Antimicrobial Resistance Patterns and Clonal Distribution of E. coli, Enterobacter spp. and Acinetobacter spp. Strains Isolated from Two Hospital Wastewater Plants
Abstract
:1. Introduction
2. Results
2.1. Enterobacteriaceae Isolates
2.2. Antimicrobial Susceptibility
2.3. Detection of β-Lactamases Resistance Genes
2.4. Molecular Typing by Pulsed-Field Gel Electrophoresis (PFGE)
3. Discussion
4. Materials and Methods
4.1. Study Sites and Samples Collection
4.2. Microbial Culturing and Identification
4.3. Antimicrobial Susceptibility Testing
4.4. Detection of β-Lactamases Genes
4.5. Molecular Typing of PFGE and Computer Fingerprint Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 5 May 2020).
- World Health Organization. WHO Global Action Plan on Antimicrobial Resistance. Microbe Mag. 2015, 10, 354–355. [Google Scholar] [CrossRef]
- World Health Organization. WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR) WHO List of Critically Important Antimicrobials (CIA). In Report of the 7th Meeting; WHO: Geneva, Switzerland, 2018; ISBN 978-92-4-151552-8. [Google Scholar]
- Silva, J.; Aguilar, C.; Ayala, G.; Estrada, M.A.; Garza-Ramos, U.; Lara-Lemus, R.; Ledezma, L. TLA-1: A New Plasmid-Mediated Extended-Spectrum β-Lactamase from Escherichia Coli. Antimicrob. Agents Chemother. 2000, 44, 997–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coque, T.M.; Baquero, F.; Canton, R. Increasing Prevalence of ESBL- Producing Enterobacteriaceae in Europe. Eurosurveillance 2008, 13, 19044. [Google Scholar] [CrossRef] [PubMed]
- Hocquet, D.; Muller, A.; Bertrand, X. What Happens in Hospitals Does Not Stay in Hospitals: Antibiotic-Resistant Bacteria in Hospital Wastewater Systems. J. Hosp. Infect. 2016, 93, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Havenga, B.; Ndlovu, T.; Clements, T.; Reyneke, B.; Waso, M.; Khan, W. Exploring the Antimicrobial Resistance Profiles of WHO Critical Priority List Bacterial Strains. BMC Microbiol. 2019, 19, 303. [Google Scholar] [CrossRef] [Green Version]
- Daoud, Z.; Farah, J.; Sokhn, E.S.; El Kfoury, K.; Dahdouh, E.; Masri, K.; Afif, C.; Abdel-Massih, R.M.; Matar, G.M. Multidrug-Resistant Enterobacteriaceae in Lebanese Hospital Wastewater: Implication in the One Health Concept. Microb. Drug Resist. 2018, 24, 166–174. [Google Scholar] [CrossRef]
- Garza-González, E.; Franco-Cendejas, R.; Morfín-Otero, R.; Echaniz-Aviles, G.; Rojas-Larios, F.; Bocanegra-Ibarias, P.; Flores-Treviño, S.; Ponce-De-León, A.; Rodríguez-Noriega, E.; Alavez-Ramírez, N.; et al. The Evolution of Antimicrobial Resistance in Mexico during the Last Decade: Results from the INVIFAR Group. Microb. Drug Resist. 2020, 26, 1372–1382. [Google Scholar] [CrossRef]
- Ponce de León Rosales, S. Plan Universitario de Control de La Resistencia Antimicrobiana; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2018; Volume 53, ISBN 9788578110796. [Google Scholar]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [Green Version]
- Gardy, J.L.; Loman, N.J. Towards a Genomics-Informed, Real-Time, Global Pathogen Surveillance System. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Woolhouse, M.E.J. Using Sewage for Surveillance of Antimicrobial Resistance. Science 2020, 367, 630–632. [Google Scholar] [CrossRef]
