Cefazolin Might Be Adequate for Perioperative Antibiotic Prophylaxis in Intra-Abdominal Infections without Sepsis: A Quality Improvement Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Patients
2.3. Statistical Analysis
3. Results
3.1. Changes in Perioperative Antibiotic Prophylaxis and Postoperative Treatment
3.2. Patient Characteristics and Intraoperative Findings
3.3. Characteristics after Propensity Score Matching
3.4. Antibiotic Therapy and Microbiology Findings
3.5. Postoperative Outcome
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robert, J.; Péan, Y.; Varon, E.; Bru, J.P.; Bedos, J.P.; Bertrand, X.; Lepape, A.; Stahl, J.P.; Gauzit, R. Point prevalence survey of antibiotic use in French hospitals in 2009. J. Antimicrob. Chemother. 2012, 67, 1020–1026. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F.; Erntell, M.; Goossens, H.; Davey, P. The European surveillance of antimicrobial consumption (ESAC) point-prevalence survey of antibacterial use in 20 European hospitals in 2006. Clin. Infect. Dis. 2009, 49, 1496–1504. [Google Scholar] [CrossRef]
- ECDC. Systematic Review and Evidence-Based Guidance on Perioperative Antibiotic Prophylaxis; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Houck, P.M. Surgical Infection Prevention Guideline Writers W. Antimicrobial prophylaxis for surgery: An advisory statement from the National Surgical Infection Prevention Project. Am. J. Surg. 2005, 189, 395–404. [Google Scholar] [CrossRef]
- Allegranzi, B.; Zayed, B.; Bischoff, P.; Kubilay, N.Z.; de Jonge, S.; de Vries, F.; Gomes, S.M.; Gans, S.; Wallert, E.D.; Wu, X.; et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e288–e303. [Google Scholar] [CrossRef]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg. Infect. (Larchmt) 2013, 14, 73–156. [Google Scholar] [CrossRef]
- Ierano, C.; Thursky, K.; Marshall, C.; Koning, S.; James, R.; Johnson, S.; Imam, N.; Worth, L.J.; Peel, T. Appropriateness of Surgical Antimicrobial Prophylaxis Practices in Australia. JAMA Netw. Open 2019, 2, e1915003. [Google Scholar] [CrossRef] [Green Version]
- Branch-Elliman, W.; O’Brien, W.; Strymish, J.; Itani, K.; Wyatt, C.; Gupta, K. Association of Duration and Type of Surgical Prophylaxis With Antimicrobial-Associated Adverse Events. JAMA Surg. 2019, 154, 590–598. [Google Scholar] [CrossRef]
- Hansen, S.; Sohr, D.; Piening, B.; Pena Diaz, L.; Gropmann, A.; Leistner, R.; Meyer, E.; Gastmeier, P.; Behnke, M. Antibiotic usage in German hospitals: Results of the second national prevalence study. J. Antimicrob. Chemother. 2013, 68, 2934–2939. [Google Scholar] [CrossRef] [Green Version]
- Bundesgesetzblatt. Gesetz zur Änderung des Infektionsschutzgesetzes und Weiterer Gesetze. Available online: https://www.bgbl.de (accessed on 20 August 2015).
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef]
- de With, K.; Wilke, K.; Kern, W.V.; Strauß4, R.; Kramme, E.; Friedrichs, A.; Holzmann, T.; Geiss, H.K.; Isner, C.; Fellhauer, M. AWMF-S3-Leitlinie Strategien zur Sicherung Rationaler Antibiotika-Anwendung im Krankenhaus. Updated 2018. Available online: https://www.awmf.org/leitlinien/detail/ll/092-001.html (accessed on 5 March 2019).
- NHSN. National Healthcare Safety Network (NHSN) Patient Safety Component Manuel. 2022. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf (accessed on 21 March 2022).
- Mu, Y.; Edwards, J.R.; Horan, T.C.; Berrios-Torres, S.I.; Fridkin, S.K. Improving risk-adjusted measures of surgical site infection for the national healthcare safety network. Infect. Control. Hosp. Epidemiol. 2011, 32, 970–986. [Google Scholar] [CrossRef]
- Surat, G.; Vogel, U.; Wiegering, A.; Germer, C.T.; Lock, J.F. Defining the Scope of Antimicrobial Stewardship Interventions on the Prescription Quality of Antibiotics for Surgical Intra-Abdominal Infections. Antibiotics 2021, 10, 73. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am. J. Infect. Control 1999, 27, 97–132. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Surat, G.; Meyer-Sautter, P.; Rusch, J.; Braun-Feldweg, J.; Germer, C.T.; Lock, J.F. Retrospective Cohort Analysis of the Effect of Antimicrobial Stewardship on Postoperative Antibiotic Therapy in Complicated Intra-Abdominal Infections: Short-Course Therapy Does Not Compromise Patients’ Safety. Antibiotics 2022, 11, 120. [Google Scholar] [CrossRef]
- Nelson, R.L.; Gladman, E.; Barbateskovic, M. Antimicrobial prophylaxis for colorectal surgery. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: New York, NY, USA, 2014. [Google Scholar]
- Johns Hopkins ABX Guide. Available online: https://www.hopkinsguides.com/hopkins/index/Johns_Hopkins_ABX_Guide/Antibiotics/Antibacterial/Cephalosporins (accessed on 21 March 2022).
