Peri-Operative Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Cardiac and Thoracic Surgery: A RAND/UCLA Appropriateness Method Consensus Study
Abstract
:1. Introduction
2. Methods
2.1. RAND/UCLA Method of Appropriateness
2.2. Recruiting the Expert Panel
2.3. Scenario Formulation
2.4. Two-Round Consensus Process
3. Results
3.1. Cardiac Surgery
3.1.1. SCENARIO #1: Cardiac Surgery for Correction of Congenital Heart Disease and/or Valve Surgery
Type of Molecule
Intra-Operative Re-Dosing
Continuing Post-Operative Prophylaxis
3.1.2. SCENARIO #2: Cardiac Catheterization without Placement of Prosthetic Material
3.1.3. SCENARIO #3: Cardiac Catheterization with Placement of Prosthetic Material
3.1.4. SCENARIO #4: Implantable Cardiac Defibrillator or Epicardial Pacemaker Placement
3.1.5. SCENARIO #5: Patients Undergoing ExtraCorporeal Membrane Oxygenation (ECMO)
3.1.6. SCENARIO #6: Patients Undergoing Other Cardiac Surgery
3.2. Non-Cardiac Thoracic Surgery
3.2.1. SCENARIO #7: Non-Cardiac Thoracic Surgery with Thoracotomy
3.2.2. SCENARIO #8: Non-cardiac Thoracic Surgery Using Video-Assisted Thoracoscopy
3.2.3. SCENARIO #9: Elective Chest Drain Placement in the Pediatric Patient
3.2.4. SCENARIO #10: Elective Chest Drain Placement in the Newborn
3.2.5. SCENARIO #11: Thoracic Drain Placement in the Trauma Setting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Dhar, S. Infection Prevention and Control in Healthcare, Part II: Clinical Management of Infections, an Issue of Infectious Disease Clinics of North America, E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Cannon, M.; Hersey, D.; Harrison, S.; Joy, B.; Naguib, A.; Galantowicz, M.; Simsic, J. Improving Surveillance and Prevention of Surgical Site Infection in Pediatric Cardiac Surgery. Am. J. Crit. Care 2016, 25, e30–e37. [Google Scholar] [CrossRef]
- Sochet, A.A.; Cartron, A.M.; Nyhan, A.; Spaeder, M.C.; Song, X.; Brown, A.T.; Klugman, D. Surgical Site Infection After Pediatric Cardiothoracic Surgery. World J. Pediatr. Congenit. Heart Surg. 2017, 8, 7–12. [Google Scholar] [CrossRef]
- Bianchini, S.; Rigotti, E.; Monaco, S.; Nicoletti, L.; Auriti, C.; Castagnola, E.; Conti, G.; Galli, L.; Giuffrè, M.; La Grutta, S.; et al. Surgical Antimicrobial Prophylaxis in Abdominal Surgery for Neonates and Paediatrics: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Bryant, K.A.; Guzman-Cottrill, J.A. Handbook of Pediatric Infection Prevention and Control; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Khoshbin, A.; So, J.P.; Aleem, I.S.; Stephens, D.; Matlow, A.G.; Wright, J.G. Antibiotic Prophylaxis to Prevent Surgical Site Infections in Children. Ann. Surg. 2015, 262, 397–402. [Google Scholar] [CrossRef]
- de Lissovoy, G.; Fraeman, K.; Hutchins, V.; Murphy, D.; Song, D.; Vaughn, B.B. Surgical site infection: Incidence and impact on hospital utilization and treatment costs. Am. J. Infect. Control 2009, 37, 387–397. [Google Scholar] [CrossRef]
- Edwards, F.H.; Engelman, R.M.; Houck, P.; Shahian, D.M.; Bridges, C.R. The Society of Thoracic Surgeons Practice Guideline Series: Antibiotic Prophylaxis in Cardiac Surgery, Part I: Duration. Ann. Thorac. Surg. 2006, 81, 397–404. [Google Scholar] [CrossRef]
- Alphonso, N.; Anagnostopoulos, P.V.; Scarpace, S.; Weintrub, P.; Azakie, A.; Raff, G.; Karl, T.R. Perioperative antibiotic prophylaxis in paediatric cardiac surgery. Cardiol. Young 2007, 17, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Opri, F.; Bianchini, S.; Nicoletti, L.; Monaco, S.; Opri, R.; Di Pietro, M.; Carrara, E.; Rigotti, E.; Auriti, C.; Caminiti, C.; et al. Surgical Antimicrobial Prophylaxis in Patients of Neonatal and Pediatric Age Undergoing Orthopedic and Hand Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 289. [Google Scholar] [CrossRef]
- Engelman, R.; Shahian, D.; Shemin, R.; Guy, T.S.; Bratzler, D.; Edwards, F.; Jacobs, M.; Fernando, H.; Bridges, C.; Workforce on Evidence-Based Medicine, Society of Thoracic Surgeons. The Society of Thoracic Surgeons practice guideline series: Antibiotic prophylaxis in cardiac surgery, part II: Antibiotic choice. Ann. Thorac. Surg. 2007, 83, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Allpress, A.L.; Rosenthal, G.L.; Goodrich, K.M.; Lupinetti, F.M.; Zerr, D.M. Risk factors for surgical site infections after pediatric cardiovascular surgery. Pediatr. Infect. Dis. J. 2004, 23, 231–234. [Google Scholar] [CrossRef]
- Hatachi, T.; Tachibana, K.; Inata, Y.; Tominaga, Y.; Hirano, A.; Kyogoku, M.; Moon, K.; Shimizu, Y.; Isaka, K.; Takeuchi, M. Risk Factors for Healthcare-Associated Infections After Pediatric Cardiac Surgery. Pediatr. Crit. Care Med. 2018, 19, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.T.; Krishnamurthy, G.; Corda, R.; Turcotte, R.F.; Jia, H.; Bacha, E.; Saiman, L. Surgical site infections and bloodstream infections in infants after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2014, 148, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harder, E.E.; Gaies, M.G.; Yu, S.; Donohue, J.E.; Hanauer, D.A.; Goldberg, C.S.; Hirsch, J.C. Risk factors for surgical site infection in pediatric cardiac surgery patients undergoing delayed sternal closure. J. Thorac. Cardiovasc. Surg. 2013, 146, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Prendin, A.; Tabacco, B.; Fazio, P.C.; De Barbieri, I. Management of pediatric cardiac surgery wound: A literature review. Acta Biomed. 2021, 92, e2021203. [Google Scholar]
