Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge
Abstract
:1. Introduction
2. Global Burden of Human Gut-Resistant Pathogens
3. Current Clinical Routines for AMR Detection
4. Overview of Metagenomic and Metatranscriptomic Research
Characteristic | Technology | ||
---|---|---|---|
Microarray | cDNA or EST Sequencing | RNA-seq | |
Detailed specification [46,47,48] | |||
Basic examination principle | Hybridization | Sanger sequencing | High-throughput sequencing |
Genome sequence dependency | Yes | No | Some cases |
Resolution | From several to 100 bp | Single base | Single base |
Output results | High | Low | High |
Background noise | High | Low | Low |
Application [49,50] | |||
Characterized gene expression | Yes | Limited for gene expression | Yes |
Quantification range | Up to a few hundredfold | Not practical | >8000-fold |
Differentiation of isoform ability | Limited | Yes | Yes |
Differentiation of allelic expression | Limited | Yes | Yes |
Practical issues [51,52] | |||
RNA requirement | High | High | Low |
Cost for large genome | High | High | Relatively low |
5. Profiling AMR Using Metagenomic and Metatranscriptomic Approaches
6. Metagenomic and Metatranscriptomic Approaches in Clinical Practice: Yet an Expensive Hope
7. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 11 March 2021).
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903. [Google Scholar] [CrossRef] [Green Version]
- US Department of Health and Human Services. Antibiotic Resistance Threats in the United States; Centres for Disease Control and Prevention, US Department of Health and Human Services: Atlanta, GA, USA, 2019.
- Solomon, S.L.; Oliver, K.B. Antibiotic Resistance Threats in the United States: Stepping Back from the Brink. Am. Fam. Physician 2014, 89, 938–941. [Google Scholar] [PubMed]
- ECDC. Antimicrobial Resistance Tackling the Burden in the European Union. Eur. Cent. Dis. Prev. Control 2019, 1–20. Available online: https://www.oecd.org/health/health-systems/AMR-Tackling-the-Burden-in-the-EU-OECD-ECDC-Briefing-Note-2019.pdf (accessed on 1 November 2021).
- Doré, J.; Gramet, G.; Goderel, I.; Pochart, P. Culture-Independent Characterisation of Human Faecal Flora Using RRNA-Targeted Hybridisation Probes. Genet. Sel. Evol. 1998, 30, S287–S296. [Google Scholar] [CrossRef]
- Wu, I.W.; Gao, S.S.; Chou, H.C.; Yang, H.Y.; Chang, L.C.; Kuo, Y.L.; Vinh Dinh, M.C.; Chung, W.H.; Yang, C.W.; Lai, H.C.; et al. Integrative Metagenomic and Metabolomic Analyses Reveal Severity-Specific Signatures of Gut Microbiota in Chronic Kidney Disease. Theranostics 2020, 10, 5398. [Google Scholar] [CrossRef]
- Paley, E.L. Discovery of Gut Bacteria Specific to Alzheimer’s Associated Diseases Is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J. Alzheimers Dis. 2019, 72, 319–355. [Google Scholar] [CrossRef] [PubMed]
- Haran, J.P.; Bhattarai, S.K.; Foley, S.E.; Dutta, P.; Ward, D.V.; Bucci, V.; McCormick, B.A. Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. MBio 2019, 10, e00632-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.M.; Lin, X.; Meng, X.H.; Zhao, Q.; Shen, J.; Xiao, H.M.; Deng, H.W. Integrated Metagenome and Metabolome Analyses of Blood Pressure Studies in Early Postmenopausal Chinese Women. J. Hypertens. 2021, 39, 1800–1809. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Marques, J.; Ferreira, R.M.; Pinto-Ribeiro, I.; Figueiredo, C. Helicobacter Pylori Infection, the Gastric Microbiome and Gastric Cancer. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2019; Volume 1149, pp. 195–210. [Google Scholar]
- Schmidt, T.S.B.; Raes, J.; Bork, P. The Human Gut Microbiome: From Association to Modulation. Cell 2018, 172, 1198–1215. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Sharma, P.C. Next Generation Sequencing-Based Emerging Trends in Molecular Biology of Gastric Cancer. Am. J. Cancer Res. 2018, 8, 207–225. [Google Scholar]