- Manaia, C.M.; Rocha, J.; Scaccia, N.; Marano, R.; Radu, E.; Biancullo, F.; Cerqueira, F.; Fortunato, G.; Iakovides, I.C.; Zammit, I.; et al. Antibiotic Resistance in Wastewater Treatment Plants: Tackling the Black Box. Environ. Int. 2018, 115, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Gumede, S.N.; Abia, A.L.K.; Amoako, D.G.; Essack, S.Y. Analysis of Wastewater Reveals the Spread of Diverse Extended-Spectrum β-Lactamase-Producing e. Coli Strains in Umgungundlovu District, South Africa. Antibiotics 2021, 10, 860. [Google Scholar] [CrossRef] [PubMed]
- Verburg, I.; García-Cobos, S.; Leal, L.H.; Waar, K.; Friedrich, A.W.; Schmitt, H. Abundance and Antimicrobial Resistance of Three Bacterial Species along a Complete Wastewater Pathway. Microorganisms 2019, 7, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamba, M.; Ahammad, S.Z. Sewage Treatment Effluents in Delhi: A Key Contributor of Β-Lactam Resistant Bacteria and Genes to the Environment. Chemosphere 2017, 188, 249–256. [Google Scholar] [CrossRef]
- Bréchet, C.; Plantin, J.; Sauget, M.; Thouverez, M.; Talon, D.; Cholley, P.; Guyeux, C.; Hocquet, D.; Bertrand, X. Wastewater Treatment Plants Release Large Amounts of Extended-Spectrum β-Lactamase-Producing Escherichia Coli into the Environment. Clin. Infect. Dis. 2014, 58, 1658–1665. [Google Scholar] [CrossRef]
- Bardhan, T.; Chakraborty, M.; Bhattacharjee, B. Prevalence of Colistin-Resistant, Carbapenem-Hydrolyzing Proteobacteria in Hospital Water Bodies and out-Falls of West Bengal, India. Int. J. Environ. Res. Public Health 2020, 17, 1007. [Google Scholar] [CrossRef] [Green Version]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [Green Version]
- Barraud, O.; Casellas, M.; Dagot, C.; Ploy, M.C. An Antibiotic-Resistant Class 3 Integron in an Enterobacter Cloacae Isolate from Hospital Effluent. Clin. Microbiol. Infect. 2013, 19, E306–E308. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, P.; Li, J.; Hu, X.; Lin, Y.; Yang, L.; Qiu, S.; Ma, H.; Li, P.; Song, H. An NDM-1-Producing Acinetobacter Towneri Isolate from Hospital Sewage in China. Infect. Drug Resist. 2020, 13, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Zong, Z.; Zhang, X. BlaNDM-1-Carrying Acinetobacter Johnsonii Detected in Hospital Sewage. J. Antimicrob. Chemother. 2013, 68, 1007–1010. [Google Scholar] [CrossRef] [Green Version]
- Hrenovic, J.; Goic-Barisic, I.; Kazazic, S.; Kovacic, A.; Ganjto, M.; Tonkic, M. Carbapenem-Resistant Isolates of Acinetobacter Baumannii in a Municipal Wastewater Treatment Plant, Croatia, 2014. Eurosurveillance 2016, 21, 30195. [Google Scholar] [CrossRef]
- Xu, G.; Jiang, Y.; An, W.; Wang, H.; Zhang, X. Emergence of KPC-2-Producing Escherichia Coli Isolates in an Urban River in Harbin, China. World J. Microbiol. Biotechnol. 2015, 31, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [Green Version]
- Kutilova, I.; Medvecky, M.; Leekitcharoenphon, P.; Munk, P.; Masarikova, M.; Davidova-Gerzova, L.; Jamborova, I.; Bortolaia, V.; Pamp, S.J.; Dolejska, M. Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli and Antimicrobial Resistance in Municipal and Hospital Wastewaters in Czech Republic: Culture-Based and Metagenomic Approaches. Environ. Res. 2021, 193, 110487. [Google Scholar] [CrossRef] [PubMed]
- Zumaya-Estrada, F.A.; Ponce-De-león-Garduño, A.; Ortiz-Brizuela, E.; Tinoco-Favila, J.C.; Cornejo-Juárez, P.; Vilar-Compte, D.; Sassoé-González, A.; Saturno-Hernandez, P.J.; Alpuche-Aranda, C.M. Point Prevalence Survey of Antimicrobial Use in Four Tertiary Care Hospitals in Mexico. Infect. Drug Resist. 2021, 14, 4553–4566. [Google Scholar] [CrossRef]
