Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2)
Abstract
:1. Introduction
2. Results
2.1. Patient Details and Phenotypic Characterization of the Isolate
2.2. Genome Characteristics and Typing
2.3. Comparative Genomics and Phylogenomics Analysis
3. Discussion
4. Methods
4.1. Bacterial Isolation, Identification, Susceptibility Testing, and DNA Extraction
4.2. Minimum Inhibitory Concentration (MIC)
4.3. Genome Sequencing and Assembly
4.4. Plasmid Assembly and Identification
4.5. Identification of Antimicrobial-Resistant Genes (ARGs) and Mobile Elements
4.6. Prediction and Comparison of Virulence Genes
4.7. Comparative Genomics and Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meatherall, B.L.; Gregson, D.; Ross, T.; Pitout, J.D.; Laupland, K.B. Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am. J. Med. 2009, 122, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liang, Q.; Liu, W.; Zheng, B.; Liu, L.; Wang, W.; Xu, Z.; Huang, M.; Feng, Y. Convergence of carbapenem resistance and hypervirulence in a highly-transmissible ST11 clone of K. pneumoniae: An epidemiological, genomic and functional study. Virulence 2021, 12, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Duan, J.; Liu, L.; Shen, X.; Yu, J.; Guo, Y.; Wang, L.; Yu, F. Prevalence of community-acquired, hypervirulent Klebsiella pneumoniae isolates in Wenzhou, China. Microb. Drug Resist. 2020, 26, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.-F.; Lin, T.-L.; Yang, F.-L.; Wu, M.-C.; Pan, Y.-J.; Wu, S.-H.; Wang, J.-T. Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess. PLoS ONE 2012, 7, e33155. [Google Scholar]
- Shon, A.S.; Bajwa, R.P.; Russo, T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: A new and dangerous breed. Virulence 2013, 4, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Guo, J. Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: Antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alcántar-Curiel, M.D.; Girón, J.A. Klebsiella Pneumoniae and the Pyogenic Liver Abscess: Implications and Association of the Presence of rpmA Genes and Expression of Hypermucoviscosity. Virulence 2015, 6, 407–409. [Google Scholar] [CrossRef] [Green Version]
- Choby, J.; Howard-Anderson, J.; Weiss, D. Hypervirulent Klebsiella pneumoniae—Clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Zhou, M.; Li, X.; Liu, X.; Li, J.; Liu, W. Preliminary Investigation of Iron Acquisition in Hypervirulent Klebsiella pneumoniae Mediated by Outer Membrane Vesicles. Infect. Drug Resist. 2022, 15, 311. [Google Scholar] [CrossRef]
- Shankar, C.; Basu, S.; Lal, B.; Shanmugam, S.; Vasudevan, K.; Mathur, P.; Ramaiah, S.; Anbarasu, A.; Veeraraghavan, B. Aerobactin Seems To Be a Promising Marker Compared With Unstable RmpA2 for the Identification of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae: In Silico and In Vitro Evidence. Front. Cell. Infect. Microbiol. 2021, 11, 709681. [Google Scholar] [CrossRef]
- Yu, W.-L.; Lee, M.-F.; Tang, H.-J.; Chang, M.-C.; Chuang, Y.-C. Low prevalence of rmpA and high tendency of rmpA mutation correspond to low virulence of extended spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Virulence 2015, 6, 162–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, Y.-H.; Chuang, Y.-C.; Yu, W.-L. Clinical spectrum and molecular characteristics of Klebsiella pneumoniae causing community-acquired extrahepatic abscess. J. Microbiol. Immunol. Infect. 2008, 41, 311–317. [Google Scholar] [PubMed]
