Optimizing Doses of Ceftolozane/Tazobactam as Monotherapy or in Combination with Amikacin to Treat Carbapenem-Resistant Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results
2.1. In Vitro Susceptibility of C/T and Comparator Agents
2.2. Synergistic Activities
2.3. PTA and CFR
3. Discussion
4. Materials and Methods
4.1. Bacterial Identification and Antimicrobial Susceptibility Test
4.2. Synergy Test of C/T against CRPA
4.3. Phenotypic Classification
4.4. Antibiotic Dosing Regimen Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zilberberg, M.D.; Shorr, A.F. Prevalence of multidrug-resistant pseudomonas aeruginosa and carbapenem-resistant enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J. Hosp. Med. 2013, 8, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Deshpande, L.M.; Costello, A.; Davies, T.A.; Jones, R.N. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–2011 in 14 European and Mediterranean countries. J. Antimicrob. Chemother. 2014, 69, 1804–1814. [Google Scholar] [CrossRef] [PubMed]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtado, G.H.C.; D’Azevedo, P.A.; Santos, A.F.; Gales, A.; Pignatari, A.C.C.; Medeiros, E.A.S. Intravenous polymyxin B for the treatment of nosocomial pneumonia caused by multidrug-resistant Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2007, 30, 315–319. [Google Scholar] [CrossRef]
- Vidal, L.; Gafter-Gvili, A.; Borok, S.; Fraser, A.; Leibovici, L.; Paul, M. Efficacy and safety of aminoglycoside monotherapy: Systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2007, 60, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Antimicrobial Activity of Ceftolozane-Tazobactam Tested against Enterobacteriaceae and Pseudomonas aeruginosa with Various Resistance Patterns Isolated in U.S. Hospitals (2011–2012). Antimicrob. Agents Chemother. 2013, 57, 6305–6310. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, K.A.; Gallagher, J.C. β-lactam/β-lactamase inhibitor combinations: From then to now. Ann. Pharmacother. 2015, 49, 86–98. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Chung, P.; Adam, H.; Zelenitsky, S.; Denisuik, A.; Schweizer, F.; Lagacé-Wiens, P.; Rubinstein, E.; Gin, A.S.; Walkty, A.; et al. Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination with Activity Against Multidrug-Resistant Gram-Negative Bacilli. Drugs 2013, 74, 31–51. [Google Scholar] [CrossRef]
- Shortridge, D.; Pfaller, M.A.; Castanheira, M.; Flamm, R.K. Antimicrobial Activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. Hospitals (2013–2016) as part of the surveillance program: Program to assess ceftolozane-tazobactam susceptibility. Microb. Drug Resist. 2018, 24, 563–577. [Google Scholar]