- Bashiardes, S.; Zilberman-Schapira, G.; Elinav, E. Use of Metatranscriptomics in Microbiome Research. Bioinform. Biol. Insights 2016, 10, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Sukumar, S.; Roberts, A.P.; Martin, F.E.; Adler, C.J. Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria. J. Dent. Res. 2016, 95, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.J.; Sutjita, M. Infectious Diarrhea: Cellular and Molecular Mechanisms. Gut Microbes 2010, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Frost, I.; Van Boeckel, T.P.; Pires, J.; Craig, J.; Laxminarayan, R. Global Geographic Trends in Antimicrobial Resistance: The Role of International Travel. J. Travel Med. 2019, 26, taz036. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Li, S.; Wang, L.; Song, W.; Zhou, Y. Antimicrobial Resistance and Molecular Epidemiology of ESBL-Producing Escherichia Coli Isolated from Outpatients in Town Hospitals of Shandong Province, China. Front. Microbiol. 2017, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Chen, X.; Lian, M.; Wen, F. Phenotypic and Genotypic Characterization of Multi-Drug-Resistant Escherichia Coli Isolates Harboring BlaCTX-M Group Extended-Spectrum β-Lactamases Recovered from Pediatric Patients in Shenzhen, Southern China. Infect. Drug Resist. 2019, 12, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.W.; Mah, T.F. Molecular Mechanisms of Biofilm-Based Antibiotic Resistance and Tolerance in Pathogenic Bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 464–472. [Google Scholar] [CrossRef] [Green Version]
- García-Aljaro, C.; Ballesté, E.; Muniesa, M. Beyond the Canonical Strategies of Horizontal Gene Transfer in Prokaryotes. Curr. Opin. Microbiol. 2017, 38, 95–105. [Google Scholar] [CrossRef]
- Motta, S.S.; Cluzel, P.; Aldana, M. Adaptive Resistance in Bacteria Requires Epigenetic Inheritance, Genetic Noise, and Cost of Efflux Pumps. PLoS ONE 2015, 10, e0118464. [Google Scholar] [CrossRef] [Green Version]
- Pontes, D.S.; de Araujo, R.S.A.; Dantas, N.; Scotti, L.; Scotti, M.T.; de Moura, R.O.; Mendonca-Junior, F.J.B. Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants. Curr. Top. Med. Chem. 2018, 18, 42–74. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, A.U. Global Economic Impact of Antibiotic Resistance: A Review. J. Glob. Antimicrob. Resist. 2019, 19, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Pienaar, J.A.; Singh, A.; Barnard, T.G. The Viable but Non-Culturable State in Pathogenic Escherichia Coli: A General Review. Afr. J. Lab. Med. 2016, 5, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Whitehouse, C.A.; Li, B. Presence and Persistence of Salmonella in Water: The Impact on Microbial Quality of Water and Food Safety. Front. Public Health 2018, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The Importance of the Viable but Non-Culturable State in Human Bacterial Pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Repáraz, J.; Kasper, L.H. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders? Curr. Obes. Rep. 2016, 5, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Fraher, M.H.; O’Toole, P.W.; Quigley, E.M.M. Techniques Used to Characterize the Gut Microbiota: A Guide for the Clinician. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 312–322. [Google Scholar] [CrossRef]
- Weiss, G.A.; Hennet, T. Mechanisms and Consequences of Intestinal Dysbiosis. Cell. Mol. Life Sci. 2017, 74, 2959–2977. [Google Scholar] [CrossRef] [Green Version]
- Quigley, E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2017, 17, 94. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An Insight into Gut Microbiota and Its Functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Mangiola, F.; Ianiro, G.; Franceschi, F.; Fagiuoli, S.; Gasbarrini, G.; Gasbarrini, A. Gut Microbiota in Autism and Mood Disorders. World J. Gastroenterol. 2016, 22, 361–368. [Google Scholar] [CrossRef]
- Patel, S. Drivers of Bacterial Genomes Plasticity and Roles They Play in Pathogen Virulence, Persistence and Drug Resistance. Infect. Genet. Evol. 2016, 45, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Delahay, R.M.; Croxall, N.J.; Stephens, A.D. Phylogeographic Diversity and Mosaicism of the Helicobacter Pylori Tfs Integrative and Conjugative Elements. Mob. DNA 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA Profiling: Approaches and Considerations. Nat. Rev. Genet. 2012, 13, 358. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57. [Google Scholar] [CrossRef]