- Gu, D.; Dong, N.; Zheng, Z.; Lin, D.; Huang, M.; Wang, L.; Chan, E.W.-C.; Shu, L.; Yu, J.; Zhang, R. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: A molecular epidemiological study. Lancet Infect. Dis. 2018, 18, 37–46. [Google Scholar] [CrossRef]
- Tang, M.; Kong, X.; Hao, J.; Liu, J. Epidemiological characteristics and formation mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2020, 11, 2774. [Google Scholar] [CrossRef] [PubMed]
- Shankar, C.; Santhanam, S.; Kumar, M.; Gupta, V.; Devanga Ragupathi, N.K.; Veeraraghavan, B. Draft genome sequence of an extended-spectrum-β-lactamase-positive hypervirulent Klebsiella pneumoniae strain with novel sequence type 2318 isolated from a neonate. Genome Announc. 2016, 4, e01273-16. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Shi, X.; Lv, J.; Niu, S.; Cheng, S.; Du, H.; Yu, F.; Tang, Y.-W.; Kreiswirth, B.N.; Zhang, H. In vitro activity of apramycin against carbapenem-resistant and hypervirulent Klebsiella pneumoniae isolates. Front. Microbiol. 2020, 11, 425. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Mathema, B.; Chavda, K.D.; DeLeo, F.R.; Bonomo, R.A.; Kreiswirth, B.N. Carbapenemase-producing Klebsiella pneumoniae: Molecular and genetic decoding. Trends Microbiol. 2014, 22, 686–696. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Marimuthu, K.; Teo, J.; Venkatachalam, I.; Cherng, B.P.Z.; De Wang, L.; Prakki, S.R.S.; Xu, W.; Tan, Y.H.; Nguyen, L.C. Acquisition of plasmid with carbapenem-resistance gene blaKPC2 in hypervirulent Klebsiella pneumoniae, Singapore. Emerg. Infect. Dis. 2020, 26, 549. [Google Scholar] [CrossRef] [Green Version]
- Shankar, C.; Jacob, J.J.; Vasudevan, K.; Biswas, R.; Manesh, A.; Sethuvel, D.P.M.; Varughese, S.; Biswas, I.; Veeraraghavan, B. Emergence of multidrug resistant hypervirulent ST23 Klebsiella pneumoniae: Multidrug resistant plasmid acquisition drives evolution. Front. Cell. Infect. Microbiol. 2020, 10, 575289. [Google Scholar] [CrossRef]
- Lam, M.M.; Wyres, K.L.; Wick, R.R.; Judd, L.M.; Fostervold, A.; Holt, K.E.; Löhr, I.H. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15. J. Antimicrob. Chemother. 2019, 74, 1218–1222. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.; Davies, F.; Turton, J.; Perry, C.; Payne, Z.; Pike, R. Hybrid resistance and virulence plasmids in “high-risk” clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms 2019, 7, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Arcari, G.; Leonildi, A.; Giordano, C.; Tempini, S.; Bibbolino, G.; Mozzo, R.; Barnini, S.; Carattoli, A.; et al. Spread of hypervirulent multidrug-resistant ST147 Klebsiella pneumoniae in patients with severe COVID-19: An observational study from Italy, 2020–2021. J. Antimicrob. Chemother. 2022, 77, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, Y.; Zhu, Y.; Jia, P.; Li, X.; Jia, X.; Yu, W.; Cui, Y.; Yang, R.; Xia, W. Emergence of colistin-resistant hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerg. Microbes Infect. 2022, 11, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Elhadary, Y.; Ali, S. A new trend in urban housing: Gated communities in Khartoum, Sudan. Am. J. Sociol. Res. 2017, 7, 45–55. [Google Scholar]
- Gatari, M. Air pollution over East Africa. In Proceedings of the Oral Presentation, First International Workshop on Climate Variability over Africa, Alexandria, Egypt, 15–26 May 2005. [Google Scholar]