- Galvin, S.; Boyle, F.; Hickey, P.; Vellinga, A.; Morris, D.; Cormican, M. Enumeration and Characterization of Antimicrobial-Resistant Escherichia Coli Bacteria in Effluent from Municipal, Hospital, and Secondary Treatment Facility Sources. Appl. Environ. Microbiol. 2010, 76, 4772–4779. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Feng, Y.; Lü, X.; McNally, A.; Zong, Z. Remarkable Diversity of Escherichia Coli Carrying Mcr-1 from Hospital Sewage with the Identification of Two New Mcr-1 Variants. Front. Microbiol. 2017, 8, 2094. [Google Scholar] [CrossRef] [PubMed]
- Kovacic, A.; Music, M.S.; Dekic, S.; Tonkic, M.; Novak, A.; Rubic, Z.; Hrenovic, J.; Goic-Barisic, I. Transmission and Survival of Carbapenem-Resistant Acinetobacter Baumannii Outside Hospital Setting. Int. Microbiol. 2017, 20, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qiu, S.; Wang, Y.; Qi, L.; Hao, R.; Liu, X.; Shi, Y.; Hu, X.; An, D.; Li, Z.; et al. Higher Isolation of NDM-1 Producing Acinetobacter Baumannii from the Sewage of the Hospitals in Beijing. PLoS ONE 2013, 8, e64857. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021; ISBN 978-1-68440-033-1. [Google Scholar]
- Cornejo-Juárez, P.; Pérez-Jiménez, C.; Silva-Sánchez, J.; Velázquez-Acosta, C.; González-Lara, F.; Reyna-Flores, F.; Sánchez-Pérez, A.; Volkow-Fernández, P. Molecular Analysis and Risk Factors for Escherichia Coli Producing Extended-Spectrum β-Lactamase Bloodstream Infection in Hematological Malignancies. PLoS ONE 2012, 7, e35780. [Google Scholar] [CrossRef]
- Rayamajhi, N.; Kang, S.G.; Lee, D.Y.; Kang, M.L.; Lee, S.I.; Park, K.Y.; Lee, H.S.; Yoo, H.S. Characterization of TEM-, SHV- and AmpC-Type β-Lactamases from Cephalosporin-Resistant Enterobacteriaceae Isolated from Swine. Int. J. Food Microbiol. 2008, 124, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of Plasmid-Mediated AmpC β-Lactamase Genes in Clinical Isolates by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weldhagen, G.F.; Prinsloo, A. Molecular Detection of GES-2 Extended Spectrum β-Lactamase Producing Pseudomonas Aeruginosa in Pretoria, South Africa. Int. J. Antimicrob. Agents 2004, 24, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Dogonchi, A.A.; Ghaemi, E.A.; Ardebili, A.; Yazdansetad, S.; Pournajaf, A. Metallo-β-lactamase-mediated Resistance among Clinical Carbapenem-resistant Pseudomonas Aeruginosa Isolates in Northern Iran: A Potential Threat to Clinical Therapeutics. Tzu Chi Med. J. 2018, 30, 90–96. [Google Scholar] [CrossRef]
- Aubron, C.; Poirel, L.; Ash, R.J.; Nordmann, P. Carbapenemase-Producing Enterobacteriaceae, U.S. Rivers. Emerg. Infect. Dis. 2005, 11, 260–264. [Google Scholar] [CrossRef]
- Bradford, P.A.; Bratu, S.; Urban, C.; Visalli, M.; Mariano, N.; Landman, D.; Rahal, J.J.; Brooks, S.; Cebular, S.; Quale, J. Emergence of Carbapenem-Resistant Klebsiella Species Possessing the Class A Carbapenem-Hydrolyzing KPC-2 and Inhibitor-Resistant TEM-30 β-Lactamases in New York City. Clin. Infect. Dis. 2004, 39, 55–60. [Google Scholar] [CrossRef]
- Poirel, L.; Héritier, C.; Tolün, V.; Nordmann, P. Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella Pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Zhou, H.; Li, H.; Gao, Y.; Lu, Z.; Hu, K.; Xu, B. Optimization of Pulse-Field Gel Electrophoresis for Subtyping of Klebsiella Pneumoniae. Int. J. Environ. Res. Public Health 2013, 10, 2720–2731. [Google Scholar] [CrossRef] [Green Version]
