Whole-Genome Sequencing of a Colistin-Resistant Acinetobacter baumannii Strain Isolated at a Tertiary Health Facility in Pretoria, South Africa
Abstract
:1. Background
2. Methods
2.1. Sample Collection
2.2. Sample Identification and Antimicrobial Susceptibility Testing
2.3. Nucleic Acid Extraction
2.4. Polymerase Chain Reaction for Molecular Detection of Oxacillinase (blaoxa-51), AdeABC Efflux Pump (adeB, adeR and adeS), and Plasmid-Mediated Colistin-Resistant Genes (mcr-1)
2.5. Quantitative Real-Time PCR (qRT-PCR) Amplification of AdeABC Efflux Pump (adeB, adeR and adeS), and Plasmid-Mediated Colistin-Resistant Genes (mcr-1)
2.6. Phenotypic Evaluation of AdeABC Efflux Pump adeB, adeS, and adeR Gene Expression
2.7. Whole-Genome Sequencing
2.8. Sequence Analysis and Typing
2.9. Sequences and Genbank Accession Numbers
3. Results
3.1. Isolate Identification and Antimicrobial Susceptibility Testing
3.2. Molecular Investigation of AdeABC Efflux Pump (adeB, adeR, and adeS) and Plasmid-Mediated Colistin-Resistant Genes (mcr-1)
3.3. Phenotypic Evaluation of AdeABC Efflux Pump adeB, adeS, and adeR Gene Expression
3.4. Genomic Investigation of Resistance Mechanism
3.5. Multi-Locus Sequence Typing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, M.F.; Jamal, Z.; Pervin, N. Acinetobacter. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Liu, L.; Liu, B.; Li, W. Successful Incidences of Controlling Multidrug-Resistant, Extensively Drug-Resistant, and Nosocomial Infection Acinetobacter baumannii Using Antibiotic Stewardship, Infection Control Programs, and Environmental Cleaning at a Chinese University Hospital. Infect. Drug Resist. 2020, 13, 2557–2570. [Google Scholar] [CrossRef]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [Green Version]
- Aranda, J.; Bardina, C.; Beceiro, A.; Rumbo, S.; Cabral, M.P.; Barbé, J.; Bou, G. Acinetobacter baumannii RecA Protein in Repair of DNA Damage, Antimicrobial Resistance, General Stress Response, and Virulence. J. Bacteriol. 2011, 193, 3740–3747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Pormohammad, A.; Mehdinejadiani, K.; Gholizadeh, P.; Nasiri, M.J.; Mohtavinejad, N.; Dadashi, M.; Karimaei, S.; Safari, H.; Azimi, T. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb. Pathog. 2020, 139, 103887. [Google Scholar] [CrossRef] [PubMed]
- Snyman, Y.; Whitelaw, A.C.; Reuter, S.; Dramowski, A.; Maloba, M.R.B.; Newton-Foot, M. Clonal expansion of colistin-resistant Acinetobacter baumannii isolates in Cape Town, South Africa. Int. J. Infect. Dis. 2020, 91, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Asokan, G.V.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med. J. 2019, 34, 184. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Pogue, J.M.; Li, Z.; Nation, R.L.; Kaye, K.S.; Li, J. Agents of Last Resort. Infect. Dis. Clin. N. Am. 2020, 34, 723–750. [Google Scholar] [CrossRef]
- Cheah, S.-E.; Johnson, M.D.; Zhu, Y.; Tsuji, B.T.; Forrest, A.; Bulitta, J.B.; Boyce, J.D.; Nation, R.L.; Li, J. Polymyxin Resistance in Acinetobacter baumannii: Genetic Mutations and Transcriptomic Changes in Response to Clinically Relevant Dosage Regimens. Sci. Rep. 2016, 6, 26233. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.; Crane, B.; Powell, D.; Deveson, L.D.; Li, Z.; Aranda, J.; Harrison, P.; Nation, R.L.; Adler, B.; Harper, M.; et al. The transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinetics/pharmacodynamics model. J. Antimicrob. Chemother. 2015, 70, 1303–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Zhao, J.; Maifiah, M.H.M.; Velkov, T.; Schreiber, F.; Li, J. Metabolic Responses to Polymyxin Treatment in Acinetobacter baumannii ATCC 19606: Integrating Transcriptomics and Metabolomics with Genome-Scale Metabolic Modeling. mSystems 2019, 4, e00157-18. [Google Scholar] [CrossRef] [Green Version]