- Le Guillou, V.; Tavolacci, M.P.; Baste, J.M.; Hubscher, C.; Bedoit, E.; Bessou, J.P.; Litzler, P.Y. Surgical site infection after central venous catheter-related infection in cardiac surgery. Analysis of a cohort of 7557 patients. J. Hosp. Infect. 2011, 79, 236–241. [Google Scholar] [CrossRef]
- Cove, M.E.; Spelman, D.W.; MacLaren, G. Infectious complications of cardiac surgery: A clinical review. J. Cardiothorac. Vasc. Anesth. 2012, 26, 1094–1100. [Google Scholar] [CrossRef] [Green Version]
- Paruk, F.; Sime, F.B.; Lipman, J.; Roberts, J.A. Dosing antibiotic prophylaxis during cardiopulmonary bypass-a higher level of complexity? A structured review. Int. J. Antimicrob. Agents 2017, 49, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Nateghian, A.; Taylor, G.; Robinson, J.L. Risk factors for surgical site infections following open-heart surgery in a Canadian pediatric population. Am. J. Infect. Control 2004, 32, 397–401. [Google Scholar] [CrossRef]
- Costello, J.M.; Graham, D.A.; Morrow, D.F.; Morrow, J.; Potter-Bynoe, G.; Sandora, T.J.; Pigula, F.A.; Laussen, P.C. Risk factors for surgical site infection after cardiac surgery in children. Ann. Thorac. Surg. 2010, 89, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Fitch, K.; Bernstein, S.J.; Aguilar, M.D. The RAND/UCLA Adeguateness Method User’s Manual; The RAND Corporation: Santa Monica, CA, USA, 2001. [Google Scholar]
- Hicks, N.R. Some observations on attempts to measure appropriateness of care. BMJ 1994, 309, 730–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [Green Version]
- Dolk, H.; Loane, M.; Garne, E.; European Surveillance of Congenital Anomalies (EUROCAT) Working Group. Congenital heart defects in Europe: Prevalence and perinatal mortality, 2000 to 2005. Circulation 2011, 123, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, P.; Fuentes, C.; García, N.; Modesto, V. Evaluation of the duration of the antibiotic prophylaxis in paediatric postoperative heart surgery patients. Pediatr. Cardiol. 2012, 33, 735–738. [Google Scholar] [CrossRef]
- Kato, Y.; Shime, N.; Hashimoto, S.; Nomura, M.; Okayama, Y.; Yamagishi, M.; Fujita, N. Effects of controlled perioperative antimicrobial prophylaxis on infectious outcomes in pediatric cardiac surgery. Crit. Care Med. 2007, 35, 1763–1768. [Google Scholar] [CrossRef]
- Anand, V.; Bates, A.; Featherstone, R.; Murthy, S. Perioperative antibiotics in pediatric cardiac surgery: Protocol for a systematic review. Syst. Rev. 2017, 6, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworski, R.; Kansy, A.; Dzierzanowska-Fangrat, K.; Maruszewski, B. Antibiotic Prophylaxis in Pediatric Cardiac Surgery: Where Are We and Where Do We Go? A Systematic Review. Surg. Infect. 2019, 20, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am. J. Health Syst. Pharm. 2013, 70, 195–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.B.; Shah, S.S.; Lautenbach, E.; Coffin, S.E.; Tabbutt, S.; Gaynor, J.W.; Bell, L.M. Postoperative mediastinitis in children: Epidemiology, microbiology and risk factors for Gram-negative pathogens. Pediatr. Infect. Dis. J. 2005, 24, 315–319. [Google Scholar] [CrossRef]
- Huddleston, C.B. Mediastinal wound infections following pediatric cardiac surgery. Semin. Thorac. Cardiovasc. Surg. 2004, 16, 108–112. [Google Scholar] [CrossRef]
- Romano, J.C. Stimulus for change: Result of standardization of antimicrobial prophylaxis duration in pediatric cardiac surgery. J. Thorac. Cardiovasc. Surg. 2016, 152, 1121–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Momany, N.H.; Al-Bakri, A.G.; Makahleh, Z.M.; Wazaify, M.M. Adherence to international antimicrobial prophylaxis guidelines in cardiac surgery: A Jordanian study demonstrates need for quality improvement. J. Manag. Care Pharm. 2009, 15, 262–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McElhinney, D.B.; Reddy, V.M.; Parry, A.J.; Johnson, L.; Fineman, J.R.; Hanley, F.L. Management and outcomes of delayed sternal closure after cardiac surgery in neonates and infants. Crit. Care Med. 2000, 28, 1180–1184. [Google Scholar] [CrossRef]
- Grisaru-Soen, G.; Paret, G.; Yahav, D.; Boyko, V.; Lerner-Geva, L. Nosocomial infections in pediatric cardiovascular surgery patients: A 4-year survey. Pediatr. Crit. Care Med. 2009, 10, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Barker, G.M.; O’Brien, S.M.; Welke, K.F.; Jacobs, M.L.; Jacobs, J.P.; Benjamin, D.K., Jr.; Peterson, E.D.; Jaggers, J.; Li, J.S. Major infection after pediatric cardiac surgery: A risk estimation model. Ann. Thorac. Surg. 2010, 89, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Hatachi, T.; Sofue, T.; Ito, Y.; Inata, Y.; Shimizu, Y.; Hasegawa, M.; Kugo, Y.; Yamauchi, S.; Iwai, S.; Takeuchi, M. Antibiotic Prophylaxis for Open Chest Management After Pediatric Cardiac Surgery. Pediatr. Crit. Care Med. 2019, 20, 801–808. [Google Scholar] [CrossRef]
- Bolon, M.K.; Morlote, M.; Weber, S.G.; Koplan, B.; Carmeli, Y.; Wright, S.B. Glycopeptides are no more effective than beta-lactam agents for prevention of surgical site infection after cardiac surgery: A meta-analysis. Clin. Infect. Dis. 2004, 38, 1357–1363. [Google Scholar] [CrossRef]