- Dassner, A.M.; Sutherland, C.; Girotto, J.; Nicolau, D.P. In vitro Activity of Ceftolozane/Tazobactam Alone or with an Aminoglycoside Against Multi-Drug-Resistant Pseudomonas aeruginosa from Pediatric Cystic Fibrosis Patients. Infect. Dis. Ther. 2016, 6, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Jacqueline, C.; Howland, K.; Chesnel, L. In vitro activity of ceftolozane/tazobactam in combination with other classes of antibacterial agents. J. Glob. Antimicrob. Resist. 2017, 10, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Montero, M.; VanScoy, B.D.; López-Causapé, C.; Conde, H.; Adams, J.; Segura, C.; Zamorano, L.; Oliver, A.; Horcajada, J.P.; Ambrose, P.G. Evaluation of Ceftolozane-Tazobactam in Combination with Meropenem against Pseudomonas aeruginosa Sequence Type 175 in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2018, 62, e00026-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Núñez, O.; Periañez-Parraga, L.; Oliver, A.; Munita, J.M.; Boté, A.; Gasch, O.; Nuvials, X.; Dinh, A.; Shaw, R.; Lomas, J.M.; et al. Higher MICs (>2 mg/L) Predict 30-Day Mortality in Patients With Lower Respiratory Tract Infections Caused by Multidrug- and Extensively Drug-Resistant Pseudomonas aeruginosa Treated With Ceftolozane/Tazobactam. Open Forum Infect. Dis. 2019, 6, ofz416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tängdén, T.; Martín, V.R.; Felton, T.W.; Nielsen, E.I.; Marchand, S.; Brüggemann, R.J.; Bulitta, J.; Bassetti, M.; Theuretzbacher, U.; Tsuji, B.T.; et al. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensiv. Care Med. 2017, 43, 1021–1032. [Google Scholar] [CrossRef]
- Asín-Prieto, E.; Rodríguez-Gascón, A.; Isla, A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 2015, 21, 319–329. [Google Scholar] [CrossRef]
- Pfaller, M.; Shortridge, D.; Sader, H.; Castanheira, M.; Flamm, R. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing healthcare-associated infections in the Asia-Pacific region (minus China, Australia and New Zealand): Report from an Antimicrobial Surveillance Programme (2013–2015). Int. J. Antimicrob. Agents 2018, 51, 181–189. [Google Scholar] [CrossRef]
- Teo, J.Q.-M.; Lim, J.C.; Tang, C.Y.; Lee, S.J.-Y.; Tan, S.H.; Sim, J.H.-C.; Ong, R.T.-H.; Kwa, A.L.-H. Ceftolozane/Tazobactam Resistance and Mechanisms in Carbapenem-Nonsusceptible Pseudomonas aeruginosa. mSphere 2021, 6, 01026-20. [Google Scholar] [CrossRef]
- Haidar, G.; Philips, N.J.; Shields, R.K.; Snyder, D.; Cheng, S.; Potoski, B.A.; Doi, Y.; Hao, B.; Press, E.G.; Cooper, V.; et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin. Infect. Dis. 2017, 65, 110–120. [Google Scholar] [CrossRef]
- Galani, I.; Papoutsaki, V.; Karantani, I.; Karaiskos, I.; Galani, L.; Adamou, P.; Deliolanis, I.; Kodonaki, A.; Papadogeorgaki, E.; Markopoulou, M.; et al. In vitro activity of ceftolozane/tazobactam alone and in combination with amikacin against MDR/XDR Pseudomonas aeruginosa isolates from Greece. J. Antimicrob. Chemother. 2020, 75, 2164–2172. [Google Scholar] [CrossRef]