- Javed, H.; Saleem, S.; Zafar, A.; Ghafoor, A.; Shahzad, A.B.; Ejaz, H.; Junaid, K.; Jahan, S. Emergence of plasmid-mediated mcr genes from Gram-negative bacteria at the human-animal interface. Gut Pathog. 2020, 12, 54. [Google Scholar] [CrossRef]
- Moffatt, J.H.; Harper, M.; Adler, B.; Nation, R.L.; Li, J.; Boyce, J.D. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011, 55, 3022–3024. [Google Scholar] [CrossRef] [Green Version]
- Trebosc, V.; Gartenmann, S.; Tötzl, M.; Lucchini, V.; Schellhorn, B.; Pieren, M.; Lociuro, S.; Gitzinger, M.; Tigges, M.; Bumann, D.; et al. Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates. mBio 2019, 10, e01083-19. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Wang, N.; Li, X.; Shi, K.; Zhou, Z.; Yu, Y.; Hua, X. The Effect of Colistin Resistance-Associated Mutations on the Fitness of Acinetobacter baumannii. Front. Microbiol. 2016, 7, 1715. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, J.H.; Harper, M.; Harrison, P.; Hale, J.D.; Vinogradov, E.; Seemann, T.; Henry, R.; Crane, B.; St Michael, F.; Cox, A.D.; et al. Colistin Resistance in Acinetobacter baumannii Is Mediated by Complete Loss of Lipopolysaccharide Production. Antimicrob. Agents Chemother. 2010, 54, 4971–4977. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Shen, C.; Zheng, X.; Liu, Y.; Chen, H.; Zhong, L.; Liang, Y.; Liao, K.; Xia, Y.; Tian, G.B.; et al. Identification of a Novel Plasmid Carrying mcr-4.3 in an Acinetobacter baumannii Strain in China. Antimicrob. Agents Chemother. 2019, 63, e00133-19. [Google Scholar] [CrossRef] [Green Version]
- Newton-Foot, M.; Snyman, Y.; Maloba, M.R.B.; Whitelaw, A.C. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. clinical isolates from the Western Cape region of South Africa. Antimicrob. Resist. Infect. Control 2017, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, J.; Corcoran, C.; Prentice, E.; Moodley, M.; Mendelson, M.; Poirel, L.; Nordmann, P.; Brink, A.J. Emergence of plasmid-mediated colistin resistance (MCR-1) among Escherichia coli isolated from South African patients. South Afr. Med. J. Suid-Afr. Tydskr. Vir Geneeskd. 2016, 106, 35–36. [Google Scholar] [CrossRef]
- Perovic, O.; Ismail, H.; Quan, V.; Bamford, C.; Nana, T.; Chibabhai, V.; Bhola, P.; Ramjathan, P.; Swe Swe-Han, K.; Wadula, J.; et al. Carbapenem-resistant Enterobacteriaceae in patients with bacteraemia at tertiary hospitals in South Africa, 2015 to 2018. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2020, 39, 1287–1294. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Yin, Y.; Chen, H.; Jin, L.; Gu, B.; Xie, L.; Yang, C.; Ma, X.; Li, H.; et al. Epidemiology of Carbapenem-Resistant Enterobacteriaceae Infections: Report from the China CRE Network. Antimicrob. Agents Chemother. 2018, 62, e01882-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayoub, M.C.; Hammoudi, H.D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics 2020, 9, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrancianu, O.; Pelcaru, C.F.; Alistar, A.; Gheorghe, I.; Marutescu, L.; Popa, M.; Czobor, I.; Gradisteanu, G.; Dobre, E.; Chifiriuc, M. Escaping from ESKAPE. Clinical Significance and Antibiotic Resistance Mechanisms in Acinetobacter baumannii: A Review. Biointerface Res. Appl. Chem. 2020, 11, 8190–8203. [Google Scholar]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lari, A.R.; Ardebili, A.; Hashemi, A. AdeR-AdeS mutations & overexpression of the AdeABC efflux system in ciprofloxacin-resistant Acinetobacter baumannii clinical isolates. Indian J. Med. Res. 2018, 147, 413–421. [Google Scholar]