- Alamin, A.S.A.; Kheder, S.I. Knowledge, Attitudes and Practices of Prescribers towards Antimicrobial Stewardship at Hospitals in Khartoum State—Sudan. J. Med. Inform. Decis. Mak. 2020, 1, 12–25. [Google Scholar] [CrossRef]
- Musa, M.M.Y.A. Medicine Prices, Availability and Affordability in Sudan; Partial fulfillment of MSc of Health Economics and Health Care Management; Chulalongkorn University: Bangkok, Thailand, 2013. [Google Scholar]
- Albasha, A.M.; Abd-Alhalim, S.; Alshaib, E.F.; Al-Hassan, L.; Altayb, H.N. Detection of several carbapenems resistant and virulence genes in classical and hyper-virulent strains of Klebsiella pneumoniae isolated from hospitalized neonates and adults in Khartoum. BMC Res. Notes 2020, 13, 312. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Thirtieth Informational Supplement; Document M100-S130 CLSI; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Du, L.; Zhang, J.; Liu, P.; Li, X.; Su, K.; Yuan, L.; Zhang, Z.; Peng, D.; Li, Y.; Qiu, J. Genome sequencing and comparative genome analysis of 6 hypervirulent Klebsiella pneumoniae strains isolated in China. Arch. Microbiol. 2021, 203, 3125–3133. [Google Scholar] [CrossRef]
- Bouza, E.; Cercenado, E. Klebsiella and enterobacter: Antibiotic resistance and treatment implications. Semin. Respir. Infect. 2002, 17, 215–230. [Google Scholar] [CrossRef]
- Soge, O.O.; Queenan, A.M.; Ojo, K.K.; Adeniyi, B.A.; Roberts, M.C. CTX-M-15 extended-spectrum β-lactamase from Nigerian Klebsiella pneumoniae. J. Antimicrob. Chemother. 2006, 57, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.-S.; Liao, W.; Xiong, Z.; Li, D.; Du, F.-L.; Xiang, T.-X.; Wei, D.; Wan, L.-G.; Liu, Y.; Zhang, W. Prevalence of the NTEKPC-I on IncF plasmids among Hypervirulent Klebsiella pneumoniae isolates in Jiangxi Province, South China. Front. Microbiol. 2021, 12, 622280. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Liu, C.; Fan, S.; Baker, S.; Guo, J. The Role of Plasmid and Resistance Gene Acquisition in the Emergence of ST23 Multi-Drug Resistant, Hypervirulent Klebsiella pneumoniae. Microbiol. Spectr. 2022, 21, e0192921. [Google Scholar] [CrossRef] [PubMed]
- Marr, C.M.; Russo, T.A. Hypervirulent Klebsiella pneumoniae: A new public health threat. Expert Rev. Anti-Infect. Ther. 2019, 17, 71–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludden, C.; Moradigaravand, D.; Jamrozy, D.; Gouliouris, T.; Blane, B.; Naydenova, P.; Hernandez-Garcia, J.; Wood, P.; Hadjirin, N.; Radakovic, M. A One Health study of the genetic relatedness of Klebsiella pneumoniae and their mobile elements in the East of England. Clin. Infect. Dis. 2020, 70, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Saeed Mohammed, S.A.; Musa, A.; Ahmed Mohammed, A.; Mohammed, H. CTX-M Β-lactamase–producing Escherichia coli in sudan tertiary hospitals: Detection genotypes variants and bioinformatics analysis. Int. J. Med. Biomed. Stud. 2019, 3, 146–157. [Google Scholar]
- Altayb, H.N.; Salih, E.K.; Moglad, E.H. Molecular detection of beta-lactamase blaCTX-M group 1 in Escherichia coli isolated from drinking water in Khartoum State. J. Water Health 2020, 18, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Sütterlin, S. Aspects of Bacterial Resistance to Silver; Acta Universitatis Upsaliensis: Uppsala, Switzerland, 2015. [Google Scholar]