- Gaudereto, J.J.; Neto, L.V.P.; Leite, G.C.; Espinoza, E.P.S.; Martins, R.C.R.; Villas Boa Prado, G.; Rossi, F.; Guimarães, T.; Levin, A.S.; Costa, S.F. Comparison of methods for the detection of in vitro synergy in multidrug-resistant gram-negative bacteria. BMC Microbiol. 2020, 20, 97. [Google Scholar] [CrossRef] [Green Version]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, M.; Corrente, A.; Pace, M.C.; Alfieri, A.; Simeon, V.; Ippolito, M.; Giarratano, A.; Cortegiani, A. Ceftolozane-Tazobactam Combination Therapy Compared to Ceftolozane-Tazobactam Monotherapy for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- So, W.; Shurko, J.; Galega, R.; Quilitz, R.; Greene, J.N.; Lee, G.C. Mechanisms of high-level ceftolozane/tazobactam resistance in Pseudomonas aeruginosa from a severely neutropenic patient and treatment success from synergy with tobramycin. J. Antimicrob. Chemother. 2018, 74, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.-H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.A.; Andes, D.R. In Vivo Activities of Ceftolozane, a New Cephalosporin, with and without Tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, Including Strains with Extended-Spectrum β-Lactamases, in the Thighs of Neutropenic Mice. Antimicrob. Agents Chemother. 2013, 57, 1577–1582. [Google Scholar] [CrossRef] [Green Version]
- Lepak, A.J.; Reda, A.; Marchillo, K.; Van Hecker, J.; Craig, W.A.; Andes, D. Impact of MIC Range for Pseudomonas aeruginosa and Streptococcus pneumoniae on the Ceftolozane In Vivo Pharmacokinetic/Pharmacodynamic Target. Antimicrob. Agents Chemother. 2014, 58, 6311–6314. [Google Scholar] [CrossRef] [Green Version]
- Natesan, S.; Pai, M.P.; Lodise, T.P. Determination of alternative ceftolozane/tazobactam dosing regimens for patients with infections due to Pseudomonas aeruginosa with MIC values between 4 and 32 mg/L. J. Antimicrob. Chemother. 2017, 72, 2813–2816. [Google Scholar] [CrossRef]
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Population Pharmacokinetics of Unbound Ceftolozane and Tazobactam in Critically Ill Patients without Renal Dysfunction. Antimicrob. Agents Chemother. 2019, 63, e01265-19. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, A.; Rothe, U.; Dorn, C. NP-008 Stability of ceftolozane/tazobactam in solution as infusion for prolonged or continuous application. Eur. J. Hosp. Pharm. 2019, 26, A294. [Google Scholar] [CrossRef]
- Kato, H.; Hagihara, M.; Hirai, J.; Sakanashi, D.; Suematsu, H.; Nishiyama, N.; Koizumi, Y.; Yamagishi, Y.; Matsuura, K.; Mikamo, H. Evaluation of Amikacin Pharmacokinetics and Pharmacodynamics for Optimal Initial Dosing Regimen. Drugs R&D 2017, 17, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Clancy, C.J.; Pasculle, A.W.; Press, E.G.; Haidar, G.; Hao, B.; Chen, L.; Kreiswirth, B.N.; Nguyen, M.H. Verification of Ceftazidime-Avibactam and Ceftolozane-Tazobactam Susceptibility Testing Methods against Carbapenem-Resistant Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 2018, 56, e01093-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; 31st Informational Supplement. CLSI Document M100-MS20. Available online: https://clsi.org/ (accessed on 18 May 2021).