- Dou, Q.; Zou, M.; Li, J.; Wang, H.; Hu, Y.; Liu, W. [AdeABC efflux pump and resistance of Acinetobacter baumannii against carbapenem]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2017, 42, 426–433. [Google Scholar]
- Roy, S.; Chatterjee, S.; Bhattacharjee, A.; Chattopadhyay, P.; Saha, B.; Dutta, S.; Basu, S. Overexpression of Efflux Pumps, Mutations in the Pumps’ Regulators, Chromosomal Mutations, and AAC(6′)-Ib-cr Are Associated with Fluoroquinolone Resistance in Diverse Sequence Types of Neonatal Septicaemic Acinetobacter baumannii: A 7-Year Single Center Study. Front. Microbiol. 2021, 12, 202. [Google Scholar]
- Nogbou, N.-D.; Nkawane, G.M.; Ntshane, K.; Wairuri, C.K.; Phofa, D.T.; Mokgokong, K.K.; Ramashia, M.; Nchabeleng, M.; Obi, L.C.; Musyoki, A.M. Efflux Pump Activity and Mutations Driving Multidrug Resistance in Acinetobacter baumannii at a Tertiary Hospital in Pretoria, South Africa. Int. J. Microbiol. 2021, 2021, e9923816. [Google Scholar] [CrossRef]
- Farhat, N.; Ali, A.; Bonomo, R.A.; Khan, A.U. Efflux pumps as interventions to control infection caused by drug-resistance bacteria. Drug Discov. Today 2020, 25, 2307–2316. [Google Scholar] [CrossRef]
- Hassan, K.A.; Jackson, S.M.; Penesyan, A.; Patching, S.G.; Tetu, S.G.; Eijkelkamp, B.A.; Brown, M.H.; Henderson, P.J.F.; Paulsen, I.T. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc. Natl. Acad. Sci. USA 2013, 110, 20254–20259. [Google Scholar] [CrossRef] [Green Version]
- Loehfelm, T.W.; Luke, N.R.; Campagnari, A.A. Identification and Characterization of an Acinetobacter baumannii Biofilm-Associated Protein. J. Bacteriol. 2008, 190, 1036–1044. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 1994, 58, 755–805. [Google Scholar] [CrossRef]
- Greene, C.; Wu, J.; Rickard, A.H.; Xi, C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett. Appl. Microbiol. 2016, 63, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Ghaith, D.M.; Zafer, M.M.; Al-Agamy, M.H.; Alyamani, E.J.; Booq, R.Y.; Almoazzamy, O. The emergence of a novel sequence type of MDR Acinetobacter baumannii from the intensive care unit of an Egyptian tertiary care hospital. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 34. [Google Scholar] [CrossRef]
- Shirmohammadlou, N.; Zeighami, H.; Haghi, F.; Kashefieh, M. Resistance pattern and distribution of carbapenemase and antiseptic resistance genes among multidrug-resistant Acinetobacter baumannii isolated from intensive care unit patients. J. Med. Microbiol. 2018, 67, 1467–1473. [Google Scholar] [CrossRef]
- Wong, M.H.; Chan, B.K.; Chan, E.W.; Chen, S. Over-Expression of ISAba1-Linked Intrinsic and Exogenously Acquired OXA Type Carbapenem-Hydrolyzing-Class D-ß-Lactamase-Encoding Genes Is Key Mechanism Underlying Carbapenem Resistance in Acinetobacter baumannii. Front. Microbiol. 2019, 10, 2809. [Google Scholar] [CrossRef] [Green Version]