- Cassier, P.; Lallechere, S.; Aho, S.; Astruc, K.; Neuwirth, C.; Piroth, L.; Chavanet, P. Cephalosporin and fluoroquinolone combinations are highly associated with CTX-M β-lactamase-producing Escherichia coli: A case-control study in a French teaching hospital. Clin. Microbiol. Infect. 2011, 17, 1746–1751. [Google Scholar] [CrossRef] [Green Version]
- Versporten, A.; Zarb, P.; Caniaux, I.; Gros, M.F.; Drapier, N.; Miller, M.; Jarlier, V.; Nathwani, D.; Goossens, H.; Koraqi, A.; et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: Results of an internet-based global point prevalence survey. Lancet Glob. Health 2018, 6, e619–e629. [Google Scholar] [CrossRef] [Green Version]
- Rangel, S.J.; Islam, S.; Peter, S.D.S.; Goldin, A.B.; Abdullah, F.; Downard, C.D.; Saito, J.M.; Blakely, M.L.; Puligandla, P.S.; Dasgupta, R.; et al. Prevention of infectious complications after elective colorectal surgery in children: An American Pediatric Surgical Association Outcomes and Clinical Trials Committee comprehensive review. J. Pediatr. Surg. 2015, 50, 192–200. [Google Scholar] [CrossRef]
- Meijer, W.S.; Schmitz, P.I.M.; Jeekel, J. Meta-analysis of randomized, controlled clinical trials of antibiotic prophylaxis in biliary tract surgery. Br. J. Surg. 2005, 77, 283–290. [Google Scholar] [CrossRef]
- Lumley, J.W.; Siu, S.K.; Rllay, S.P.; Stitz, R.; Kemp, R.J.; Faoagali, J.; Nathanson, L.K.; White, S. Single dose ceftriaxone as prophylaxis for sepsis in colorectal surgery. Aust. N. Z. J. Surg. 1992, 62, 292–296. [Google Scholar] [CrossRef]
- Jones, R.N.; Wojeski, W.; Bakke, J.; Porter, C.; Searles, M. Antibiotic prophylaxis of 1,036 patients undergoing elective surgical procedures. A prospective, randomized comparative trial of cefazolin, cefoxitin, and cefotaxime in a prepaid medical practice. Am. J. Surg. 1987, 153, 341–346. [Google Scholar] [CrossRef]
- Surat, G.; Bernsen, D.; Schimmer, C. Antimicrobial stewardship measures in cardiac surgery and its impact on surgical site infections. J. Cardiothorac. Surg. 2021, 16, 309. [Google Scholar] [CrossRef]
- Woodfield, J.C.; Beshay, N.; van Rij, A.M. A meta-analysis of randomized, controlled trials assessing the prophylactic use of ceftriaxone. A study of wound, chest, and urinary infections. World J. Surg. 2009, 33, 2538–2550. [Google Scholar] [CrossRef]
- Dietrich, E.S.; Bieser, U.; Frank, U.; Schwarzer, G.; Daschner, F.D. Ceftriaxone versus other cephalosporins for perioperative antibiotic prophylaxis: A meta-analysis of 43 randomized controlled trials. Chemotherapy 2002, 48, 49–56. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing; EUCAST. Updated January 2022. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 21 March 2022).