- Bumgarner, R. DNA Microarrays: Types, Applications and Their Future. Curr. Protoc. Mol. Biol. 2013, 101, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pärnänen, K.; Karkman, A.; Hultman, J.; Lyra, C.; Bengtsson-Palme, J.; Larsson, D.G.J.; Rautava, S.; Isolauri, E.; Salminen, S.; Kumar, H.; et al. Maternal Gut and Breast Milk Microbiota Affect Infant Gut Antibiotic Resistome and Mobile Genetic Elements. Nat. Commun. 2018, 9, 3891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics Technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [Green Version]
- Kukurba, K.R.; Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015, 2015, 951. [Google Scholar] [CrossRef] [Green Version]
- Okoniewski, M.J.; Miller, C.J. Hybridization interactions between probesets in short oligo microarrays lead to spurious correla correlations. BMC Bioinform. 2006, 7, 276. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.; Hardin, J.; Stoebel, D.M. Selecting Between-Sample RNA-Seq Normalization Methods from the Perspective of Their Assumptions. Brief. Bioinform. 2018, 19, 776–792. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Lim, J.; Dale, J.H.; Chen, H.; Shinn, P.; Palm, C.J.; Southwick, A.M.; Wu, H.C.; Kim, C.; Nguyen, M.; et al. Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome. Science 2003, 302, 842–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Kapranov, P.; Drenkow, J.; Dike, S.; Brubaker, S.; Patel, S.; Long, J.; Stern, D.; Tammana, H.; Helt, G.; et al. Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution. Science 2005, 308, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Gao, S.; Muegge, K.; Zhang, W.; Zhou, B. Advanced Applications of RNA Sequencing and Challenges. Bioinform. Biol. Insights 2015, 9, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Nagalakshmi, U.; Wang, Z.; Waern, K.; Shou, C.; Raha, D.; Gerstein, M.; Snyder, M. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science 2008, 320, 1344–1349. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Koppstein, D.; Rozowsky, J.; Sboner, A.; Habegger, L.; Hillier, L.D.W.; Sasidharan, R.; Reinke, V.; Waterston, R.H.; Gerstein, M. Comparison and Calibration of Transcriptome Data from RNA-Seq and Tiling Arrays. BMC Genom. 2010, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Fung-Leung, W.P.; Bittner, A.; Ngo, K.; Liu, X. Comparison of RNA-Seq and Microarray in Transcriptome Profiling of Activated T Cells. PLoS ONE 2014, 9, e78644. [Google Scholar] [CrossRef]
- Li, J.; Hou, R.; Niu, X.; Liu, R.; Wang, Q.; Wang, C.; Li, X.; Hao, Z.; Yin, G.; Zhang, K. Comparison of Microarray and RNA-Seq Analysis of MRNA Expression in Dermal Mesenchymal Stem Cells. Biotechnol. Lett. 2016, 38, 33–41. [Google Scholar] [CrossRef]
- Zhang, F.G.; He, Z.Y.; Wang, Q. Transcriptome Profiling of the Cancer and Normal Tissues from Gastric Cancer Patients by Deep Sequencing. Tumor Biol. 2014, 35, 7423–7427. [Google Scholar] [CrossRef]
- Wu, H.-Q.; Wang, H.-Y.; Sun, X.-W.; Liu, F.; Zhang, L.-W.; Tian, F.-J. Transcriptome Profiling of Cancers Tissue in Chinese Gastric Patients by High-through Sequencing. Int. J. Clin. Exp. Pathol. 2016, 9, 3537–3546. [Google Scholar]
- Zhang, E.; He, X.; Zhang, C.; Su, J.; Lu, X.; Si, X.; Chen, J.; Yin, D.; Han, L.; De, W. A Novel Long Noncoding RNA HOXC-AS3 Mediates Tumorigenesis of Gastric Cancer by Binding to YBX1. Genome Biol. 2018, 19, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulcahy-O’Grady, H.; Workentine, M.L. The Challenge and Potential of Metagenomics in the Clinic. Front. Immunol. 2016, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, W.; Zhang, J.; Ma, F.; Hao, S.; Li, X.; Guo, R.; Gao, Q.; Sun, Y.; Jia, J.; Li, W. Long Noncoding RNA THAP9-AS1 Is Induced by Helicobacter Pylori and Promotes Cell Growth and Migration of Gastric Cancer. Onco. Targets Ther. 2019, 12, 6653–6663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Wintersdorff, C.J.H.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, D.G.J.; Flach, C.F. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2021, 20, 257–269. [Google Scholar] [CrossRef]