- Mwangi, P.N.; Mogotsi, M.T.; Rasebotsa, S.P.; Seheri, M.L.; Mphahlele, M.J.; Ndze, V.N.; Dennis, F.E.; Jere, K.C.; Nyaga, M.M. Uncovering the First Atypical DS-1-like G1P[8] Rotavirus Strains That Circulated during Pre-Rotavirus Vaccine Introduction Era in South Africa. Pathogens 2020, 9, 391. [Google Scholar] [CrossRef]
- Mitchev, N.; Allam, M.; Kwenda, S.; Mnyameni, F.; Ismail, A.; Niehaus, A.J.; Ramsuran, V.; Garrett, N.; Singh, R.; Mlisana, K.P. Genome Sequences of Five Novel Neisseria gonorrhoeae Sequence Types Isolated in KwaZulu-Natal, South Africa. Microbiol. Resour. Announc. 2021, 10, e01424-20. [Google Scholar] [CrossRef]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.-M. ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Lakin, S.; Dean, C.; Noyes, N.; Dettenwanger, A.; Ross, A.; Doster, E.; Rovira, P.; Abdo, Z.; Jones, K.; Ruiz, J.; et al. MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 2016, 45, D574–D580. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [Green Version]
- Sayers, S.; Li, L.; Ong, E.; Deng, S.; Fu, G.; Lin, Y.; Yang, B.; Zhang, S.; Fa, Z.; Zhao, B.; et al. Victors: A web-based knowledge base of virulence factors in human and animal pathogens. Nucleic Acids Res. 2018, 47, D693–D700. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Rashid, F.A.; Shukor, S.; Hashim, R.; Ahmad, N. Detection of Antimicrobial Resistance Genes Associated with Carbapenem Resistance from the Whole-Genome Sequence of Acinetobacter baumannii Isolates from Malaysia. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, e5021064. Available online: https://www.hindawi.com/journals/cjidmm/2020/5021064/ (accessed on 13 March 2022). [CrossRef] [Green Version]
- Tolba, S.T.M.; El Shatoury, E.H.; Abo AlNasr, N.M. Prevalence of Carbapenem Resistant Acinetobacter baumannii (CRAB) in some Egyptian Hospitals: Evaluation of the Use of blaOXA-51-like Gene as Species Specific Marker for CRAB. Egypt. J. Bot. 2019, 59, 723–733. [Google Scholar] [CrossRef]
- Mahabeer, P.; Mzimela, B.W.; Lawler, M.A.; Singh-Moodley, A.; Singh, R.; Mlisana, K.P. Colistin-Resistant Acinetobacter baumannii as a cause of Neonatal Ventriculitis. South. Afr. J. Infect. Dis. 2018, 33. [Google Scholar] [CrossRef]
- Liu, J.; Shu, Y.; Zhu, F.; Feng, B.; Zhang, Z.; Liu, L.; Wang, G. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J. Glob. Antimicrob. Resist. 2021, 24, 136–147. [Google Scholar]
- Lean, S.-S.; Suhaili, Z.; Ismail, S.; Rahman, N.I.A.; Othman, N.; Abdullah, F.H.; Jusoh, Z.; Yeo, C.C.; Thong, K.-L. Prevalence and Genetic Characterization of Carbapenem- and Polymyxin-Resistant Acinetobacter baumannii Isolated from a Tertiary Hospital in Terengganu, Malaysia. ISRN Microbiol. 2014, 2014, e953417. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, S.S.B.A.; Kanthan, K.; Veeraraghavan, B. Whole-genome shotgun sequences of seven colistin-resistant Acinetobacter baumannii isolates from bacteraemia. J. Glob. Antimicrob. Resist. 2018, 12, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.J.; Domingues, S. Interplay between Colistin Resistance, Virulence and Fitness in Acinetobacter baumannii. Antibiotics 2017, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Lima, W.G.; Alves, M.C.; Cruz, W.S.; Paiva, M.C. Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: A huge public health threat. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1009–1019. [Google Scholar] [CrossRef]