Total | Year | p Value | ||||
---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | |||
Perioperative antibiotic prophylaxis | 587 (100.0) | 140 (100.0) | 134 (100.0) | 169 (100.0) | 144 (100.0) | 1 |
CFZ | 367 (62.5) | 0 | 70 (52.2) | 155 (91.7) | 142 (98.6) | <0.001 |
CXM | 220 (37.5) | 140 (100.0) | 64 (47.8) | 14 (8.3) | 2 (1.4) | |
Postoperative antibiotic therapy | 168 (28.6) | 46 (32.9) | 40 (29.9) | 45 (26.6) | 37 (25.7) | 0.520 |
CFZ | 86 (14.6) | 0 | 12 (8.9) | 37 (21.9) | 37 (27.7) | <0.001 |
CXM | 82 (13.9) | 46 (32.9) | 28 (20.9) | 8 (4.7) | 0 |
Characteristic | Perioperative Antibiotic Prophylaxis | p Value | |
---|---|---|---|
CXM (n = 220) | CFZ (n = 367) | ||
Sex ratio (M:F) | 115:105 | 187:180 | 0.757 |
Age, years, mean (SD) | 49.8 (21.4) | 47.3 (20.0) | 0.189 |
BMI, mean (SD) | 26.6 (5.6) | 26.8 (6.6) | 0.571 |
ASA ≥ III | 51 (23.2) | 71 (19.3) | 0.338 |
Comorbidity a, mean (SD) | 1.9 (2.3) | 1.6 (2.4) | 0.072 |
None (CCI: 0 pts.) | 100 (45.5) | 188 (51.2) | 0.066 |
Low (CCI: 1–2 pts.) | 42 (19.1) | 85 (23.2) | |
Moderate (CCI: 3–4 pts.) | 44 (20.0) | 46 (12.5) | |
Severe (CCI: >4 pts.) | 34 (15.5) | 48 (13.1) | |
Liver Cirrhosis | 0 | 4 (1.1) | 0.121 |
Chronic Kidney Disease | 16 (7.3) | 18 (4.9) | 0.235 |
Current Immunosuppressive Drugs | 5 (2.3) | 16 (4.4) | 0.188 |
Malignant Tumor Disease | 16 (7.3) | 25 (6.8) | 0.832 |
Preoperative known MDR | 2 (0.9) | 15 (4.1) | 0.026 |
VRE | 0 | 8 (2.2) | |
3MRGN | 2 (0.9) | 5 (1.4) | |
multiple | 0 | 2 (0.5) | |
Focus IAIs | <0.001 | ||
Acute appendicitis | 120 (54.5) | 217 (59.1) | |
Acute cholecystitis | 73 (33.2) | 58 (15.8) | |
Obstructive Ileus | 7 (3.2) | 70 (19.1) | |
Other b | 20 (9.1) | 22 (6.0) | |
Community-acquired IAIs | 203 (92.3) | 342 (93.2) | 0.677 |
Hospital-aquired IAIs | 17 (7.7) | 25 (6.8) | |
Intraoperative peritonitis | 47 (21.4) | 93 (25.3) | 0.274 |
Grade of peritonitis c | 0.625 | ||
low (MPI ≤ 20) | 40 (85.1) | 76 (81.7) | |
middle (MPI 20–30) | 6 (12.8) | 15 (16.1) | |
high (MPI ≥ 30) | 1 (2.1) | 2 (2.2) | |
Duration of surgery, min, mean (SD) | 76.3 (42.6) | 73.6 (44.9) | 0.125 |
Laparotomy | 40 (18.2) | 96 (26.2) | 0.031 |
Laparoscopy | 152 (69.1) | 233 (63.5) | |
Conversion | 28 (12.7) | 38 (10.4) | |
Adequate surgical source control | 219 (99.5) | 364 (99.2) | 0.605 |
Postoperative transmission to general wards | 154 (70.0) | 272 (74.1) | 0.280 |
Characteristic | Perioperative Antibiotic Prophylaxis | |
---|---|---|
CXM (n = 196) | CFZ (n = 196) | |
Sex ratio (M:F) | 98:98 | 71:125 |
Age, years, mean (SD) | 47.9 (21.2) | 48.1 (20.6) |
ASA ≥ III | 37 (18.9) | 35 (17.9) |
Preoperative known MDR | 2 (1.0) | 5 (2.6) |
Focus IAIs | ||
Acute appendicitis | 120 (61.2) | 118 (60.2) |
Acute cholecystitis | 55 (28.1) | 56 (28.6) |
Obstructive Ileus | 7 (3.6) | 7 (3.6) |
Other a | 14 (7.1) | 15 (7.7) |
Community-acquired IAIs | 187 (95.4) | 188 (95.9) |
Hospital-aquired IAIs | 9 (4.6) | 8 (4.1) |
Laparotomy | 29 (14.8) | 28 (14.3) |
Laparoscopy | 145 (74.0) | 139 (70.9) |
Conversion | 22 (11.2) | 29 (14.8) |
Adequate surgical source control | 195 (99.5) | 194 (99.0) |
Postoperative transmission to general wards | 149 (76.0) | 151 (77.0) |
Characteristic | Perioperative Antibiotic Prophylaxis | p Value | |
---|---|---|---|
