Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Risk of Bias Assessment
2.6. Data Synthesis
2.7. Statistical Analysis
3. Results
3.1. Studies Identified and Included in the Final Analysis
3.2. Overview of the Selected Studies
3.3. Prevalence and Serotype Distribution of Salmonella spp. and Campylobacter spp. among Humans and Food-Producing Animals
3.4. Microbial Resistance Patterns Detected by Phenotypic Screening
3.5. Assessment of Shared Antimicrobial Resistance Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devleesschauwer, B.; Bouwknegt, M.; Mangen, M.-J.J.; Havelaar, A.H. Health and economic burden of Campylobacter. In Campylobacter; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–40. [Google Scholar]
- Ferrari, R.G.; Rosario, D.K.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.; Conte-Junior, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amuasi, J.H.; May, J. Non-typhoidal salmonella: Invasive, lethal, and on the loose. Lancet Infect. Dis. 2019, 19, 1267–1269. [Google Scholar] [CrossRef] [Green Version]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global incidence of human Shiga toxin–producing Escherichia coli infections and deaths: A systematic review and knowledge synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Connerton, I.; Connerton, P. Campylobacter foodborne disease. In Foodborne Diseases; Elsevier: Amsterdam, The Netherlands, 2017; pp. 209–221. [Google Scholar]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Authority, E.F.S. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar]
- WHO’s First Ever Global Estimates of Foodborne Diseases Find Children under 5 Account for Almost One Third of Deaths. 2015. Available online: https://www.who.int/news/item/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-diseases-find-children-under-5-account-for-almost-one-third-of-deaths (accessed on 20 February 2022).
- Cohen, D.; Gargouri, N.; Ramlawi, A.; Abdeen, Z.; Belbesi, A.; Al Hijawi, B.; Haddadin, A.; Ali, S.S.; Al Shuaibi, N.; Bassal, R. A Middle East subregional laboratory-based surveillance network on foodborne diseases established by Jordan, Israel, and the Palestinian Authority. Epidemiol. Infect. 2010, 138, 1443–1448. [Google Scholar] [CrossRef] [Green Version]
- Bassal, R.; Reisfeld, A.; Andorn, N.; Yishai, R.; Nissan, I.; Agmon, V.; Peled, N.; Block, C.; Keller, N.; Kenes, Y. Recent trends in the epidemiology of non-typhoidal Salmonella in Israel, 1999–2009. Epidemiol. Infect. 2012, 140, 1446–1453. [Google Scholar] [CrossRef]
- El-Shabrawi, M.; Salem, M.; Abou-Zekri, M.; El-Naghi, S.; Hassanin, F.; El-Adly, T.; El-Shamy, A. The burden of different pathogens in acute diarrhoeal episodes among a cohort of Egyptian children less than five years old. Prz. Gastroenterol. 2015, 10, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Dayan, N.; Revivo, D.; Even, L.; Elkayam, O.; Glikman, D. Campylobacter is the leading cause of bacterial gastroenteritis and dysentery in hospitalized children in the Western Galilee Region in Israel. Epidemiol. Infect. 2010, 138, 1405–1406. [Google Scholar] [CrossRef] [Green Version]
- Feizabadi, M.M.; Dolatabadi, S.; Zali, M.R. Isolation and drug-resistant patterns of Campylobacter strains cultured from diarrheic children in Tehran. Jpn. J. Infect. Dis. 2007, 60, 217–219. [Google Scholar]