- Ni, W.; Li, Y.; Guan, J.; Zhao, J.; Cui, J.; Wang, R.; Liu, Y. Effects of Efflux Pump Inhibitors on Colistin Resistance in Multidrug-Resistant Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2016, 60, 3215–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakonstantis, S. A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to colistin and tigecycline in Acinetobacter baumannii. J. Chemother. 2021, 33, 1–11. [Google Scholar] [CrossRef]
- Machado, D.; Antunes, J.; Simões, A.; Perdigão, J.; Couto, I.; McCusker, M.; Martins, M.; Portugal, I.; Pacheco, T.; Batista, J.; et al. Contribution of efflux to colistin heteroresistance in a multidrug resistant Acinetobacter baumannii clinical isolate. J. Med. Microbiol. 2018, 67, 740–749. [Google Scholar] [CrossRef] [Green Version]
- Abdi, S.N.; Ghotaslou, R.; Ganbarov, K.; Mobed, A.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infect. Drug Resist. 2020, 13, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Nawfal, D.T.; Al-Bayssari, C.; Chabou, S.; Antar, N.; Diene, S.M.; Azar, E.; Rolain, J.-M. Investigation of multidrug-resistant ST2 Acinetobacter baumannii isolated from Saint George hospital in Lebanon. BMC Microbiol. 2019, 19, 29. [Google Scholar]
- Shelenkov, A.; Petrova, L.; Zamyatin, M.; Mikhaylova, Y.; Akimkin, V. Diversity of International High-Risk Clones of Acinetobacter baumannii Revealed in a Russian Multidisciplinary Medical Center during 2017–2019. Antibiotics 2021, 10, 1009. [Google Scholar] [CrossRef]
- Gedefie, A.; Demsis, W.; Ashagrie, M.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infect. Drug Resist. 2021, 14, 3711–3719. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018, 16, 91–102. [Google Scholar] [CrossRef]
- Seifi, K.; Kazemian, H.; Heidari, H.; Rezagholizadeh, F.; Saee, Y.; Shirvani, F.; Houri, H. Evaluation of Biofilm Formation among Klebsiella pneumoniae Isolates and Molecular Characterization by ERIC-PCR. Jundishapur J. Microbiol. 2016, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Shigeta, M.; Tanaka, G.; Komatsuzawa, H.; Sugai, M.; Suginaka, H.; Usui, T. Permeation of Antimicrobial Agents through Pseudomonas aeruginosa Biofilms: A Simple Method. Chemotherapy 1997, 43, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Kishii, K.; Hamada, M.; Aoki, K.; Ito, K.; Onodera, J.; Ishii, Y.; Tateda, K. Differences in biofilm formation and transcription of biofilm-associated genes among Acinetobacter baumannii clinical strains belonging to the international clone II lineage. J. Infect. Chemother. 2020, 26, 693–698. [Google Scholar] [CrossRef]
- Rakin, A.; Schneider, L.; Podladchikova, O. Hunger for iron: The alternative siderophore iron scavenging systems in highly virulent Yersinia. Front. Cell. Infect. Microbiol. 2012, 2, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, R.; Saha, N.; Donofrio, R.S.; Bestervelt, L.L. Microbial siderophores: A mini review. J. Basic Microbiol. 2013, 53, 303–317. [Google Scholar] [CrossRef]
- Kock, M.M.; Bellomo, A.N.; Storm, N.; Ehlers, M.M. Prevalence of carbapenem resistance genes in Acinetobacter baumannii isolated from clinical specimens obtained from an ac-ademic hospital in South Africa. S. Afr. J. Epidemiol. Infect. 2013, 28, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Beheshti, M.; Talebi, M.; Ardebili, A.; Bahador, A.; Lari, A.R. Detection of AdeABC efflux pump genes in tetracycline-resistant Acinetobacter baumannii isolates from burn and ventilator-associated pneumonia patients. J. Pharm. Bioallied Sci. 2014, 6, 229. [Google Scholar] [CrossRef]