- Doern, C.D. When Does 2 Plus 2 Equal 5? A Review of Antimicrobial Synergy Testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drugresistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delattre, I.K.; Musuamba, F.T.; Nyberg, J.; Taccone, F.S.; Laterre, P.-F.; Verbeeck, R.K.; Jacobs, F.; Wallemacq, P.E. Population Pharmacokinetic Modeling and Optimal Sampling Strategy for Bayesian Estimation of Amikacin Exposure in Critically Ill Septic Patients. Ther. Drug Monit. 2010, 32, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouton, J.W.; Dudley, M.N.; Cars, O.; Derendorf, H.; Drusano, G.L. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J. Antimicrob. Chemother. 2005, 55, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Agents | MIC Range (µg/mL) | MIC50 (µg/mL) | MIC90 (µg/mL) | Percentage of Susceptible Strains a |
---|---|---|---|---|
Ceftazidime | 1–>32 | 8 | >32 | 63.64 |
Cefepime | 1–>32 | 8 | >32 | 63.64 |
Piperacillin/tazobactam | 8/4–>64/4 | 32/4 | >64/4 | 45.45 |
Imipenem | ≤0.5–>8 | >8 | >8 | 4.55 |
Meropenem | 0.5–>8 | 8 | >8 | 13.64 |
Ciprofloxacin | 0.06–>2 | 0.25 | >2 | 66.67 |
Levofloxacin | 0.06–>8 | 2 | >8 | 51.52 |
Gentamicin | 2–>8 | 2 | >8 | 83.33 |
Amikacin | 8–>32 | 8 | 32 | 89.39 |
Colistin | 1–>4 | 1 | 2 | 96.97 |
No. | MIC a (µg/mL) | Synergistic Testing Results | ||||
---|---|---|---|---|---|---|
C/T b | AMK | C/T b Combined with AMK | AMK Combined with C/T b | ΣFICI | Interpretation | |
1 | 0.50 | 4.00 | 0.38 | 0.75 | 0.94 | ADD |
2 | 1.50 | 3.00 | 0.75 | 0.5 | 0.66 | ADD |
3 | 1.00 | 0.50 | 0.38 | 0.094 | 0.56 | ADD |
4 | 0.38 | 3.00 | 0.38 | 1 | 1.33 | IND |
5 | 0.75 | 1.50 | 0.25 | 0.19 | 0.46 | SYN |
6 | 0.38 | 1.50 | 0.5 | 0.38 | 1.56 | IND |
7 | 0.25 | 2.00 | 0.25 | 0.75 | 1.37 | IND |
8 | 0.50 | 2.00 | 0.38 | 0.5 | 1.01 | IND |
9 | 1.00 | 3.00 | 0.25 | 0.19 | 0.31 | SYN |
10 | 1.50 | 2.00 | 0.75 | 0.38 | 0.69 | ADD |
11 | 0.50 | 4.00 | 0.5 | 4 | 2.00 | IND |
12 | 2.00 | 2.00 | 1 | 0.38 | 0.69 | ADD |
13 | 1.00 | 3.00 | 1 | 0.75 | 1.25 | IND |
14 | 0.75 | 8.00 | 0.75 | 4 | 1.50 | IND |
15 | 0.50 | 2.00 | 0.5 | 0.75 | 1.37 | IND |
16 | 0.50 | 2.00 | 0.5 | 0.75 | 1.37 | IND |
17 | 0.50 | 0.75 | 0.25 | 0.125 | 0.66 | ADD |
18 | 1.00 | 4.00 | 0.75 | 1 | 1.00 | ADD |
19 | 1.00 | 1.00 | 0.25 | 0.094 | 0.34 | SYN |
20 | 0.50 | 2.00 | 0.5 | 0.5 | 1.25 | IND |
21 | 0.75 | 1.00 | 0.25 | 0.19 | 0.52 | ADD |
22 | 2.00 | 4.00 | 0.75 | 0.5 | 0.50 | SYN |
23 | 1.00 | 2.00 | 1 | 0.75 | 1.37 | IND |
24 | 1.50 | 1.00 | 1 | 0.25 | 0.91 | ADD |
25 | 0.50 | 8.00 | 0.5 | 2 | 1.25 | IND |
26 | 1.50 | 8.00 | 0.5 | 1 | 0.45 | SYN |
27 | 0.75 | 1.50 | 0.5 | 0.25 | 0.83 | ADD |
28 | 1.50 | 6.00 | 0.5 | 1 | 0.50 | SYN |
29 | 2.00 | 4.00 | 0.38 | 0.25 | 0.25 | SYN |
30 | 2.00 | 2.00 | 0.75 | 0.25 | 0.50 | SYN |
31 | 64.00 | 1.50 | 32 | 0.25 | 0.66 | ADD |