- Wang, M.; Wang, W.; Niu, Y.; Liu, T.; Li, L.; Zhang, M.; Li, Z.; Su, W.; Liu, F.; Zhang, X. A clinical extensively-drug resistant (XDR) Escherichia coli and role of Its β-Lactamase Genes. Front. Microbiol. 2020, 11, 590357. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Z.; Chen, Y.; Wang, W.; He, F. The plasmid-borne tet (A) gene is an important factor causing tigecycline resistance in ST11 carbapenem-resistant Klebsiella pneumoniae under selective pressure. Front. Microbiol. 2021, 12, 328. [Google Scholar] [CrossRef]
- Foong, W.E.; Wilhelm, J.; Tam, H.-K.; Pos, K.M. Tigecycline efflux in Acinetobacter baumannii is mediated by TetA in synergy with RND-type efflux transporters. J. Antimicrob. Chemother. 2020, 75, 1135–1139. [Google Scholar] [CrossRef]
- Enany, S.; Zakeer, S.; Diab, A.A.; Bakry, U.; Sayed, A.A. Whole genome sequencing of Klebsiella pneumoniae clinical isolates sequence type 627 isolated from Egyptian patients. PLoS ONE 2022, 17, e0265884. [Google Scholar] [CrossRef]
- Guo, Q.; Tomich, A.D.; McElheny, C.L.; Cooper, V.S.; Stoesser, N.; Wang, M.; Sluis-Cremer, N.; Doi, Y. Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. J. Antimicrob. Chemother. 2016, 71, 2460–2465. [Google Scholar] [CrossRef] [Green Version]
- Kieffer, N.; Poirel, L.; Mueller, L.; Mancini, S.; Nordmann, P. IS Ecp1-mediated transposition leads to fosfomycin and broad-spectrum cephalosporin resistance in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e00150-20. [Google Scholar] [CrossRef] [PubMed]
- de Man, T.J.; Lutgring, J.D.; Lonsway, D.R.; Anderson, K.F.; Kiehlbauch, J.A.; Chen, L.; Walters, M.S.; Sjölund-Karlsson, M.; Rasheed, J.K.; Kallen, A. Genomic analysis of a pan-resistant isolate of Klebsiella pneumoniae, United States 2016. mBio 2018, 9, e00440-18. [Google Scholar] [CrossRef] [Green Version]
- Liakopoulos, A.; Mevius, D.; Ceccarelli, D. A review of SHV extended-spectrum β-lactamases: Neglected yet ubiquitous. Front. Microbiol. 2016, 7, 1374. [Google Scholar] [CrossRef] [PubMed]
- Piazza, A.; Perini, M.; Mauri, C.; Comandatore, F.; Meroni, E.; Luzzaro, F.; Principe, L. Antimicrobial Susceptibility, Virulence, and Genomic Features of a Hypervirulent Serotype K2, ST65 Klebsiella pneumoniae Causing Meningitis in Italy. Antibiotics 2022, 11, 261. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, J.; Kang, J.; Song, Y.; Yin, D.; Guo, Q.; Song, J.; Zhang, Y.; Wang, S.; Duan, J. Emergence of NDM-5-producing carbapenem-resistant Klebsiella pneumoniae and SIM-producing hypervirulent Klebsiella pneumoniae Isolated from aseptic body fluid in a large tertiary hospital, 2017–2018: Genetic traits of blaNDM-like and blaSIM-like genes as determined by NGS. Infect. Drug Resist. 2020, 13, 3075. [Google Scholar] [PubMed]
- Krapp, F.; Morris, A.R.; Ozer, E.A.; Hauser, A.R. Virulence characteristics of carbapenem-resistant Klebsiella pneumoniae strains from patients with necrotizing skin and soft tissue infections. Sci. Rep. 2017, 7, 13533. [Google Scholar] [CrossRef] [Green Version]
- Cubero, M.; Grau, I.; Tubau, F.; Pallarés, R.; Dominguez, M.; Linares, J.; Ardanuy, C. Hypervirulent Klebsiella pneumoniae clones causing bacteraemia in adults in a teaching hospital in Barcelona, Spain (2007–2013). Clin. Microbiol. Infect. 2016, 22, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.-T.; Chuang, Y.-P.; Shun, C.-T.; Chang, S.-C.; Wang, J.-T. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med. 2004, 199, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Majdalani, N.; Gottesman, S. The Rcs phosphorelay: A complex signal transduction system. Annu. Rev. Microbiol. 2005, 59, 379–405. [Google Scholar] [CrossRef]