- Finkelstein, R.; Rabino, G.; Mashiah, T.; Bar-El, Y.; Adler, Z.; Kertzman, V.; Cohen, O.; Milo, S. Vancomycin versus cefazolin prophylaxis for cardiac surgery in the setting of a high prevalence of methicillin-resistant staphylococcal infections. J. Thorac. Cardiovasc. Surg. 2002, 123, 326–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaper, K.J.; Schubert, S.; Dalhoff, A. Kinetics and quantification of antibacterial effects of beta-lactams, macrolides, and quinolones against gram-positive and gram-negative RTI pathogens. Infection 2005, 33 (Suppl. 2), 3–14. [Google Scholar] [CrossRef]
- Periti, P.; Nicoletti, P. Classification of betalactam antibiotics according to their pharmacodynamics. J. Chemother. 1999, 11, 323–330. [Google Scholar] [CrossRef]
- De Cock, P.A.; Mulla, H.; Desmet, S.; De Somer, F.; McWhinney, B.C.; Ungerer, J.P.; Moerman, A.; Commeyne, S.; Vande Walle, J.; Francois, K.; et al. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass to optimize dosing regimens for children undergoing cardiac surgery. J. Antimicrob. Chemother. 2017, 72, 791–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himebauch, A.S.; Nicolson, S.C.; Sisko, M.; Moorthy, G.; Fuller, S.; Gaynor, J.W.; Zuppa, A.F.; Fox, E.; Kilbaugh, T.J. Skeletal muscle and plasma concentrations of cefazolin during cardiac surgery in infants. J. Thorac. Cardiovasc. Surg. 2014, 148, 2634–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoderer, C.A.; Cox, E.G.; Berg, M.D.; Webster, A.H.; Turrentine, M.W. Efficacy of limited cefuroxime prophylaxis in pediatric patients after cardiovascular surgery. Am. J. Health Syst. Pharm. 2011, 68, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Maher, K.O.; VanDerElzen, K.; Bove, E.L.; Mosca, R.S.; Chenoweth, C.E.; Kulik, T.J. A retrospective review of three antibiotic prophylaxis regimens for pediatric cardiac surgical patients. Ann. Thorac. Surg. 2002, 74, 1195–1200. [Google Scholar] [CrossRef]
- Bath, S.; Lines, J.; Loeffler, A.M.; Malhotra, A.; Turner, R.B. Impact of standardization of antimicrobial prophylaxis duration in pediatric cardiac surgery. J. Thorac. Cardiovasc. Surg. 2016, 152, 1115–1120. [Google Scholar] [CrossRef] [Green Version]
- Brocard, E.; Reveiz, L.; Régnaux, J.P.; Abdala, V.; Ramón-Pardo, P.; Del Rio Bueno, A. Antibiotic prophylaxis for surgical procedures: A scoping review. Rev. Panam. Salud Pública 2021, 45, e62. [Google Scholar] [CrossRef]
- World Health Organization (WHO). In Global Guidelines for the Prevention of Surgical Site Infection, 2nd ed.; World Health Organization: Geneve, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/277399 (accessed on 31 January 2022).
- Organizacion Panamericana de la Salud (PAHO). Tratamiento de las Enfermedades Infecciosas 2020–2022, 8th ed.; PAHO: Washington, DC, USA, 2019; Available online: https://www.paho.org/es/node/64551 (accessed on 31 January 2022).
- Pishgoo, B.; Shahmoradi, A.; Asadian, L. Cardiac Catheterization and Intervention in Pediatric Cardiac Disease: A Narrative Review of Current Indications, Techniques, and Complications. J. Pediatr. Rev. 2017, 5, e10815. [Google Scholar] [CrossRef]
- Feltes, T.F.; Bacha, E.; Beekman, R.H., 3rd; Cheatham, J.P.; Feinstein, J.A.; Gomes, A.S.; Hijazi, Z.M.; Ing, F.F.; de Moor, M.; Morrow, W.R.; et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease: A scientific statement from the American Heart Association. Circulation 2011, 123, 2607–2652. [Google Scholar] [CrossRef] [Green Version]
- Gillett, C.D.; Morgan, G.J. Prophylactic antibiotics in interventional paediatric cardiac catheterisation: Old habits die hard? Cardiol. Young 2015, 25, 693–697. [Google Scholar] [CrossRef]
- Mehta, R.; Lee, K.-J.; Chaturvedi, R.; Benson, L. Complications of pediatric cardiac catheterization: A review in the current era. Catheter. Cardiovasc. Interv. 2008, 72, 278–285. [Google Scholar] [CrossRef]
- Arici, M. Management of Chronic Kidney Disease: A Clinician’s Guide; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Cassidy, S.C.; Schmidt, K.G.; Van Hare, G.F.; Stanger, P.; Teitel, D.F. Complications of pediatric cardiac catheterization: A 3-year study. J. Am. Coll. Cardiol. 1992, 19, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Chambers, C.E.; Eisenhauer, M.D.; McNicol, L.B.; Block, P.C.; Phillips, W.J.; Dehmer, G.J.; Heupler, F.A.; Blankenship, J.C.; Members of the Catheterization Lab Performance Standards Committee for the Socitey for Cardiovascular Angiography and Interventions. Infection control guidelines for the cardiac catheterization laboratory: Society guidelines revisited. Catheter. Cardiovasc. Interv. 2006, 67, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, E.P.; Gross, P.A.; Barrett, T.L.; Krause, P.J.; Martone, W.J.; McGowan, J.E., Jr.; Sweet, R.L.; Wenzel, R.P. Quality standard for antimicrobial prophylaxis in surgical procedures. The Infectious Diseases Society of America. Infect. Control Hosp. Epidemiol. 1994, 15, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.J. The Interventional Cardiac Catheterization Handbook E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Lacour-Gayet, F.; Gouton, M.; Bical, O.; Lucet, V.; Roussin, R.; Leca, F. Surgery for severe congenital heart diseases in children from developing nations. J. Thorac. Cardiovasc. Surg. 2022, 163, 413–423. [Google Scholar] [CrossRef]