32 | 3.00 | 1.50 | 1 | 0.19 | 0.46 | SYN |
33 | 0.19 | 2.00 | 0.19 | 0.5 | 1.25 | IND |
34 | 0.50 | 1.50 | 0.5 | 0.38 | 1.25 | IND |
35 | 0.38 | 2.00 | 0.25 | 0.38 | 0.84 | ADD |
36 | 0.19 | 0.75 | 0.19 | 0.75 | 2.00 | IND |
37 | 0.50 | 6.00 | 0.5 | 1.5 | 1.25 | IND |
38 | 0.75 | 4.00 | 0.25 | 0.5 | 0.45 | SYN |
39 | 0.75 | 2.00 | 0.19 | 0.25 | 0.37 | SYN |
40 | 0.25 | 1.00 | 0.125 | 0.19 | 0.69 | ADD |
41 | 0.75 | 1.50 | 0.19 | 0.125 | 0.33 | SYN |
42 | 0.75 | 6.00 | 0.25 | 1 | 0.50 | SYN |
43 | 0.38 | 1.50 | 0.19 | 0.25 | 0.66 | ADD |
44 | 0.75 | 3.00 | 0.19 | 0.38 | 0.38 | SYN |
45 | 0.50 | 1.00 | 0.5 | 0.25 | 1.25 | IND |
46 | 1.50 | 6.00 | 0.5 | 0.75 | 0.45 | SYN |
47 | 24.00 | 32.00 | 24 | 8 | 1.25 | IND |
48 | 0.75 | 3.00 | 0.094 | 0.19 | 0.18 | SYN |
49 | 0.50 | 3.00 | 0.094 | 0.19 | 0.25 | SYN |
50 | 4.00 | 12.00 | 1.5 | 1 | 0.45 | SYN |
51 | 4.00 | 6.00 | 2 | 1 | 0.66 | ADD |
52 | 0.75 | 1.50 | 0.5 | 0.38 | 0.92 | ADD |
53 | 0.75 | 1.50 | 0.25 | 0.19 | 0.46 | SYN |
54 | 1.00 | 3.00 | 0.25 | 0.19 | 0.31 | SYN |
55 | 1.50 | 6.00 | 0.38 | 0.5 | 0.33 | SYN |
56 | 8.00 | 6.00 | 2 | 0.5 | 0.33 | SYN |
57 | 4.00 | 3.00 | 1.5 | 0.5 | 0.54 | ADD |
58 | 1.50 | 6.00 | 0.5 | 0.75 | 0.45 | SYN |
59 | 0.75 | 3.00 | 0.5 | 0.75 | 0.91 | ADD |
60 | 1.00 | 6.00 | 0.38 | 0.75 | 0.50 | SYN |
61 | >256 | 96.00 | N/A | N/A | N/A | N/A |
62 | >256 | 12.00 | N/A | N/A | N/A | N/A |
63 | >256 | 3.00 | N/A | N/A | N/A | N/A |
64 | >256 | >256 | N/A | N/A | N/A | N/A |
65 | >256 | 3.00 | N/A | N/A | N/A | N/A |
66 | >256 | 12.00 | N/A | N/A | N/A | N/A |
MIC range (µg/mL) | 0.19–>256 | 0.5–>256 | 0.094–32 | 0.094–8 | - | - |
MIC50 (µg/mL) | 0.75 | 3 | 0.5 | 0.5 | - | - |
MIC90 (µg/mL) | 24 | 8 | 1 | 1 | - | - |
%S c | 86.36 | 95.45 | 96.67 | 100 | - | - |
Antibiotic Combination | No (%) | |||
---|---|---|---|---|
Synergism | Additive Effect | Indifference | Antagonism | |
C/T + AMK | 24 (40%) | 18 (30%) | 18 (30%) | 0 (0%) |
Dosage Regimens of C/T | PTA (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ceftolozane MICs (µg/mL) | Tazo-Bactam | ||||||||||||||
LD | MD | IT | 0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 20% fT ≥ 1 µg/mL |
- | 1.5 g q 8 h | 0.5 h | 100.00 | 99.99 | 99.85 | 99.59 | 98.34 | 93.92 | 80.64 | 50.97 | 14.09 | 1.14 | 0.01 | 0.00 | 97.50 |
- | 1.5 g q 8 h | 4 h | 100.00 | 100.00 | 100.00 | 100.00 | 99.87 | 98.97 | 93.61 | 69.46 | 23.10 | 1.53 | 0.00 | 0.00 | 97.71 |
1.5 g | 4.5 g | CI | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.95 | 93.61 | 44.75 | 3.83 | 0.05 | 0.00 | 99.97 |
Dosage Regimens of C/T | PTA (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ceftolozane MICs (µg/mL) | Tazo-Bactam | ||||||||||||||
LD | MD | IT | 0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 20% fT ≥ 1 µg/mL |
- | 1.5 g q 8 h | 0.5 h | 99.93 | 99.81 | 99.46 | 98.39 | 95.50 | 87.36 | 69.12 | 38.63 | 8.89 | 0.57 | 0.00 | 0.00 | 97.50 |