- Elamreen, F.H.A.; Abed, A.A.; Sharif, F.A. Detection and identification of bacterial enteropathogens by polymerase chain reaction and conventional techniques in childhood acute gastroenteritis in Gaza, Palestine. Int. J. Infect. Dis. 2007, 11, 501–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsayeqh, A.F.; Baz, A.H.A.; Darwish, W.S. Antimicrobial-resistant foodborne pathogens in the Middle East: A systematic review. Environ. Sci. Pollut. Res. 2021, 28, 68111–68133. [Google Scholar] [CrossRef] [PubMed]
- Escher, N.A.; Muhummed, A.M.; Hattendorf, J.; Vonaesch, P.; Zinsstag, J. Systematic review and meta-analysis of integrated studies on antimicrobial resistance genes in Africa—A One Health perspective. Trop. Med. Int. Health 2021, 26, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.N.; Osburn, B.I.; Jay-Russell, M.T. One health for food safety, food security, and sustainable food production. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef] [Green Version]
- Racloz, V.; Waltner-Toews, D.; DC, K.S. 8 Integrated Risk Assessment–Foodborne Diseases. In One Health: The Theory and Practice of Integrated Health Approaches; CABI: Wallingford, UK, 2015; p. 85. [Google Scholar]
- King, L.J. Combating the triple threat: The need for a One Health approach. Microbiol. Spectr. 2013, 1. [Google Scholar] [CrossRef]
- Paul, R.J.; Varghese, D. AMR in Animal Health: Issues and One Health Solutions for LMICs. In Antimicrobial Resistance; Springer: Berlin, Germany, 2020; pp. 135–149. [Google Scholar]
- Larsson, D.J.; Andremont, A.; Bengtsson-Palme, J.; Brandt, K.K.; de Roda Husman, A.M.; Fagerstedt, P.; Fick, J.; Flach, C.-F.; Gaze, W.H.; Kuroda, M. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ. Int. 2018, 117, 132–138. [Google Scholar] [CrossRef]
- Hoy, D.; Brooks, P.; Woolf, A.; Blyth, F.; March, L.; Bain, C.; Baker, P.; Smith, E.; Buchbinder, R. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater agreement. J. Clin. Epidemiol. 2012, 65, 934–939. [Google Scholar] [CrossRef]
- Mantel, N.; Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar]
- Zinsstag, J.; Schelling, E.; Crump, L.; Whittaker, M.; Tanner, M.; Stephen, C. One Health: The theory and Practice of Integrated Health Approaches; CABI: Wallingford, UK, 2020. [Google Scholar]
- Gahamanyi, N.; Mboera, L.E.; Matee, M.I.; Mutangana, D.; Komba, E.V. Prevalence, risk factors, and antimicrobial resistance profiles of thermophilic Campylobacter species in humans and animals in sub-saharan Africa: A systematic review. Int. J. Microbiol. 2020, 2020, 2092478. [Google Scholar] [CrossRef] [Green Version]
- Asuming-Bediako, N.; Parry-Hanson Kunadu, A.; Abraham, S.; Habib, I. Campylobacter at the human–food interface: The african perspective. Pathogens 2019, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Abdul-Rahman, Z. Human Campylobacteriosis in Southeast Asia: A Meta-Analysis and Systematic Review. Int. J. Infect. Dis. 2022, 116, S75. [Google Scholar] [CrossRef]
- Zbrun, M.V.; Rossler, E.; Romero-Scharpen, A.; Soto, L.P.; Berisvil, A.; Zimmermann, J.A.; Fusari, M.L.; Signorini, M.; Frizzo, L.S. Worldwide meta-analysis of the prevalence of Campylobacter in animal food products. Res. Vet. Sci. 2020, 132, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Hlashwayo, D.F.; Sigaúque, B.; Noormahomed, E.V.; Afonso, S.M.; Mandomando, I.M.; Bila, C.G. A systematic review and meta-analysis reveal that Campylobacter spp. and antibiotic resistance are widespread in humans in sub-Saharan Africa. PLoS ONE 2021, 16, e0245951. [Google Scholar] [CrossRef] [PubMed]