- Mari, M.A.; Cascudo, M.M.; Alchieri, J.C. Congenital Heart Disease and Impacts on Child Development. Braz. J. Cardiovasc. Surg. 2016, 31, 31–37. [Google Scholar] [CrossRef]
- Amedro, P.; Gavotto, A.; Bredy, C.; Guillaumont, S. Cardiac rehabilitation for children and adults with congenital heart disease. Presse Med. 2017, 46, 530–537. [Google Scholar] [CrossRef]
- Shah, L.; Hijazi, Z.; Sandhu, S.; Joseph, A.; Cao, Q.-L. Use of endovascular stents for the treatment of coarctation of the aorta in children and adults: Immediate and midterm results. J. Invasive Cardiol. 2005, 17, 614–618. [Google Scholar]
- Moustafa, G.A.; Kolokythas, A.; Charitakis, K.; Avgerinos, D.V. Therapeutic Utilities of Pediatric Cardiac Catheterization. Curr. Cardiol. Rev. 2016, 12, 258–269. [Google Scholar] [CrossRef]
- Dixon, G.; Christov, G. Infective endocarditis in children: An update. Curr. Opin. Infect. Dis. 2017, 30, 257–267. [Google Scholar] [CrossRef]
- Amedro, P.; Soulatges, C.; Fraisse, A. Infective endocarditis after device closure of atrial septal defects: Case report and review of the literature. Catheter. Cardiovasc. Interv. 2017, 89, 324–334. [Google Scholar] [CrossRef]
- Thornhill, M.H.; Jones, S.; Prendergast, B.; Baddour, L.M.; Chambers, J.B.; Lockhart, P.B.; Dayer, M.J. Quantifying infective endocarditis risk in patients with predisposing cardiac conditions. Eur. Heart J. 2018, 39, 586–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, A.; Kirkorian, G.; Cucherat, M.; Delahaye, F.; Chevalier, P.; Cerisier, A.; Isaaz, K.; Touboul, P. Antibiotic prophylaxis for permanent pacemaker implantation: A meta-analysis. Circulation 1998, 97, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Berger, C.; Balmer, C.; Kretschmar, O.; Bauersfeld, U.; Pretre, R.; Nadal, D.; Knirsch, W. Interventions using foreign material to treat congenital heart disease in children increase the risk for infective endocarditis. Pediatr. Infect. Dis. J. 2008, 27, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Baddour, L.M.; Bettmann, M.A.; Bolger, A.F.; Epstein, A.E.; Ferrieri, P.; Gerber, M.A.; Gewitz, M.H.; Jacobs, A.K.; Levison, M.E.; Newburger, J.W.; et al. Nonvalvular cardiovascular device-related infections. Clin. Infect. Dis. 2004, 38, 1128–1230. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Boyce, T.G.; Cetta, F.; Steckelberg, J.M.; Johnson, J.N. Infective endocarditis in the pediatric patient: A 60-year single-institution review. Mayo Clin. Proc. 2012, 87, 629–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreter, B.; Woods, M. Antibiotic prophylaxis for cardiothoracic operations. J. Thorac. Cardiovasc. Surg. 1992, 104, 590–599. [Google Scholar] [CrossRef]
- Wellens, F.; Pirlet, M.; Larbuisson, R.; De Meireleire, F.; De Somer, P. Prophylaxis in cardiac surgery. A controlled randomized comparison between cefazolin and cefuroxime. Eur. J. Cardiothorac. Surg. 1995, 9, 325–329. [Google Scholar] [CrossRef]
- Doebbeling, B.N.; Pfaller, M.A.; Kuhns, K.R.; Massanari, R.M.; Behrendt, D.M.; Wenzel, R.P. Cardiovascular surgery prophylaxis. A randomized, controlled comparison of cefazolin and cefuroxime. J. Thorac. Cardiovasc. Surg. 1990, 99, 981–989. [Google Scholar] [CrossRef]
- Chen, S.Y.; Ceresnak, S.R.; Motonaga, K.S.; Trela, A.; Hanisch, D.; Dubin, A.M. Antibiotic Prophylaxis Practices in Pediatric Cardiac Implantable Electronic Device Procedures: A Survey of the Pediatric and Congenital Electrophysiology Society (PACES). Pediatr. Cardiol. 2018, 39, 1129–1133. [Google Scholar] [CrossRef]
- Darouiche, R.; Mosier, M.; Voigt, J. Antibiotics and antiseptics to prevent infection in cardiac rhythm management device implantation surgery. Pacing Clin. Electrophysiol. 2012, 35, 1348–1360. [Google Scholar] [CrossRef]
- Bertaglia, E.; Zerbo, F.; Zardo, S.; Barzan, D.; Zoppo, F.; Pascotto, P. Antibiotic prophylaxis with a single dose of cefazolin during pacemaker implantation: Incidence of long-term infective complications. Pacing Clin. Electrophysiol. 2006, 29, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Baddour, L.M.; Epstein, A.E.; Erickson, C.C.; Knight, B.P.; Levison, M.E.; Lockhart, P.B.; Masoudi, F.A.; Okum, E.J.; Wilson, W.R.; Beerman, L.B.; et al. Update on cardiovascular implantable electronic device infections and their management: A scientific statement from the American Heart Association. Circulation 2010, 121, 458–477. [Google Scholar] [CrossRef] [PubMed]
- Jenks, C.L.; Raman, L.; Dalton, H.J. Pediatric Extracorporeal Membrane Oxygenation. Crit. Care Clin. 2017, 33, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Kays, D.W. ECMO in CDH: Is there a role? Semin. Pediatr. Surg. 2017, 26, 166–170. [Google Scholar] [CrossRef]
- Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. Lancet 2009, 374, 1351–1363. [Google Scholar] [CrossRef]
- Sameed, M.; Meng, Z.; Marciniak, E.T. EOLIA trial: The future of extracorporeal membrane oxygenation in acute respiratory distress syndrome therapy? Breathe 2019, 15, 244–246. [Google Scholar] [CrossRef]
- Friedrichson, B.; Mutlak, H.; Zacharowski, K.; Piekarski, F. Insight into ECMO, mortality and ARDS: A nationwide analysis of 45,647 ECMO runs. Crit. Care 2021, 25, 38. [Google Scholar] [CrossRef]