- | 1.5 g q 8 h | 4 h | 100.00 | 100.00 | 99.95 | 99.68 | 98.58 | 94.75 | 82.35 | 52.07 | 14.56 | 0.81 | 0.00 | 0.00 | 97.71 |
1.5 g | 4.5 g | CI | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.95 | 93.60 | 44.71 | 3.82 | 0.05 | 0.00 | 99.97 |
Dosage Regimens of C/T | CFR (%) | |||||
---|---|---|---|---|---|---|
LD | MD | IT | 75% fT > MIC | 100% fT > MIC | ||
C/T | C/T Combined with AMK | C/T | C/T Combined with AMK | |||
- | 1.5 g q 8 h | 0.5 h | 84.24 | 95.79 | 80.93 | 94.24 |
- | 1.5 g q 8 h | 4 h | 86.82 | 96.62 | 84.61 | 95.94 |
1.5 g | 4.5 g | CI | 87.84 | 96.79 | 87.84 | 96.79 |
Dosage Regimens of AMK | CFR (%) | |||
---|---|---|---|---|
LD | MD | IT | Cmax/MIC ≥ 8 | |
AMK | AMK Combined with C/T | |||
20 mg/kg | 15 mg/kg q 24 h | 0.5 h | 62.52 | 97.30 |
25 mg/kg | 15 mg/kg q 24 h | 0.5 h | 62.79 | 97.36 |
25 mg/kg | 20 mg/kg q 24 h | 0.5 h | 67.08 | 98.03 |
Antibiotics | Parameters | Mean | SD | %RSE | PK/PD Targets and Indices |
---|---|---|---|---|---|
Ceftolozane | V (L) | 20.4 | 3.7 | - | 75% fT > MIC, 100% fT > MIC |
Kcp (h−1) | 0.46 | 0.74 | - | ||
Kpc (h−1) | 0.39 | 0.37 | - | ||
CL (L/h) | 7.2 | 3.2 | - | ||
Tazobactam | V (L) | 32.4 | 10 | - | 20% fT ≥ 1 µg/mL |
Kcp (h−1) | 2.96 | 8.69 | - | ||
Kpc (h−1) | 26.5 | 8.4 | - | ||
CL (L/h) | 25.4 | 9.4 | - | ||
Amikacin | CL (L/h) | 0.77 | - | 28.4 | Cmax/MIC ≥ 8 |
V (L) | 19.2 | - | 5.31 | ||
Q (L/h) | 4.38 | - | 18.3 | ||
Vp (L) | 9.38 | - | 7.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasomsong, W.; Nulsopapon, P.; Changpradub, D.; Pungcharoenkijkul, S.; Hanyanunt, P.; Chatreewattanakul, T.; Santimaleeworagun, W. Optimizing Doses of Ceftolozane/Tazobactam as Monotherapy or in Combination with Amikacin to Treat Carbapenem-Resistant Pseudomonas aeruginosa. Antibiotics 2022, 11, 517. https://doi.org/10.3390/antibiotics11040517
Nasomsong W, Nulsopapon P, Changpradub D, Pungcharoenkijkul S, Hanyanunt P, Chatreewattanakul T, Santimaleeworagun W. Optimizing Doses of Ceftolozane/Tazobactam as Monotherapy or in Combination with Amikacin to Treat Carbapenem-Resistant Pseudomonas aeruginosa. Antibiotics. 2022; 11(4):517. https://doi.org/10.3390/antibiotics11040517
Chicago/Turabian StyleNasomsong, Worapong, Parnrada Nulsopapon, Dhitiwat Changpradub, Supanun Pungcharoenkijkul, Patomroek Hanyanunt, Tassanawan Chatreewattanakul, and Wichai Santimaleeworagun. 2022. "Optimizing Doses of Ceftolozane/Tazobactam as Monotherapy or in Combination with Amikacin to Treat Carbapenem-Resistant Pseudomonas aeruginosa" Antibiotics 11, no. 4: 517. https://doi.org/10.3390/antibiotics11040517
APA StyleNasomsong, W., Nulsopapon, P., Changpradub, D., Pungcharoenkijkul, S., Hanyanunt, P., Chatreewattanakul, T., & Santimaleeworagun, W. (2022). Optimizing Doses of Ceftolozane/Tazobactam as Monotherapy or in Combination with Amikacin to Treat Carbapenem-Resistant Pseudomonas aeruginosa. Antibiotics, 11(4), 517. https://doi.org/10.3390/antibiotics11040517