- Hazrat, B.; Fareeha, H.; Muhammad, K.A.; Sabir, K.; Xingyuan, Y.; Tayyab, R.U. Detection of mcr-1 gene in extended-spectrum β-lactamase-producing Klebsiella pneumoniae from human urine samples in Pakistan. Jundishapur J. Microbiol. 2020, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
Organism | Acinetobacter baumannii |
---|---|
Strain | SMU.6245.Ab.ND.2021 |
Sequencer | Illumina MiSeq |
Data format | Assembled |
Experimental Factors | Genome sequence of pure microbial culture |
Experimental Features | Genome sequence followed by assembly annotation |
Consent | N/A |
Sample source | tracheal aspirate Homo sapiens |
N | Name | Genome Characteristics and Resources |
---|---|---|
1 | NCBI BioProject | PRJNA803988 |
2 | NCBI BioSample ID | SAMN25694890 |
3 | NCBI genome accession Number | JAKNTS010000000 |
4 | Sequences type | genome |
5 | Total number of reads | 1,280,666 |
6 | Clean reads | 1,260,538 |
7 | Overall coverage | 74.0× |
8 | Estimate genome size | 4,025,130 |
9 | G + C content (%) | 38.84 |
10 | Genes (total) | 3906 |
11 | tRNAs | 62 |
12 | rRNAs | 1, 2 (16S, 23S) |
13 | ncRNAs | 4 |
14 | Pseudo Genes (total) | 63 |
Resistance | Acquired Resitance Genes |
---|---|
Aminoglycoside | aph(6)-Id; aph(3″)-Ib; ant(3)-IIa and armA |
Beta-lactam | blaOXA-66; blaOXA-23; blaADC-25; blaADC-73; blaA1; blaA2 and blaMBL |
Fosfomycin | abaF |
Macrolide | msrE and mphE |
Polymixin | lpsB |
Streptogramin | strA and strB |
Sulphonamide | sul2 |
Tetracycline | tetB |
Virulence Factors | Virulence-Associated Genes |
---|---|
Biofilm formation system, cell–cell adhesion | bap, bfmR, bfmS, csuA, csuA/B, csuB, csuC, csuD, csuE, pgaA, pgaB, pgaC and pgaD |
Quorum sensing | abaI and abaR |
Resistance-nodulation-division AdeFGH and AdeABC efflux pump | adeF, adeG, adeH and adeL; adeB, adeS, and adeR |
Resistance-nodulation-division AdeIJK | adeI, adeJ, adeK, adeN |
Multi-drug and toxic compound extrusion | AbeM |
Small multi-drug resistance transporters | AbeS |
Iron acquisition systems | barA, barB, basA, basB, basC, basD, basF, basG, basH, basI, basJ, bauA, bauB, bauC, bauD, bauE, bauF and entE |
Phospholipase | plc, plcD |
Porin | OmpA |
DNA recombination | recA |
Regulator of the MexEF-oprN efflux pump in Pseudomonas aeruginosa | mexT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogbou, N.-D.; Ramashia, M.; Nkawane, G.M.; Allam, M.; Obi, C.L.; Musyoki, A.M. Whole-Genome Sequencing of a Colistin-Resistant Acinetobacter baumannii Strain Isolated at a Tertiary Health Facility in Pretoria, South Africa. Antibiotics 2022, 11, 594. https://doi.org/10.3390/antibiotics11050594
Nogbou N-D, Ramashia M, Nkawane GM, Allam M, Obi CL, Musyoki AM. Whole-Genome Sequencing of a Colistin-Resistant Acinetobacter baumannii Strain Isolated at a Tertiary Health Facility in Pretoria, South Africa. Antibiotics. 2022; 11(5):594. https://doi.org/10.3390/antibiotics11050594
Chicago/Turabian StyleNogbou, Noel-David, Mbudzeni Ramashia, Granny Marumo Nkawane, Mushal Allam, Chikwelu Lawrence Obi, and Andrew Munyalo Musyoki. 2022. "Whole-Genome Sequencing of a Colistin-Resistant Acinetobacter baumannii Strain Isolated at a Tertiary Health Facility in Pretoria, South Africa" Antibiotics 11, no. 5: 594. https://doi.org/10.3390/antibiotics11050594
APA StyleNogbou, N. -D., Ramashia, M., Nkawane, G. M., Allam, M., Obi, C. L., & Musyoki, A. M. (2022). Whole-Genome Sequencing of a Colistin-Resistant Acinetobacter baumannii Strain Isolated at a Tertiary Health Facility in Pretoria, South Africa. Antibiotics, 11(5), 594. https://doi.org/10.3390/antibiotics11050594