- Al-Rifai, R.H.; Chaabna, K.; Denagamage, T.; Alali, W.Q. Prevalence of enteric non-typhoidal Salmonella in humans in the Middle East and North Africa: A systematic review and meta-analysis. Zoonoses Public Health 2019, 66, 701–728. [Google Scholar] [CrossRef]
- Al-Rifai, R.H.; Chaabna, K.; Denagamage, T.; Alali, W.Q. Prevalence of non-typhoidal Salmonella enterica in food products in the Middle East and North Africa: A systematic review and meta-analysis. Food Control 2020, 109, 106908. [Google Scholar] [CrossRef]
- Skarp, C.; Hänninen, M.-L.; Rautelin, H. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Capita, R.; Alonso-Calleja, C.; Prieto, M. Prevalence of Salmonella enterica serovars and genovars from chicken carcasses in slaughterhouses in Spain. J. Appl. Microbiol. 2007, 103, 1366–1375. [Google Scholar] [CrossRef]
- Yang, B.; Xi, M.; Wang, X.; Cui, S.; Yue, T.; Hao, H.; Wang, Y.; Cui, Y.; Alali, W.; Meng, J. Prevalence of Salmonella on raw poultry at retail markets in China. J. Food Prot. 2011, 74, 1724–1728. [Google Scholar] [CrossRef]
- Cave, R.; Cole, J.; Mkrtchyan, H.V. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. Environ. Int. 2021, 157, 106836. [Google Scholar] [CrossRef]
- Authority, E.F.S. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20. [Google Scholar] [CrossRef]
- Marotta, F.; Garofolo, G.; Di Marcantonio, L.; Di Serafino, G.; Neri, D.; Romantini, R.; Sacchini, L.; Alessiani, A.; Di Donato, G.; Nuvoloni, R. Antimicrobial resistance genotypes and phenotypes of Campylobacter jejuni isolated in Italy from humans, birds from wild and urban habitats, and poultry. PLoS ONE 2019, 14, e0223804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhadidy, M.; Miller, W.G.; Arguello, H.; Álvarez-Ordóñez, A.; Duarte, A.; Dierick, K.; Botteldoorn, N. Genetic basis and clonal population structure of antibiotic resistance in Campylobacter jejuni isolated from broiler carcasses in Belgium. Front. Microbiol. 2018, 9, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals: Web Annex A: Evidence Base; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Antimicrobial Resistance: FAO. 2021. Available online: https://www.fao.org/antimicrobial-resistance/world-antimicrobial-awareness-week/en/ (accessed on 20 February 2022).
- Antimicrobial Resistance: OIE. Available online: https://www.oie.int/en/what-we-do/global-initiatives/antimicrobial-resistance/ (accessed on 20 February 2022).
- Rodrigues, G.L.; Panzenhagen, P.; Ferrari, R.G.; Paschoalin, V.M.F.; Conte-Junior, C.A. Antimicrobial resistance in nontyphoidal Salmonella isolates from human and swine sources in brazil: A systematic review of the past three decades. Microb. Drug Resist. 2020, 26, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Quesada, A.; Reginatto, G.A.; Ruiz Español, A.; Colantonio, L.D.; Burrone, M.S. Antimicrobial resistance of Salmonella spp. isolated animal food for human consumption. Rev. Peru. Med. Exp. Salud Publica 2016, 33, 32–44. [Google Scholar] [CrossRef]