- Bizzarro, M.J.; Conrad, S.A.; Kaufman, D.A.; Rycus, P.; Extracorporeal Life Support Organization Task Force on Infections, Extracorporeal Membrane Oxygenation. Infections acquired during extracorporeal membrane oxygenation in neonates, children, and adults. Pediatr. Crit. Care Med. 2011, 12, 277–281. [Google Scholar] [CrossRef]
- Meyer, D.M.; Jessen, M.E.; Eberhart, R.C. Neonatal extracorporeal membrane oxygenation complicated by sepsis. Extracorporeal Life Support Organization. Ann. Thorac. Surg. 1995, 59, 975–980. [Google Scholar] [CrossRef]
- Gardner, A.H.; Prodhan, P.; Stovall, S.H.; Gossett, J.M.; Stern, J.E.; Wilson, C.D.; Fiser, R.T. Fungal infections and antifungal prophylaxis in pediatric cardiac extracorporeal life support. J. Thorac. Cardiovasc. Surg. 2012, 143, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Hsu, M.S.; Chiu, K.M.; Huang, Y.T.; Kao, K.L.; Chu, S.H.; Liao, C.H. Risk factors for nosocomial infection during extracorporeal membrane oxygenation. J. Hosp. Infect. 2009, 73, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Glater-Welt, L.B.; Schneider, J.B.; Zinger, M.M.; Rosen, L.; Sweberg, T.M. Nosocomial Bloodstream Infections in Patients Receiving Extracorporeal Life Support: Variability in Prevention Practices: A Survey of the Extracorporeal Life Support Organization Members. J. Intensive Care Med. 2016, 31, 654–669. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Yeo, H.J.; Yoon, S.H.; Lee, S.E.; Lee, S.J.; Cho, W.H.; Jeon, D.S.; Kim, Y.S.; Son, B.S.; Kim, D.H. Impact of bloodstream infections on catheter colonization during extracorporeal membrane oxygenation. J. Artif. Organs 2016, 19, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Tse-Chang, A.; Midodzi, W.; Joffe, A.R.; Robinson, J.L. Infections in children receiving extracorporeal life support. Infect. Control Hosp. Epidemiol. 2011, 32, 115–120. [Google Scholar] [CrossRef]
- Yeo, H.J.; Kim, D.; Ha, M.; Je, H.G.; Kim, J.S.; Cho, W.H. Chlorhexidine bathing of the exposed circuits in extracorporeal membrane oxygenation: An uncontrolled before-and-after study. Crit. Care 2020, 24, 595. [Google Scholar] [CrossRef]
- Butler, D.F.; Lee, B.; Molitor-Kirsch, E.; Newland, J.G. Extracorporeal Membrane Oxygenation-Associated Bloodstream Infections in Children. Pediatr. Infect. Dis. J. 2017, 36, 346–347. [Google Scholar] [CrossRef]
- The Extracorporeal Life Support Organization Infectious Disease Task Force Recommebdation Summary. Available online: https://www.elso.org/Portals/0/Files/Infection-Control-and-Extracorporeal-Life-Support.pdf (accessed on 3 February 2022).
- Frazier, C.A.; Scott, B.M.; Johnson, P.N.; LaRochelle, J.M. Antimicrobial Prophylaxis and Anticoagulation Therapy in Pediatric ECMO: A Survey Study. J. Pediatr. Pharmacol. Ther. 2022, 27, 72–79. [Google Scholar] [CrossRef]
- Kao, L.S.; Fleming, G.M.; Escamilla, R.J.; Lew, D.F.; Lally, K.P. Antimicrobial prophylaxis and infection surveillance in extracorporeal membrane oxygenation patients: A multi-institutional survey of practice patterns. ASAIO J. 2011, 57, 231–238. [Google Scholar] [CrossRef]
- Farrell, D.; MacLaren, G.; Schlapbach, L.J. Infections on Extracorporeal Life Support in Adults and Children-A Survey of International Practice on Prevention, Diagnosis, and Treatment. Pediatr. Crit. Care Med. 2019, 20, 667–671. [Google Scholar] [CrossRef]
- Adembri, C.; Ristori, R.; Chelazzi, C.; Arrigucci, S.; Cassetta, M.I.; De Gaudio, A.R.; Novelli, A. Cefazolin bolus and continuous administration for elective cardiac surgery: Improved pharmacokinetic and pharmacodynamic parameters. J. Thorac. Cardiovasc. Surg. 2010, 140, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Lanckohr, C.; Horn, D.; Voeller, S.; Hempel, G.; Fobker, M.; Welp, H.; Koeck, R.; Ellger, B. Pharmacokinetic characteristics and microbiologic appropriateness of cefazolin for perioperative antibiotic prophylaxis in elective cardiac surgery. J. Thorac. Cardiovasc. Surg. 2016, 152, 603–610. [Google Scholar] [CrossRef]
- Immohr, M.B.; Akhyari, P.; Böttger, C.; Mehdiani, A.; Dalyanoglu, H.; Westenfeld, R.; Oehler, D.; Tudorache, I.; Aubin, H.; Lichtenberg, A.; et al. Cytomegalovirus mismatch after heart transplantation: Impact of antiviral prophylaxis and intravenous hyperimmune globulin. Immun. Inflamm. Dis. 2021, 9, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Van Zyl, J.S.; Hall, S.A.; Sam, T. Impact of risk-stratified mycophenolate dosing in heart transplantation. Clin. Transplant. 2021, 35, e14445. [Google Scholar] [CrossRef] [PubMed]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am. J. Infect. Control 1999, 27, 96–134. [Google Scholar]
- Radu, D.M.; Jauréguy, F.; Seguin, A.; Foulon, C.; Destable, M.D.; Azorin, J.; Martinod, E. Postoperative pneumonia after major pulmonary resections: An unsolved problem in thoracic surgery. Ann. Thorac. Surg. 2007, 84, 1669–1673. [Google Scholar] [CrossRef] [PubMed]
- Aznar, R.; Mateu, M.; Miró, J.M.; Gatell, J.M.; Gimferrer, J.M.; Aznar, E.; Mallolas, J.; Soriano, E.; Sanchez-Lloret, J. Antibiotic prophylaxis in non-cardiac thoracic surgery: Cefazolin versus placebo. Eur. J. Cardiothorac. Surg. 1991, 5, 515–518. [Google Scholar] [CrossRef]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.J.; Gonzalez, M.; Ljungqvist, O.; Petersen, R.H.; Popescu, W.M.; Slinger, P.D.; et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardiothorac. Surg. 2019, 55, 91–115. [Google Scholar] [CrossRef]
