2018, 9, 427. [Google Scholar] [CrossRef]
WHO Reference Strains | CIP MIC (mg/L) | Total No. of Passages | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WHO-F1 | 0.004 | X | X | X | X | 0.032 | 0.032 | 0.047 | X | 0.047 | X | 0.125 | * | 5 | ||||||||
WHO-F2 | 0.004 | 0.064 | X | X | 0.064 | 0.064 | X | 0.094 | X | 0.094 | X | X | 0.38 | X | 0.75 | 4 | X | 12 | * | 9 | ||
WHO-F3 | 0.004 | 0.006 | X | X | 0.047 | 0.032 | X | 0.064 | X | X | 0.125 | * | 5 | |||||||||
WHO-P1 | 0.004 | 0.008 | X | X | 0.012 | 0.125 | * | 3 | ||||||||||||||
WHO-P2 | 0.004 | 0.125 | X | X | 0.125 | 0.25 | X | 1.5 | 1 | X | 1.5 | X | X | X | X | 4 | * | 7 | ||||
WHO-P3 | 0.004 | 0.125 | X | X | 0.125 | X | 0.5 | X | X | X | 2 | 4 | 4 | X | X | 16 | X | 32 | X | X | 32 | 9 |
Days | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, N.; Abdellati, S.; De Baetselier, I.; Laumen, J.G.E.; Van Dijck, C.; de Block, T.; Kenyon, C.; Manoharan-Basil, S.S. Alternative Pathways to Ciprofloxacin Resistance in Neisseria gonorrhoeae: An In Vitro Study of the WHO-P and WHO-F Reference Strains. Antibiotics 2022, 11, 499. https://doi.org/10.3390/antibiotics11040499
González N, Abdellati S, De Baetselier I, Laumen JGE, Van Dijck C, de Block T, Kenyon C, Manoharan-Basil SS. Alternative Pathways to Ciprofloxacin Resistance in Neisseria gonorrhoeae: An In Vitro Study of the WHO-P and WHO-F Reference Strains. Antibiotics. 2022; 11(4):499. https://doi.org/10.3390/antibiotics11040499
Chicago/Turabian StyleGonzález, Natalia, Saïd Abdellati, Irith De Baetselier, Jolein Gyonne Elise Laumen, Christophe Van Dijck, Tessa de Block, Chris Kenyon, and Sheeba Santhini Manoharan-Basil. 2022. "Alternative Pathways to Ciprofloxacin Resistance in Neisseria gonorrhoeae: An In Vitro Study of the WHO-P and WHO-F Reference Strains" Antibiotics 11, no. 4: 499. https://doi.org/10.3390/antibiotics11040499
APA StyleGonzález, N., Abdellati, S., De Baetselier, I., Laumen, J. G. E., Van Dijck, C., de Block, T., Kenyon, C., & Manoharan-Basil, S. S. (2022). Alternative Pathways to Ciprofloxacin Resistance in Neisseria gonorrhoeae: An In Vitro Study of the WHO-P and WHO-F Reference Strains. Antibiotics, 11(4), 499. https://doi.org/10.3390/antibiotics11040499