- Kim, Y.; Leung, M.H.Y.; Kwok, W.; Fournié, G.; Li, J.; Lee, P.K.H.; Pfeiffer, D.U. Antibiotic Resistance Gene Sharing Networks and the Effect of Dietary Nutritional Content on the Canine and Feline Gut Resistome. Anim. Microbiome 2020, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Crofts, T.S.; Gasparrini, A.J.; Dantas, G. Next-Generation Approaches to Understand and Combat the Antibiotic Resistome. Nat. Rev. Microbiol. 2017, 15, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Fair, R.J.; Tor, Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Med. Chem. 2014, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Korry, B.J.; Cabral, D.J.; Belenky, P. Metatranscriptomics Reveals Antibiotic-Induced Resistance Gene Expression in the Murine Gut Microbiota. Front. Microbiol. 2020, 11, 322. [Google Scholar] [CrossRef]
- Sharma, C.M.; Hoffmann, S.; Darfeuille, F.; Reignier, J.; Findeiß, S.; Sittka, A.; Chabas, S.; Reiche, K.; Hackermüller, J.; Reinhardt, R.; et al. The Primary Transcriptome of the Major Human Pathogen Helicobacter Pylori. Nature 2010, 464, 250–255. [Google Scholar] [CrossRef]
- Loh, J.T.; Beckett, A.C.; Scholz, M.B.; Cover, T.L. High-Salt Conditions Alter Transcription of Helicobacter Pylori Genes Encoding Outer Membrane Proteins. Infect. Immun. 2018, 86, e00626-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalla, A.; Pultz, N.J.; Ray, A.J.; Hoyen, C.K.; Eckstein, E.C.; Donskey, C.J. Antianaerobic Antibiotic Therapy Promotes Overgrowth of Antibiotic-Resistant, Gram-Negative Bacilli and Vancomycin-Resistant Enterococci in the Stool of Colonized Patients. Infect. Control Hosp. Epidemiol. 2003, 24, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Remschmidt, C.; Behnke, M.; Kola, A.; Peña Diaz, L.A.; Rohde, A.M.; Gastmeier, P.; Schwab, F. The Effect of Antibiotic Use on Prevalence of Nosocomial Vancomycin-Resistant Enterococci- an Ecologic Study. Antimicrob. Resist. Infect. Control 2017, 6, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Cochetière, M.F.; Durand, T.; Lalande, V.; Petit, J.C.; Potel, G.; Beaugerie, L. Effect of Antibiotic Therapy on Human Fecal Microbiota and the Relation to the Development of Clostridium Difficile. Microb. Ecol. 2008, 56, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Verma, N.; Taneja, N. The Human Gut Resistome: Current Concepts & Future Prospects. Indian J. Med. Res. 2019, 150, 345–358. [Google Scholar]
- Hew, B.; Tan, Q.W.; Goh, W.; Ng, J.W.X.; Mutwil, M. LSTrAP-Crowd: Prediction of Novel Components of Bacterial Ribosomes with Crowd-Sourced Analysis of RNA Sequencing Data. BMC Biol. 2020, 18, 114. [Google Scholar] [CrossRef]
- Wadsworth, C.B.; Sater, M.R.A.; Bhattacharyya, R.P.; Grad, Y.H. Impact of Species Diversity on the Design of RNA-Based Diagnostics for Antibiotic Resistance in Neisseria Gonorrhoeae. Antimicrob. Agents Chemother. 2019, 63, e00549-19. [Google Scholar] [CrossRef] [Green Version]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Pop, M. ARDB-Antibiotic Resistance Genes Database. Nucleic Acids Res. 2009, 37, D443. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-Annot, a New Bioinformatic Tool to Discover Antibiotic Resistance Genes in Bacterial Genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, B.; Jiang, X.; Yang, Y.; Wells, G.F.; Zhang, T.; Li, X. Antibiotic Resistome in a Large-Scale Healthy Human Gut Microbiota Deciphered by Metagenomic and Network Analyses. Environ. Microbiol. 2018, 20, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Nogacka, A.; Salazar, N.; Suárez, M.; Milani, C.; Arboleya, S.; Solís, G.; Fernández, N.; Alaez, L.; Hernández-Barranco, A.M.; de los Reyes-Gavilán, C.G.; et al. Impact of Intrapartum Antimicrobial Prophylaxis upon the Intestinal Microbiota and the Prevalence of Antibiotic Resistance Genes in Vaginally Delivered Full-Term Neonates. Microbiome 2017, 5, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pehrsson, E.C.; Tsukayama, P.; Patel, S.; Mejía-Bautista, M.; Sosa-Soto, G.; Navarrete, K.M.; Calderon, M.; Cabrera, L.; Hoyos-Arango, W.; Bertoli, M.T.; et al. Interconnected Microbiomes and Resistomes in Low-Income Human Habitats. Nature 2016, 533, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampelli, S.; Schnorr, S.L.; Consolandi, C.; Turroni, S.; Severgnini, M.; Peano, C.; Brigidi, P.; Crittenden, A.N.; Henry, A.G.; Candela, M. Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Curr. Biol. 2015, 25, 1682–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, A.M.; Ahmadi, S.; Patel, S.; Gibson, M.K.; Wang, B.; Ndao, I.M.; Deych, E.; Shannon, W.; Tarr, P.I.; Warner, B.B.; et al. Gut Resistome Development in Healthy Twin Pairs in the First Year of Life. Microbiome 2015, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forslund, K.; Sunagawa, S.; Coelho, L.P.; Bork, P. Metagenomic Insights into the Human Gut Resistome and the Forces That Shape It. BioEssays 2014, 36, 316–329. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, X.; Lu, N.; Zhu, B. The Abundance of Antibiotic Resistance Genes in Human Guts Has Correlation to the Consumption of Antibiotics in Animal. Gut Microbes 2014, 5, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Yang, X.; Qin, J.; Lu, N.; Cheng, G.; Wu, N.; Pan, Y.; Li, J.; Zhu, L.; Wang, X.; et al. Metagenome-Wide Analysis of Antibiotic Resistance Genes in a Large Cohort of Human Gut Microbiota. Nat. Commun. 2013, 4, 2151. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.M.; Patel, S.; Forsberg, K.J.; Wang, B.; Bentley, G.; Razia, Y.; Qin, X.; Tarr, P.I.; Dantas, G. Pediatric Fecal Microbiota Harbor Diverse and Novel Antibiotic Resistance Genes. PLoS ONE 2013, 8, e78822. [Google Scholar] [CrossRef] [Green Version]
- Bartoloni, A.; Pallecchi, L.; Rodríguez, H.; Fernandez, C.; Mantella, A.; Bartalesi, F.; Strohmeyer, M.; Kristiansson, C.; Gotuzzo, E.; Paradisi, F.; et al. Antibiotic Resistance in a Very Remote Amazonas Community. Int. J. Antimicrob. Agents 2009, 33, 125–129. [Google Scholar] [CrossRef]
- Martínez, J.L. Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science 2008, 321, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J.V. Co-Selection of Antibiotic and Metal Resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef] [PubMed]
Technique | Explanation | Advantages | Disadvantages |
---|---|---|---|
Culture | Bacterial isolation through selective media | Cheap, semiquantitative by counting colonies | Labor intensive, <30% have been cultured |
DGGE/TGGE | Gel separation of 16S rRNA amplicons by denaturation-based examination | Fast, semiquantitative, possible to excise bands for further analysis | No phylogenetic identification, PCR bias |
T-RFLP | Amplification of labeled primers and digestion of 16S rRNA amplicon. Digested amplicon is separated by gel electrophoresis | Fast, semiquantitative, cheap | Low resolution, no phylogenetic identification, PCR bias |
FISH | Fluorescent-labeled probe hybridizes 16S rRNA target. Hybridization occurs and is then quantified by flow cytometry | Phylogenetic identification, semiquantitative, no PCR bias | Probe dependency, inability to identify unknown species |
DNA microarrays | Fluorescent-labeled oligonucleotide probes hybridize the complementary nucleotide sequences; laser detection of labeled sequence | Phylogenetic identification, semiquantitative, fast | Cross-hybridization, PCR bias, less applicable for low abundance species |
Cloned 16S rRNA gene sequencing | Cloning of full-length 16S rRNA amplicon, Sanger sequencing, and capillary electrophoresis | Phylogenetic identification, quantitative | PCR bias, labor-intensive, expensive, cloning bias |
Direct sequencing of 16S rRNA amplicons | Massive parallel sequencing of partial 16S rRNA amplicons | Phylogenetic identification, quantitative, fast, novel bacterial identification | PCR bias |
Microbiome shotgun sequencing | Massive parallel sequencing of the whole genome | Phylogenetic identification, quantitative | Expensive, requires high computational power |
Subjects | Approach | Results | References |
---|---|---|---|
Healthy subjects originated from 11 countries (Austria, France, Germany, Iceland, Sweden, China, Japan, USA, Canada, Peru, and Salvador) | Metagenomic characterization and network analysis to establish a comprehensive antibiotic resistome catalog | Vancomycin, β-lactam, tetracycline, macrolide–lincosamide–streptogramin (MLS), bacitracin, and aminoglycoside resistance genes were the most abundant ARG types. Chinese population had the most abundant ARGs. | [75] |