- Chang, S.H.; Krupnick, A.S. Perioperative antibiotics in thoracic surgery. Thorac. Surg. Clin. 2012, 22, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Oxman, D.A.; Issa, N.C.; Marty, F.M.; Patel, A.; Panizales, C.Z.; Johnson, N.N.; Licona, J.H.; McKenna, S.S.; Frendl, G.; Mentzer, S.J.; et al. Postoperative antibacterial prophylaxis for the prevention of infectious complications associated with tube thoracostomy in patients undergoing elective general thoracic surgery: A double-blind, placebo-controlled, randomized trial. JAMA Surg. 2013, 148, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Bernard, A.; Pillet, M.; Goudet, P.; Viard, H. Antibiotic prophylaxis in pulmonary surgery. A prospective randomized double-blind trial of flash cefuroxime versus forty-eight-hour cefuroxime. J. Thorac. Cardiovasc. Surg. 1994, 107, 896–900. [Google Scholar] [CrossRef] [Green Version]
- Schussler, O.; Dermine, H.; Alifano, M.; Casetta, A.; Coignard, S.; Roche, N.; Strano, S.; Meunier, A.; Salvi, M.; Magdeleinat, P.; et al. Should we change antibiotic prophylaxis for lung surgery? Postoperative pneumonia is the critical issue. Ann. Thorac. Surg. 2008, 86, 1727–1733. [Google Scholar] [CrossRef]
- Imperatori, A.; Rotolo, N.; Gatti, M.; Nardecchia, E.; De Monte, L.; Conti, V.; Dominioni, L. Peri-operative complications of video-assisted thoracoscopic surgery (VATS). Int. J. Surg. 2008, 6 (Suppl. 1), S78–S81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solaini, L.; Prusciano, F.; Bagioni, P.; di Francesco, F.; Solaini, L.; Poddie, D.B. Video-assisted thoracic surgery (VATS) of the lung: Analysis of intraoperative and postoperative complications over 15 years and review of the literature. Surg. Endosc. 2008, 22, 298–310. [Google Scholar] [CrossRef]
- Kwiatt, M.; Tarbox, A.; Seamon, M.J.; Swaroop, M.; Cipolla, J.; Allen, C.; Hallenbeck, S.; Davido, H.T.; Lindsey, D.E.; Doraiswamy, V.A.; et al. Thoracostomy tubes: A comprehensive review of complications and related topics. Int. J. Crit. Illn. Inj. Sci. 2014, 4, 143–155. [Google Scholar]
- Olgac, G.; Aydogmus, U.; Mulazimoglu, L.; Kutlu, C.A. Antibiotics are not needed during tube thoracostomy for spontaneous pneumothorax: An observational case study. J. Cardiothorac. Surg. 2006, 1, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Loeches, I.; Leone, M.; Einav, S. Antibiotic prophylaxis in the ICU: To be or not to be administered for patients undergoing procedures? Intensive Care Med. 2020, 46, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Arnold, T.; Harvey, J.; Pleural Diseases Group; Standards of Care Committee; British Thoracic Society. BTS guidelines for the management of spontaneous pneumothorax. Thorax 2003, 58 (Suppl. 2), ii39–ii52. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.; Auboyer, C.; Boisson, M.; Dupont, H.; Gauzit, R.; Kitzis, M.; Leone, M.; Lepape, A.; Mimoz, O.; Montravers, P.; et al. Antibioprophylaxis in surgery and interventional medicine (adult patients). Update 2017. Anaesth Crit. Care Pain Med. 2019, 38, 549–562. [Google Scholar] [CrossRef]
- Stewart, A.; Inglis, G.D.T.; Jardine, L.A.; Koorts, P.; Davies, M.W. Prophylactic antibiotics to reduce morbidity and mortality in newborn infants with intercostal catheters. Cochrane Database Syst. Rev. 2012, 4, CD008173. [Google Scholar] [CrossRef]
- Patel, S.J.; Oshodi, A.; Prasad, P.; Delamora, P.; Larson, E.; Zaoutis, T.; Paul, D.A.; Saiman, L. Antibiotic use in neonatal intensive care units and adherence with Centers for Disease Control and Prevention 12 Step Campaign to Prevent Antimicrobial Resistance. Pediatr. Infect. Dis. J. 2009, 28, 1047–1051. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.C. Complications of tube thoracostomy in trauma. Emerg. Med. J. 2000, 17, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoglio, P.; Guerrera, F.; Viti, A.; Terzi, A.C.; Ruffini, E.; Lyberis, P.; Filosso, P.L. Chest drain and thoracotomy for chest trauma. J. Thorac. Dis. 2019, 11 (Suppl. 2), S186–S191. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.M.; Corneille, M.G. Common Complications Following Thoracic Trauma: Their Prevention and Treatment. Semin. Thorac. Cardiovasc. Surg. 2008, 20, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Luchette, F.A.; Barrie, P.S.; Oswanski, M.F.; Spain, D.A.; Mullins, C.D.; Palumbo, F.; Pasquale, M.D. Practice Management Guidelines for Prophylactic Antibiotic Use in Tube Thoracostomy for Traumatic Hemopneumothorax: The EAST Practice Management Guidelines Work Group. Eastern Association for Trauma. J. Trauma 2000, 48, 753–757. [Google Scholar] [CrossRef]
- Bosman, A.; de Jong, M.B.; Debeij, J.; van den Broek, P.J.; Schipper, I.B. Systematic review and meta-analysis of antibiotic prophylaxis to prevent infections from chest drains in blunt and penetrating thoracic injuries. Br. J. Surg. 2012, 99, 506–513. [Google Scholar] [CrossRef]
- Grover, F.L.; Richardson, J.D.; Fewel, J.G.; Arom, K.V.; Webb, G.E.; Trinkle, J.K. Prophylactic antibiotics in the treatment of penetrating chest wounds. A prospective double-blind study. J. Thorac. Cardiovasc. Surg. 1977, 74, 528–536. [Google Scholar] [CrossRef]