- Wan, B.; Zhang, Q.; Ni, J.; Li, S.; Wen, D.; Li, J.; Xiao, H.; He, P.; Ou, H.-y.; Tao, J. Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog. 2017, 13, e1006246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroll, C.; Barken, K.B.; Krogfelt, K.A.; Struve, C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010, 10, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Islam, M.M.; Kim, K.; Lee, J.C.; Shin, M. LeuO, a LysR-Type Transcriptional Regulator, Is Involved in Biofilm Formation and Virulence of Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 2021, 11, 738706. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.B.; Mondal, A.; Venkataramaiah, M.; Chauhan, N.K.; Rajamohan, G. Role of oxyRKP, a novel LysR-family transcriptional regulator, in antimicrobial resistance and virulence in Klebsiella pneumoniae. Microbiology 2013, 159, 1301–1314. [Google Scholar] [CrossRef] [Green Version]
- Surgers, L.; Boyd, A.; Girard, P.-M.; Arlet, G.; Decré, D. ESBL-producing strain of hypervirulent Klebsiella pneumoniae K2, France. Emerg. Infect. Dis. 2016, 22, 1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, E.A.; El-Amin, N.; Adrees, E.A.; Al-Hassan, L.; Mukhtar, M. Comparing conventional, biochemical and genotypic methods for accurate identification of Klebsiella pneumoniae in Sudan. Access Microbiol. 2020, 2, acmi000096. [Google Scholar] [CrossRef] [PubMed]
- Kumabe, A.; Kenzaka, T. String test of hypervirulent Klebsiella pneumonia. QJM Int. J. Med. 2014, 107, 1053. [Google Scholar] [CrossRef] [Green Version]
- Sabeel, S.; Salih, M.A.; Ali, M.; El-Zaki, S.-E.; Abuzeid, N.; Elgadi, Z.A.M.; Altayb, H.N.; Elegail, A.; Ibrahim, N.Y.; Elamin, B.K. Phenotypic and genotypic analysis of multidrug-resistant Mycobacterium tuberculosis isolates from Sudanese patients. Tuberc. Res. Treat. 2017, 2017, 8340746. [Google Scholar]
- Mogana, R.; Adhikari, A.; Tzar, M.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement. Med. Ther. 2020, 20, 55. [Google Scholar] [CrossRef] [Green Version]
- Kouidhi, B.; Zmantar, T.; Jrah, H.; Souiden, Y.; Chaieb, K.; Mahdouani, K.; Bakhrouf, A. Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Antipov, D.; Hartwick, N.; Shen, M.; Raiko, M.; Lapidus, A.; Pevzner, P.A. plasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics 2016, 32, 3380–3387. [Google Scholar] [CrossRef] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Lam, M.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Struve, C.; Roe, C.C.; Stegger, M.; Stahlhut, S.G.; Hansen, D.S.; Engelthaler, D.M.; Andersen, P.S.; Driebe, E.M.; Keim, P.; Krogfelt, K.A. Mapping the evolution of hypervirulent Klebsiella pneumoniae. mBio 2015, 6, e00630-15. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Dong, Z.; Fang, L.; Luo, Y.; Wei, Z.; Guo, H.; Zhang, G.; Gu, Y.Q.; Coleman-Derr, D.; Xia, Q. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019, 47, W52–W58. [Google Scholar] [CrossRef] [Green Version]
- Kwon, T.; Jung, Y.-H.; Lee, S.; Yun, M.-r.; Kim, W.; Kim, D.-W. Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain. Gut Pathog. 2016, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, P.I.P.; Picão, R.C.; de Almeida, L.G.P.; Lima, N.C.B.; Girardello, R.; Vivan, A.C.P.; Xavier, D.E.; Barcellos, F.G.; Pelisson, M.; Vespero, E.C. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genom. 2014, 15, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotic | Inhibition Zone (mm) | MIC (μg/mL) | Susceptibility a |