Spontaneously delivered infants in Spain | Specific PCR for AMR genes in fecal specimen | Higher β-lactamase-encoding genes detected among received (IAP infants) mothers | [76] |
Latin American communities Low-income Latin American communities | Bacterial community characterization and resistance exchange networks from fecal and environmental specimens | Resistomes were associated with bacterial phylogeny structure, and this association was observed across habitats. Several keys of ARGs are associated with MGEs. | [77] |
Hunter–gatherers of Hadza people | Functional metagenomic characterization of human fecal specimens | Detected ARGs for synthetic antibiotics among the population, suggesting that the existence of ARGs in the human gut microbiome was independent of commercial antibiotic consumption. | [78] |
Three healthy twin pairs in the USA | Characterization of fecal metagenomic and AMR genes | Different ARG characteristics between the babies and their mothers. The resistomes were shared among family members but slightly different across families, suggesting that family-specific shared environmental factors also shape resistome development. | [79] |
Individuals from ten different countries (USA, Denmark, Ireland, Spain, France, Sweden, Italy, Malawi, China, and Japan) | Gut resistome comparison between ten different populations | Antibiotic consumption and exposure were strongly associated with the shape of AGRs in gut microbiota. Other factors, such as age, body mass index, sex, or health status, have little effect on shaping AMR potential in human gut microbes. | [80] |
Healthy adults and infants from five countries (USA, Japan, Denmark, Spain, and China) | Metagenomic sequencing characterization of human fecal specimens and correlation of antibiotic consumption in humans and animal | Children’s gut resistome characteristics were different compared to their parents. Several ARGs were present, despite no exposure to antibiotics, unusual eating habits, or GI disorder. There was an association between antibiotic use in animals and the enrichment of ARGs in human gut. | [81] |
China, Denmark, and Spain | Homology-based prediction and function-based screening of human gut metagenomic sequencing data from public database | Tetracycline ARGs are the most abundant worldwide. The shape of ARG characteristics was determined by country. This shape is likely due to different antibiotic use between those countries. | [82] |
Healthy pediatric patients in USA | Functional metagenomic selections with next-generation sequencing | A diverse fecal resistome among healthy children. The detected ARGs among children are independent of antibiotic use. Some ARGs were mobile and had low identity to any known organism, suggesting that the human gut is an important resistance reservoir. | [83] |
Remote communities of the Peruvian Amazonas | Specific PCR of ARGs from isolated fecal E. coli | High levels of acquired resistance to the oldest antibiotics, such as trimethoprim/sulfamethoxazole, ampicillin, tetracycline, streptomycin, and chloramphenicol, despite the low exposure to commercial antibiotics. | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waskito, L.A.; Rezkitha, Y.A.A.; Vilaichone, R.-k.; Wibawa, I.D.N.; Mustika, S.; Sugihartono, T.; Miftahussurur, M. Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. Antibiotics 2022, 11, 654. https://doi.org/10.3390/antibiotics11050654
Waskito LA, Rezkitha YAA, Vilaichone R-k, Wibawa IDN, Mustika S, Sugihartono T, Miftahussurur M. Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. Antibiotics. 2022; 11(5):654. https://doi.org/10.3390/antibiotics11050654
Chicago/Turabian StyleWaskito, Langgeng Agung, Yudith Annisa Ayu Rezkitha, Ratha-korn Vilaichone, I Dewa Nyoman Wibawa, Syifa Mustika, Titong Sugihartono, and Muhammad Miftahussurur. 2022. "Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge" Antibiotics 11, no. 5: 654. https://doi.org/10.3390/antibiotics11050654
APA StyleWaskito, L. A., Rezkitha, Y. A. A., Vilaichone, R. -k., Wibawa, I. D. N., Mustika, S., Sugihartono, T., & Miftahussurur, M. (2022). Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. Antibiotics, 11(5), 654. https://doi.org/10.3390/antibiotics11050654