- Durmaz, R.; Otlu, B.; Koksal, F.; Hosoglu, S.; Ozturk, R.; Ersoy, Y.; Aktas, E.; Gursoy, N.C.; Caliskan, A. The Optimization of a Rapid Pulsed-Field Gel Electrophoresis Protocol for the Typing of Acinetobacter Baumannii, Escherichia Coli and Klebsiella Spp. Jpn. J. Infect. Dis. 2009, 62, 372–377. [Google Scholar]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting Chromosomal DNA Restriction Patterns Produced by Pulsed- Field Gel Electrophoresis: Criteria for Bacterial Strain Typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [Green Version]
Hospital | Wastewater | Code | Isolated | Genes | ESBL | AMP | TZP | FOX | CAZ | CTX | CEF | DOR | ERT | IPM | MEM | AMK | GEN | CIP | TIG | COL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | Raw | 9C-1 | E. coli | - | ||||||||||||||||
9D-1 | E. coli | - | ||||||||||||||||||
9D-2 | E. coli | - | ||||||||||||||||||
10B-1 | E. coli | - | ||||||||||||||||||
17C-2 | E. coli | - | ||||||||||||||||||
17D-1 | E. coli | - | ||||||||||||||||||
20-1 | E. coli | blaKPC | ||||||||||||||||||
20-2 | E. coli | blaCTX-M | + | |||||||||||||||||
17C-3 | E. cloacae | |||||||||||||||||||
Treated | 21C-3 | E. coli | blaKPC,blaCTX-M | + | ||||||||||||||||
21D-2 | E. coli | - | ||||||||||||||||||
24-3 | E. coli | - | ||||||||||||||||||
21A-2 | A. haemolyticus | |||||||||||||||||||
21D-3 | A. modestus | |||||||||||||||||||
23-2 | A. haemolyticus | |||||||||||||||||||
24-1 | A. haemolyticus | |||||||||||||||||||
24-2 | A. haemolyticus | |||||||||||||||||||
13D-3 | E. bugandensis | |||||||||||||||||||
B | Raw | 1C-1 | E. coli | - | ||||||||||||||||
1D-1 | E. coli | - | ||||||||||||||||||
1D-2 | E. coli | - | ||||||||||||||||||
4-2 | E. coli | - | ||||||||||||||||||
Treated | 5C-1 | E. coli | + | |||||||||||||||||
5C-3 | E. coli | blaKPC,blaCTX-M | - | |||||||||||||||||
5D-1 | E. coli | - | ||||||||||||||||||
5D-2 | E. coli | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galarde-López, M.; Velazquez-Meza, M.E.; Bobadilla-del-Valle, M.; Cornejo-Juárez, P.; Carrillo-Quiroz, B.A.; Ponce-de-León, A.; Sassoé-González, A.; Saturno-Hernández, P.; Alpuche-Aranda, C.M. Antimicrobial Resistance Patterns and Clonal Distribution of E. coli, Enterobacter spp. and Acinetobacter spp. Strains Isolated from Two Hospital Wastewater Plants. Antibiotics 2022, 11, 601. https://doi.org/10.3390/antibiotics11050601
Galarde-López M, Velazquez-Meza ME, Bobadilla-del-Valle M, Cornejo-Juárez P, Carrillo-Quiroz BA, Ponce-de-León A, Sassoé-González A, Saturno-Hernández P, Alpuche-Aranda CM. Antimicrobial Resistance Patterns and Clonal Distribution of E. coli, Enterobacter spp. and Acinetobacter spp. Strains Isolated from Two Hospital Wastewater Plants. Antibiotics. 2022; 11(5):601. https://doi.org/10.3390/antibiotics11050601
Chicago/Turabian StyleGalarde-López, Miguel, Maria Elena Velazquez-Meza, Miriam Bobadilla-del-Valle, Patricia Cornejo-Juárez, Berta Alicia Carrillo-Quiroz, Alfredo Ponce-de-León, Alejandro Sassoé-González, Pedro Saturno-Hernández, and Celia Mercedes Alpuche-Aranda. 2022. "Antimicrobial Resistance Patterns and Clonal Distribution of E. coli, Enterobacter spp. and Acinetobacter spp. Strains Isolated from Two Hospital Wastewater Plants" Antibiotics 11, no. 5: 601. https://doi.org/10.3390/antibiotics11050601
APA StyleGalarde-López, M., Velazquez-Meza, M. E., Bobadilla-del-Valle, M., Cornejo-Juárez, P., Carrillo-Quiroz, B. A., Ponce-de-León, A., Sassoé-González, A., Saturno-Hernández, P., & Alpuche-Aranda, C. M. (2022). Antimicrobial Resistance Patterns and Clonal Distribution of E. coli, Enterobacter spp. and Acinetobacter spp. Strains Isolated from Two Hospital Wastewater Plants. Antibiotics, 11(5), 601. https://doi.org/10.3390/antibiotics11050601