---|---|---|---|
ciprofloxacin | 12 | 128 | R |
ceftazidime | 10 | - | R |
cefotaxime | 10 | 128 | R |
trimethoprim-sulfamethoxazole | No inhibition | - | R |
cephalexin | 10 | - | R |
nitrofurantoin | 10 | - | R |
amoxicillin-clavulanic acid | No inhibition | - | R |
ampicillin | No inhibition | 1024 | R |
tetracycline | - | 256 | R |
meropenem | 32 | - | S |
imipenem | 30 | - | S |
amikacin | 20 | - | S |
gentamicin | 20 | 4 | S |
chloramphenicol | - | 4 | S |
Virulence Factor | Related Genes | 9KP | 342 | MGH78578 | NTUH-K2044 | 1084 | HS11286 | JM45 | KCTC 2242 | SB3432 | kkp066 | kkp0e6 | kkp0e7 | 23KE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adherence | ||||||||||||||
Type 3 fimbriae | 8 | + | + | 7 | + | + | + | + | + | + | + | + | 7 | + |
Type I fimbriae | 10 | + | + | + | + | + | + | + | + | + | 9 | 9 | 8 | + |
Type IV pili | 12 | 1 | - | - | - | - | - | - | - | - | - | - | - | - |
Antiphagocytosis | ||||||||||||||
Capsule | 1 | + | + | + | + | + | + | + | + | + | + | + | + | + |
Efflux pump | ||||||||||||||
AcrAB | 2 | + | + | + | + | + | + | + | + | + | 1 | + | + | + |
Iron uptake | ||||||||||||||
Aerobactin | 5 | 1 | 1 | 1 | + | 1 | 1 | 1 | + | + | 1 | 1 | 1 | 1 |
Ent siderophore | 13 | 12 | + | + | + | + | + | 12 | + | - | 12 | 10 | 11 | + |
Salmochelin | 5 | 2 | 2 | 2 | + | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 |
Yersiniabactin | 11 | - | - | - | + | + | + | - | - | - | - | + | + | - |
Nutritional factor | ||||||||||||||
Allantoin utilization | 6 | - | - | - | + | + | - | - | - | - | + | - | - | - |
Regulation | ||||||||||||||
RcsAB | 2 | + | + | + | + | + | + | + | + | + | + | + | + | + |
RmpA | 1 | - | - | - | + | - | - | - | + | - | 1 | - | 1 | - |
Secretion system | ||||||||||||||
T6SS-I | 18 | 13 | 11 | 11 | 13 | 13 | + | + | + | 10 | 16 | 15 | 15 | 12 |
T6SS-II | 10 | 9 | + | 8 | 1 | 1 | 1 | 1 | - | 4 | 1 | 1 | - | 1 |
T6SS-III | 18 | 12 | + | 11 | 14 | 13 | 14 | 13 | 14 | 11 | 10 | 8 | 5 | 12 |
Sci-I T6SS | 27 | 1 | - | - | - | - | - | - | - | - | - | - | - | - |
Serum resistance | ||||||||||||||
LPS rfb locus | 1 | + | + | + | + | + | + | + | + | + | + | + | + | - |
Toxin | ||||||||||||||
Colibactin | 18 | - | - | - | - | + | - | - | - | - | - | - | - | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altayb, H.N.; Elbadawi, H.S.; Baothman, O.; Kazmi, I.; Alzahrani, F.A.; Nadeem, M.S.; Hosawi, S.; Chaieb, K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics 2022, 11, 596. https://doi.org/10.3390/antibiotics11050596
Altayb HN, Elbadawi HS, Baothman O, Kazmi I, Alzahrani FA, Nadeem MS, Hosawi S, Chaieb K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics. 2022; 11(5):596. https://doi.org/10.3390/antibiotics11050596
Chicago/Turabian StyleAltayb, Hisham N., Hana S. Elbadawi, Othman Baothman, Imran Kazmi, Faisal A. Alzahrani, Muhammad Shahid Nadeem, Salman Hosawi, and Kamel Chaieb. 2022. "Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2)" Antibiotics 11, no. 5: 596. https://doi.org/10.3390/antibiotics11050596
APA StyleAltayb, H. N., Elbadawi, H. S., Baothman, O., Kazmi, I., Alzahrani, F. A., Nadeem, M. S., Hosawi, S., & Chaieb, K. (2022). Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics, 11(5), 596. https://doi.org/10.3390/antibiotics11050596