CXM (n = 196) | CFZ (n = 196) | ||
Repeated intraoperative dose (if duration of surgery ≥ 180 min) | 1/5 (20) | 5/6 (83.3) | 0.036 |
PAP combination with MTZ | 190 (96.9) | 187 (95.4) | 0.430 |
PAT | 61 (31.1) | 58 (29.6) | 0.742 |
Later PAT | 3 (1.5) | 10 (5.1) | 0.207 |
PAT duration, days, median (IQR) | 6 (4–7) | 5 (3–7) | 0.398 |
In-house SOP compliance | |||
PAP | 169 (86.2) | 171 (87.2) | 0.585 |
Indication for PAT a | 51 (83.6) | 51 (87.9) | 0.500 |
PAT too long | 30 (49.2) | 21 (36.2) | 0.176 |
Switch of PAT | 26 (13.3) | 29 (14.8) | 0.746 |
Intraoperative sampling | 96 (49.0) | 107 (54.6) | 0.102 |
Positive culture findings b | 64 (64.6) | 68 (63.6) | 0.870 |
Grampositive bacteria | 35 (35.4) | 36 (33.6) | 0.797 |
Enterococcus faecium | 4 (6.3) | 6 (8.8) | 0.745 |
Enterococcus faecalis | 3 (4.7) | 1 (1.5) | 0.283 |
S. aureus | 0 (0.0) | 1 (1.5) | 0.332 |
Gramnegative bacteria | 49 (49.5) | 55 (51.4) | 0.785 |
E. coli | 35 (54.7) | 37 (54.4) | 0.975 |
Pseudomonas spp. | 7 (10.9) | 4 (5.9) | 0.355 |
Klebsiella spp. | 8 (12.5) | 14 (20.6) | 0.248 |
Anaerobic bacteria | 30 (30.3) | 26 (24.3) | 0.333 |
MDR | 2 (1.0) | 2 (1.0) | 1 |
Characteristic | Perioperative Antibiotic Prophylaxis | p Value | |
---|---|---|---|
CXM (n = 196) | CFZ (n = 196) | ||
SSIs | 7 (3.6) | 14 (7.1) | 0.117 |
superficial | 2 (1.0) | 6 (3.1) | |
deep | 3 (1.5) | 2 (1.0) | |
organ space | 2 (1.0) | 6 (3.1) | |
Other postoperative Infection | 4 (2.0) | 17 (8.7) | 0.004 |
respiratory | 1 (0.5) | 4 (2.0) | |
catheter | 1 (0.5) | 2 (1.0) | |
urinary | 2 (1.0) | 7 (3.6) | |
other | 0 (0.0) | 4 (2.0) | |
Postoperative Complications a | |||
none | 126 (64.3) | 130 (66.3) | 0.157 |
no severe complications b | 55 (28.1) | 49 (25.0) | |
severe complications c | 15 (7.7) | 17 (8.7) | |
Mortality | 0 (0.0) | 2 (1.0) | 0.157 |
New MDR d | 0 (0.0) | 2 (1.0) | 0.157 |
LOS, days, median (IQR) | 4 (3–7) | 4 (3–7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surat, G.; Meyer-Sautter, P.; Rüsch, J.; Braun-Feldweg, J.; Markus, C.K.; Germer, C.-T.; Lock, J.F. Cefazolin Might Be Adequate for Perioperative Antibiotic Prophylaxis in Intra-Abdominal Infections without Sepsis: A Quality Improvement Study. Antibiotics 2022, 11, 501. https://doi.org/10.3390/antibiotics11040501
Surat G, Meyer-Sautter P, Rüsch J, Braun-Feldweg J, Markus CK, Germer C-T, Lock JF. Cefazolin Might Be Adequate for Perioperative Antibiotic Prophylaxis in Intra-Abdominal Infections without Sepsis: A Quality Improvement Study. Antibiotics. 2022; 11(4):501. https://doi.org/10.3390/antibiotics11040501
Chicago/Turabian StyleSurat, Güzin, Pascal Meyer-Sautter, Jan Rüsch, Johannes Braun-Feldweg, Christian Karl Markus, Christoph-Thomas Germer, and Johan Friso Lock. 2022. "Cefazolin Might Be Adequate for Perioperative Antibiotic Prophylaxis in Intra-Abdominal Infections without Sepsis: A Quality Improvement Study" Antibiotics 11, no. 4: 501. https://doi.org/10.3390/antibiotics11040501
APA StyleSurat, G., Meyer-Sautter, P., Rüsch, J., Braun-Feldweg, J., Markus, C. K., Germer, C. -T., & Lock, J. F. (2022). Cefazolin Might Be Adequate for Perioperative Antibiotic Prophylaxis in Intra-Abdominal Infections without Sepsis: A Quality Improvement Study. Antibiotics, 11(4), 501. https://doi.org/10.3390/antibiotics11040501