- Kim, D.-W.; Cha, C.-J. Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 2021, 53, 301–309. [Google Scholar] [CrossRef]
- El-Aziz, A.; Norhan, K.; Ammar, A.M.; Hamdy, M.M.; Gobouri, A.A.; Azab, E.; Sewid, A.H. First report of aacC5-aadA7Δ4 Gene Cassette array and phage tail tape measure protein on Class 1 Integrons of Campylobacter Species isolated from animal and human sources in Egypt. Animals 2020, 10, 2067. [Google Scholar] [CrossRef]
- Ghoneim, N.H.; Sabry, M.A.; Ahmed, Z.S.; Elshafiee, E.A. Campylobacter Species Isolated from Chickens in Egypt: Molecular Epidemiology and Antimicrobial Resistance. Pak. J. Zool. 2020, 52, 917–926. [Google Scholar] [CrossRef]
- Divsalar, G.; Kaboosi, H.; Khoshbakht, R.; Shirzad-Aski, H.; Ghadikolaii, F.P. Antimicrobial resistances, and molecular typing of Campylobacter jejuni isolates, separated from food-producing animals and diarrhea patients in Iran. Comp. Immunol. Microbiol. Infect. Dis. 2019, 65, 194–200. [Google Scholar] [CrossRef]
- Besharati, S.; Sadeghi, A.; Ahmadi, F.; Tajeddin, E.; Salehi, R.M.; Fani, F.; Pouladfar, G.; Nikmanesh, B.; Majidpour, A.; Moghadam, S.S. Serogroups, and drug resistance of nontyphoidal Salmonella in symptomatic patients with community-acquired diarrhea and chicken meat samples in Tehran. Iran. J. Vet. Res. 2020, 21, 269–278. [Google Scholar]
- Elhariri, M.; Elhelw, R.; Selim, S.; Ibrahim, M.; Hamza, D.; Hamza, E. Virulence and antibiotic resistance patterns of extended-spectrum beta-lactamase-producing Salmonella enterica serovar Heidelberg isolated from broiler chickens and poultry workers: A potential hazard. Foodborne Pathoge. Dis. 2020, 17, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Youssef, R.A.; Abbas, A.M.; El-Shehawi, A.M.; Mabrouk, M.I.; Aboshanab, K.M. Serotyping and Antimicrobial Resistance Profile of Enteric Nontyphoidal Salmonella Recovered from Febrile Neutropenic Patients and Poultry in Egypt. Antibiotics 2021, 10, 493. [Google Scholar] [CrossRef] [PubMed]
- Mouftah, S.F.; Cobo-Díaz, J.F.; Álvarez-Ordóñez, A.; Elserafy, M.; Saif, N.A.; Sadat, A.; El-Shibiny, A.; Elhadidy, M. High-throughput sequencing reveals genetic determinants associated with antibiotic resistance in Campylobacter spp. from farm-to-fork. PLoS ONE 2021, 16, e0253797. [Google Scholar] [CrossRef]
- Collineau, L.; Boerlin, P.; Carson, C.A.; Chapman, B.; Fazil, A.; Hetman, B.; McEwen, S.A.; Parmley, E.J.; Reid-Smith, R.J.; Taboada, E.N. Integrating whole-genome sequencing data into quantitative risk assessment of foodborne antimicrobial resistance: A review of opportunities and challenges. Front. Microbiol. 2019, 10, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourkas, E.; Florez-Cuadrado, D.; Pascoe, B.; Calland, J.K.; Bayliss, S.C.; Mageiros, L.; Méric, G.; Hitchings, M.D.; Quesada, A.; Porrero, C. Gene pool transmission of multidrug resistance among Campylobacter from livestock, sewage and human disease. Environ. Microbiol. 2019, 21, 4597–4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pathogens | No. of Isolated Bacteria from Humans | Total Number of Collected Samples from Humans | The Pooled Prevalence Rate among Humans (%) | No. of Isolated Bacteria from Animals | Total Number of Collected Samples from Animals | The Pooled Prevalence Rate among Animals (%) |
---|---|---|---|---|---|---|