- Stone, H.H.; Symbas, P.N.; Hooper, C.A. Cefamandole for prophylaxis against infection in closed tube thoracostomy. J. Trauma 1981, 21, 975–977. [Google Scholar] [CrossRef]
- Cant, P.J.; Smyth, S.; Smart, D.O. Antibiotic prophylaxis is indicated for chest stab wounds requiring closed tube thoracostomy. Br. J. Surg. 1993, 80, 464–466. [Google Scholar] [CrossRef]
- Gonzalez, R.P.; Holevar, M.R. Role of prophylactic antibiotics for tube thoracostomy in chest trauma. Am. Surg. 1998, 64, 617–621. [Google Scholar]
- Sanabria, A.; Valdivieso, E.; Gomez, G.; Echeverry, G. Prophylactic antibiotics in chest trauma: A meta-analysis of high-quality studies. World J. Surg. 2006, 30, 1843–1847. [Google Scholar] [CrossRef]
- Fallon, W.F., Jr.; Wears, R.L. Prophylactic antibiotics for the prevention of infectious complications including empyema following tube thoracostomy for trauma: Results of meta-analysis. J. Trauma 1992, 33, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.L.; Smith, J.W.; Muzik, A.C.; Love, E.J.; McSwain, N.E.; Timberlake, G.; Flint, L.M. Preventive antibiotic usage in traumatic thoracic injuries requiring closed tube thoracostomy. Chest 1994, 106, 1493–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, R.A.; Campbell, D.J.; Fabian, T.C.; Croce, M.A.; Luchette, F.A.; Kerwin, A.J.; Davis, K.A.; Nagy, K.; Tisherman, S. Use of presumptive antibiotics following tube thoracostomy for traumatic hemopneumothorax in the prevention of empyema and pneumonia--a multi-center trial. J. Trauma 2004, 57, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Hu, C.; Ward, J.; Schultz, S.; Moore Iii, F.O.; Funk, G.; Juern, J.; Turay, D.; Ahmad, S.; Pieri, P.; et al. Presumptive antibiotics in tube thoracostomy for traumatic hemopneumothorax: A prospective, Multicenter American Association for the Surgery of Trauma Study. Trauma Surg. Acute Care Open. 2019, 4, e000356. [Google Scholar] [CrossRef] [Green Version]
- Moore, F.O.; Duane, T.M.; Hu, C.K.; Fox, A.D.; McQuay, N., Jr.; Lieber, M.L.; Como, J.J.; Haut, E.R.; Kerwin, A.J.; Guillamondegui, O.D.; et al. Presumptive antibiotic use in tube thoracostomy for traumatic hemopneumothorax: An Eastern Association for the Surgery of Trauma practice management guideline. J. Trauma Acute Care Surg. 2012, 73 (Suppl. 4), S341–S344. [Google Scholar] [CrossRef] [Green Version]
- Elnahla, A.; Iuliucci, K.R.; Toraih, E.; Duchesne, J.C.; Nichols, R.L.; Kandil, E. The efficacy of the use of presumptive antibiotics in tube thoracostomy in thoracic trauma-results of a meta-analysis. Am. J. Surg. 2021, 222, 1017–1022. [Google Scholar] [CrossRef]
- Ayoub, F.; Quirke, M.; Frith, D. Use of prophylactic antibiotic in preventing complications for blunt and penetrating chest trauma requiring chest drain insertion: A systematic review and meta-analysis. Trauma Surg. Acute Care Open. 2019, 4, e000246. [Google Scholar] [CrossRef] [Green Version]
- Laws, D.; Neville, E.; Duffy, J.; Pleural Diseases Group, Standards of Care Committee, British Thoracic Society. BTS guidelines for the insertion of a chest drain. Thorax 2003, 58 (Suppl. 2), ii53–ii59. [Google Scholar] [CrossRef] [Green Version]
- Sandoe, J.A.; Kumar, B.; Stoddart, B.; Milton, R.; Dave, J.; Nair, U.R.; Wilcox, M.H. Effect of extended perioperative antibiotic prophylaxis on intravascular catheter colonization and infection in cardiothoracic surgery patients. J. Antimicrob. Chemother. 2003, 52, 877–879. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.T.; Corda, R.; Turcotte, R.; Bacha, E.; Saiman, L.; Krishnamurthy, G. Implementing a standardized perioperative antibiotic prophylaxis protocol for neonates undergoing cardiac surgery. Ann. Thorac. Surg. 2014, 98, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Silvetti, S.; Landoni, G.; Castagnola, E.; Nuri, H.; Pomé, G.; Moscatelli, A. Antibiotic Management for Delayed Sternal Closure Following Pediatric Cardiac Surgery: A Systematic Review of Recent Literature. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Ovadia, B.; Erez, E.; Rinat, S.; Ashkenazi, S.; Birk, E.; Konisberger, H.; Vidne, B.; Dagan, O. Nosocomial infections after cardiac surgery in infants and children: Incidence and risk factors. J. Hosp. Infect. 2003, 53, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Sohn, A.H.; Schwartz, J.M.; Yang, K.Y.; Jarvis, W.R.; Guglielmo, B.J.; Weintrub, P.S. Risk factors and risk adjustment for surgical site infections in pediatric cardiothoracic surgery patients. Am. J. Infect. Control 2010, 38, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, G.; Flanagan, H.L., Jr.; Cohn, L.H.; Giardina, R.; Platt, R. Improvement of intraoperative antibiotic prophylaxis in prolonged cardiac surgery by automated alerts in the operating room. Infect. Control Hosp. Epidemiol. 2003, 24, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Nair, B.G.; Newman, S.F.; Peterson, G.N.; Wu, W.Y.; Schwid, H.A. Feedback mechanisms including real-time electronic alerts to achieve near 100% timely prophylactic antibiotic administration in surgical cases. Anesth. Analg. 2010, 111, 1293–1300. [Google Scholar] [CrossRef]
- Bianchini, S.; Rigotti, E.; Nicoletti, L.; Monaco, S.; Auriti, C.; Castagnola, E.; Castelli Gattinara, G.; De Luca, M.; Galli, L.; Garazzino, S.; et al. Surgical Antimicrobial Prophylaxis in Neonates and Children with Special High-Risk Conditions: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 246. [Google Scholar] [CrossRef]
- Brindle, M.E.; McDiarmid, C.; Short, K.; Miller, K.; MacRobie, A.; Lam, J.Y.K.; Brockel, M.; Raval, M.V.; Howlett, A.; Lee, K.S.; et al. Consensus Guidelines for Perioperative Care in Neonatal Intestinal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations. World J. Surg. 2020, 44, 2482–2492. [Google Scholar] [CrossRef]
- Brindle, M.E.; Heiss, K.; Scott, M.J.; Herndon, C.A.; Ljungqvist, O.; Koyle, M.A.; on behalf Pediatric ERAS (Enhanced Recovery After Surgery) Society. Embracing change: The era for pediatric ERAS is here. Pediatr. Surg. Int. 2019, 35, 631–634. [Google Scholar] [CrossRef] [Green Version]
Congenital Heart Diseases |
---|
Patent ductus arteriosus |
Ostium primum type atrial septal defect |
Ostium secundum type atrial septal defect |
Partial anomalous pulmonary venous connection |
Total anomalous pulmonary venous connection |
Ventricular septal defect |
Partial/Complete atrial septal defect |
Atrioventricular septal defect |
Tetralogy of Fallot |
Transposition of great arteries |
Double outlet right ventricle |
Pulmonary stenosis |
Aortic valve stenosis |
Coarctation of the aorta |
Univentricular heart |
Hypoplasia of pulmonary arteries |
Hypoplasia of the aortic arch |
Non-Cardiac Thoracic Surgery |
---|
Primary lung tumors (rare) and metastatic tumors (more common) |
Congenital lung malformations |
Congenital vascular malformation of the chest |
Congenital chest deformities |
Non-Cardiac Thoracic Surgery Using Video-Assisted Thoracoscopy |
---|
Lobectomy and segmentectomy (congenital lung lesions) |
Thoracoscopic biopsies |
Congenital diaphragmatic hernia |
Congenital esophageal atresia |
Congenital esophageal duplications |
Congenital vascular malformation |
Bronchogenic cyst |
Congenital chest deformities (pectus excavatum) |
Pulmonary empyema |
Pulmonary metastasectomy for oligometastatic disease |
Cardiac Surgery | Prophylaxis | Molecule | Dosage and Timing |
---|---|---|---|
Correction of congenital heart disease and/or valve surgery, with sternotomy or thoracotomy | YES | Cefazolin |
|
Diagnostic or interventional cardiac catheterization without prosthetic material placement | NO | - | - |
Interventional cardiac catheterization with prosthetic material placement | Yes | Cefazolin |
|
Placement of implantable cardiac defibrillator or epicardial pacemaker (PM), with thoracotomy or sternotomy or subxiphoid or subcostal incision. | Yes | Cefazolin |
|
Patient undergoing extracorporeal circulation (ECMO), both venous and veno-arterial | Yes | Cefazolin |
|
Other interventions (treatment of cardiac tumors and heart transplantation) | Yes |
|
Non-Cardiac Thoracic Surgery | Prophylaxis | Molecule | Dosage and Method of Administration |
---|---|---|---|
Non-cardiac thoracic surgery with thoracotomy | Yes | Cefazolin | Single dose of 30 mg/Kg (maximum dose 2 g) IV, within 30 min before surgery, repeatable if surgery lasts more than 4 h |
Non-cardiac thoracic surgery using video-assisted thoracoscopy (VATS) | Yes | Cefazolin | Single dose of 30 mg/Kg (maximum dose 2 g) IV, within 30 min before surgery, repeatable if surgery lasts more than 4 h |
Elective placement of chest drainage in pediatric patients | NO | - | - |
Elective chest drain placement in neonatal age patients | NO | - | - |
Placement of chest drainage in the traumatology field | Yes | Cefazolin | Single dose of 30 mg/Kg (maximum dose 2 g) IV, within 30 min before surgery, repeatable if surgery lasts more than 4 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, S.; Nicoletti, L.; Monaco, S.; Rigotti, E.; Corbelli, A.; Colombari, A.; Auriti, C.; Caminiti, C.; Conti, G.; De Luca, M.; et al. Peri-Operative Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Cardiac and Thoracic Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 554. https://doi.org/10.3390/antibiotics11050554
Bianchini S, Nicoletti L, Monaco S, Rigotti E, Corbelli A, Colombari A, Auriti C, Caminiti C, Conti G, De Luca M, et al. Peri-Operative Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Cardiac and Thoracic Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics. 2022; 11(5):554. https://doi.org/10.3390/antibiotics11050554
Chicago/Turabian StyleBianchini, Sonia, Laura Nicoletti, Sara Monaco, Erika Rigotti, Agnese Corbelli, Annamaria Colombari, Cinzia Auriti, Caterina Caminiti, Giorgio Conti, Maia De Luca, and et al. 2022. "Peri-Operative Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Cardiac and Thoracic Surgery: A RAND/UCLA Appropriateness Method Consensus Study" Antibiotics 11, no. 5: 554. https://doi.org/10.3390/antibiotics11050554
APA StyleBianchini, S., Nicoletti, L., Monaco, S., Rigotti, E., Corbelli, A., Colombari, A., Auriti, C., Caminiti, C., Conti, G., De Luca, M., Donà, D., Galli, L., Garazzino, S., Inserra, A., La Grutta, S., Lancella, L., Lima, M., Lo Vecchio, A., Pelizzo, G., ... on behalf of the Peri-Operative Prophylaxis in Neonatal and Paediatric Age (POP-NeoPed) Study Group. (2022). Peri-Operative Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Cardiac and Thoracic Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics, 11(5), 554. https://doi.org/10.3390/antibiotics11050554