Salmonella spp. | 167 | 1317 | 13 | 585 | 3520 | 17 |
nontyphoidal Salmonella | 109 | 1167 | 9 | 352 | 2718 | 13 |
S. typhimurium | 36 | 780 | 5 | 91 | 3038 | 3 |
S. enteritidis | 12 | 585 | 2 | 87 | 2534 | 3 |
Campylobacter | 435 | 2008 | 22 | 1253 | 4122 | 30 |
C. jejuni | 422 | 2693 | 16 | 1182 | 5472 | 22 |
C. coli | 72 | 1938 | 4 | 367 | 4037 | 9 |
Pathogens | N (%) Isolated Bacteria from Asymptomatic Humans | Total Number of Asymptomatic Humans Samples | N (%) Isolated Bacteria from Symptomatic Humans | Total Number of Symptomatic from Humans Samples | N (%) Isolated Bacteria from Poultry and Poultry Products | Total Number of Poultry and Poultry Products Samples | N (%) Isolated Bacteria from Ruminants and Ruminant Products | Total Number of Ruminants and Ruminant Products Samples |
---|---|---|---|---|---|---|---|---|
Salmonella spp. | 29 (9%) | 342 | 138 (14%) | 975 | 492 (31%) | 1597 | 76 (4%) | 1717 |
Nontyphoidal Salmonella | 11 (6%) | 192 | 98 (10%) | 975 | 259 (33%) | 795 | 76 (4%) | 1717 |
S. typhimurium | 13 (6%) | 205 | 23 (4%) | 575 | 80 (7%) | 1195 | 9 (0.6) | 1637 |
S. enteritidis | 1 (2%) | 60 | 11 (2%) | 525 | 82 (9%) | 897 | 5 (0.3) | 1637 |
Campylobacter | 28 (14%) | 206 | 407 (23%) | 1802 | 1048 (39%) | 2695 | 205 (10%) | 1427 |
C. jejuni | 21 (9%) | 226 | 401 (16%) | 2467 | 968 (25%) | 3894 | 214 (14%) | 1578 |
C. coli | 18 (8%) | 236 | 54 (3%) | 1702 | 341 (13%) | 2610 | 26 (2%) | 1427 |
Non-Typhoidal Salmonella | ||||||||
---|---|---|---|---|---|---|---|---|
Antibiotic | No. of Resistance Human Isolates | Human Isolates | Resistance Ratio/Human Isolates | No. of Resistance Animal Isolates | Animal Isolates | Resistance Ratio/Animal Isolates | Relative Risk | 95%CI |
Amoxicillin–Clavulanic acid | 53 | 126 | 42% | 62 | 88 | 70% | 1.09 | [1.01; 1.18] |
Amoxicillin | 50 | 70 | 71% | 64 | 70 | 91% | 4.02 | [0.16; 103.61] |
Ampicillin | 97 | 186 | 52% | 96 | 139 | 69% | 1.10 | [0.92; 1.31] |
Azithromycin | 32 | 75 | 43% | 2 | 22 | 9% | 0.21 | [0.06; 0.82] |
Cefotaxime | 45 | 145 | 31% | 58 | 92 | 63% | 3 | [0.23; 39.38] |
Ceftriaxone | 2 | 231 | 1% | 9 | 131 | 7% | 4.33 | [0.93; 20.26] |
Chloramphenicol | 42 | 281 | 15% | 21 | 181 | 12% | 1.29 | [0.86;1.96] |
Ciprofloxacin | 26 | 281 | 9% | 30 | 181 | 17% | 1.36 | [0.73; 2.51] |
Erythromycin | 57 | 57 | 100% | 52 | 52 | 100% | 1 | [0.96; 1.04] |
Imipenem | 3 | 194 | 2% | 0 | 108 | 0% | 0.45 | [0.05; 4.02] |
Streptomycin | 50 | 126 | 40% | 38 | 88 | 43% | 1.09 | [0.80; 1.49] |
Tetracycline | 142 | 231 | 62% | 66 | 131 | 50% | 0.79 | [0.59; 1.06] |
Trimethoprim–sulfamethoxazole | 67 | 281 | 24% | 15 | 181 | 8% | 0.57 | [0.18; 1.80] |
Campylobacter jejuni | ||||||||
---|---|---|---|---|---|---|---|---|
Antibiotic | No. of Resistance Human Isolates | Human Isolates | Resistance Ratio/Human Isolates | No. of Resistance Animal Isolates | Animal Isolates | Resistance Ratio/Animal Isolates | Relative Risk | 95%CI |
Amoxicillin–Clavulanic acid | 283 | 416 | 68% | 56 | 173 | 32% | 0.79 | [0.67; 0.95] |
Amoxicillin | 297 | 297 | 100% | 52 | 52 | 100% | 1 | [0.96; 1.04] |
Ampicillin | 466 | 579 | 81% | 142 | 223 | 64% | 1 | [0.97; 1.03] |
Azithromycin | 261 | 297 | 88% | 52 | 52 | 100% | 1.13 | [1.04; 1.24] |
Chloramphenicol | 258 | 316 | 82% | 50 | 73 | 69% | 1.01 | [0.89; 1.14] |
Ciprofloxacin | 460 | 627 | 73% | 187 | 265 | 71% | 0.92 | [0.84; 1.01] |
Erythromycin | 393 | 608 | 65% | 92 | 244 | 38% | 1 | [0.97; 1.03] |
Nalidixic acid | 558 | 627 | 89% | 201 | 265 | 76% | 0.89 | [0.77; 1.02] |
Streptomycin | 213 | 544 | 39% | 50 | 235 | 21% | 1.02 | [0.83; 1.26] |
Tetracycline | 248 | 330 | 75% | 119 | 213 | 56% | 0.94 | [0.84; 1.05] |
Trimethoprim–sulfamethoxazole | 371 | 399 | 93% | 85 | 103 | 83% | 1.01 | [0.97; 1.04] |
AMR Gen | Study ID | Pathogen | HN | HI | Prevalance_H | AN | AI | Prevalnce_A_ | RR | 95%CI | Lab Technique |
---|---|---|---|---|---|---|---|---|---|---|---|
blaAMPc | Besharati et al., 2020 and Elhariri et al., 2020 | NTS and S. H | 99 | 13 | 13.13% | 31 | 1 | 3.23% | 0.34 | [0.07; 1.72] | PCR |
AAC(6’)-Ib | Youssef et al., 2021 | NTS | 50 | 8 | 16.00% | 50 | 11 | 22.00% | 1.38 | [0.6; 3.13] | PCR |
bla CMY-2 | Elhariri et al., 2020 | S. H | 24 | 9 | 37.50% | 9 | 1 | 11.11% | 0.3 | [0.04; 2.02] | PCR |
bla CTXM-1 | Youssef et al., 2021 | NTS | 50 | 8 | 16.00% | 50 | 11 | 22.00% | 1.38 | [0.6; 3.13] | PCR |
bla OXA | Elhariri et al., 2020 | S. H | 24 | 5 | 20.83% | 9 | 1 | 11.11% | 0.53 | [0.07; 3.96] | PCR |
PCR | |||||||||||
bla OXA-61 | Divsalar et al., 2019 | C. jejuni | 80 | 42 | 52.50% | 20 | 7 | 35.00% | 0.67 | [0.35; 1.25] | PCR |
bla SHV | Youssef et al., 2021 and Elhariri et al., 2020 | NTS and S. H | 74 | 14 | 18.92% | 59 | 12 | 20.34% | 1.13 | [0.49; 2.61] | PCR |
blaTEM | Youssef et al., 2021, Besharati et al., 2020 and Elhariri et al., 2020 | NTS, NTS, and S. H | 149 | 19 | 12.75% | 81 | 12 | 14.81% | 0.91 | [0.34; 2.44] | PCR |
Class 1 Integrons | Besharati et al., 2020 and AbdEl-Aziz et al., 2020 | NTS and C. jejuni | 223 | 180 | 80.72% | 42 | 29 | 69.05% | 1.04 | [1.01; 1.08] | PCR |
class 2 Integrons | Besharati et al., 2020 | NTS | 75 | 22 | 29.33% | 22 | 6 | 27.27% | 0.93 | [0.43; 2] | PCR |
cme B | Divsalar et al., 2019 | C. jejuni | 80 | 41 | 51.25% | 20 | 7 | 35.00% | 0.68 | [0.36; 1.29] | PCR |
tet(A) | Divsalar et al., 2019 | C. jejuni | 80 | 17 | 21.25% | 20 | 6 | 30.00% | 1.41 | [0.64; 3.11] | PCR |
tet(O) | Divsalar et al., 2019 and Ghoneim et al., 2020 | C. jejuni | 84 | 71 | 84.52% | 22 | 17 | 77.27% | 0.92 | [0.73; 1.16] | PCR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abukhattab, S.; Taweel, H.; Awad, A.; Crump, L.; Vonaesch, P.; Zinsstag, J.; Hattendorf, J.; Abu-Rmeileh, N.M.E. Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective. Antibiotics 2022, 11, 536. https://doi.org/10.3390/antibiotics11050536
Abukhattab S, Taweel H, Awad A, Crump L, Vonaesch P, Zinsstag J, Hattendorf J, Abu-Rmeileh NME. Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective. Antibiotics. 2022; 11(5):536. https://doi.org/10.3390/antibiotics11050536
Chicago/Turabian StyleAbukhattab, Said, Haneen Taweel, Arein Awad, Lisa Crump, Pascale Vonaesch, Jakob Zinsstag, Jan Hattendorf, and Niveen M. E. Abu-Rmeileh. 2022. "Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective" Antibiotics 11, no. 5: 536. https://doi.org/10.3390/antibiotics11050536
APA StyleAbukhattab, S., Taweel, H., Awad, A., Crump, L., Vonaesch, P., Zinsstag, J., Hattendorf, J., & Abu-Rmeileh, N. M. E. (2022). Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective. Antibiotics, 11(5), 536. https://doi.org/10.3390/antibiotics11050536