Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Antibiofilm Activity
Biofilm Inhibitory Capability of the EOs
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of the EOs
3.3. Composition of the EOs
3.4. Antibacterial Activity
Microorganisms and Culture Conditions
3.5. Minimal Inhibitory Concentration (MIC)
3.6. Biofilm Inhibitory Action of the EOs
3.7. Inhibition of Cells’ Metabolic Activity within the Biofilm
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badal, D.S.; Dwivedi, A.K.; Kumar, V.; Singh, S.; Prakash, A.; Verma, S.; Kumar, J. Effect of organic manures and inorganic fertilizers on growth, yield and its attributing traits in garlic (Allium sativum L.). J. Pharmacogn. Phytochem. 2019, 8, 587–590. [Google Scholar]
- Londhe, V.P.; Gavasane, A.T.; Nipate, S.S.; Bandawane, D.D.; Chaudhari, P.D. Role of garlic (Allium sativum) in various diseases: An overview. J. Pharm. Res. Opin. 2011, 1, 129–134. [Google Scholar]
- Bhandari, P.R. Garlic (Allium sativum L.): A review of potential therapeutic applications. Int. J. Green Pharm. 2012, 6, 118–129. [Google Scholar] [CrossRef]
- Molina-Calle, M.; Priego-Capote, F.; de Castro, M.D.L. HS-GC/MS volatile profile of different varieties of garlic and their behavior under heating. Anal. Bioanal. Chem. 2016, 408, 3843–3852. [Google Scholar] [CrossRef]
- Fratianni, F.; Riccardi, R.; Spigno, P.; Ombra, M.N.; Cozzolino, A.; Tremonte, P.; Coppola, R.; Nazzaro, F. Biochemical Characterization and Antimicrobial and Antifungal Activity of two Endemic Varieties of Garlic (Allium sativum) of the Campania Region, Southern Italy. J. Med. Food 2016, 19, 686–691. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.; Taha, A.E.; Abd Elhakim, Y.M.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [Green Version]
- Rahman, K. Historical perspective on garlic and cardiovascular disease. J. Nutr. 2001, 131, 977S–979S. [Google Scholar] [CrossRef] [Green Version]
- Casella, S.; Leonardi, M.; Melai, B.; Fratini, F.; Pistelli, L. The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil of garlic, Allium sativum L., and leek, Allium porrum L. Phytother. Res. 2013, 27, 380–383. [Google Scholar] [CrossRef]
- Silva, J.; Figueiredo, P.; Byler, K.G.; Setzer, W.N. Essential oils as Antiviral Agents. Potential of Essential oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int. J. Mol. Sci. 2020, 21, 3426. [Google Scholar] [CrossRef]
- Pandey, P.; Khan, F.; Kumar, A.; Srivastava, A.; Iha, N.K. Screening of Potent Inhibitors Against 2019 Novel Coronavirus (COVID-19) from Allium sativum and Allium cepa: An In Silico Approach. Biointerface Res. Appl. Chem. 2021, 11, 7981–7993. [Google Scholar]
- Johnson, M.G.; Vaoughn, R.H. Death of Salmonella typhimurium and Escherichia coli in the presence of freshly reconstituted dehydrate garlic and onion. Appl. Microbiol. 1960, 17, 903–905. [Google Scholar] [CrossRef] [PubMed]
- Cavallito, C.J.; Bailey, J.H. Allicin, the antibacterial principle of Allium sativum. Isolation, physical proprieties and antibacterial action. J. Am. Chem. Soc. 1944, 66, 1950–1951. [Google Scholar] [CrossRef]
- Arora, S.D.; Kaur, J. Antimicrobical activity of spices. J. Antimicrob. Agents. 1999, 12, 257–262. [Google Scholar] [CrossRef]
- Almabrook, H.; Masih, H. Antifungal activityof Allium sativum L. and Mentha piperita L. against C. albicans from clinical samples. Ann. Rom. Soc. Cell Biol. 2021, 25, 5591–5607. [Google Scholar]
- Fanaei, V.; Validi, M.; Zamanzad, B.; Karimi, A. Isolation and identification of specific bacteriophages against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamases-producing Escherichia coli, extended-spectrum beta-lactamases-producing Klebsiella pneumoniae, and multidrug-resistant Acinetobacter baumannii in vitro. FEMS Microbiol. Lett. 2021, 368, fnab139. [Google Scholar] [CrossRef]
- Yang, H.; Liang, L.; Lin, S.; Jia, S. Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol. 2010, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Bien, J.; Sokolova, O.; Bozko, P. Characterization of virulence factors of Staphylococcus aureus: Novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J. Pathog. 2011, 2011, 601905. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.Y.; Yoon, J.; Hovde, C.J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Wang, A.; Fu, M.; Wang, A.; Chen, K.; Jia, Q.; Huang, Z. Investigation of incidents and trends of antimicrobial resistance in foodborne pathogens in eight countries from historical sample data. Int. J. Environ. Res. Public Health 2020, 17, 472. [Google Scholar] [CrossRef] [Green Version]
- Bottery, M.J.; Pitchford, J.W.; Friman, W.P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021, 15, 939–948. [Google Scholar] [CrossRef]
- Simoes, M.; Bennett, R.; Rosa, E.A.S. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep. 2009, 26, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Amod, A.; Pandey, P.; Bose, P.; Pingali, M.S.; Shivalkar, S.; Varadwaj, P.K.; Sahoo, A.K.; Samanta, S.K. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed. Mater. 2022, 17, 22003. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Chaves-López, C.; Serio, A.; Casaccia, M.; Maggio, F.; Paparella, A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit. Rev. Food Sci. Nutr. 2020, 62, 2172–2191. [Google Scholar] [CrossRef] [PubMed]
- Bhatwalkar, S.B.; Singh Gound, S.; Mondal, R.; Srivastava, R.K.; Anupam, R. Anti-biofilm and antibacterial activity of Allium sativum agaist drug resistant Shiga-Toxin producing Escherichia coli (STEC) isolates from petient samples and food sources. Indian J. Microbiol. 2019, 59, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Mohsenipour, Z.; Hassanshahian, M. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria. Jundishapur J. Microbiol. 2015, 8, e18971. [Google Scholar] [CrossRef] [Green Version]
- Bin, C.; Naif-Dhabi, A.; Esmail, G.A.; Arokiyaraj, S.; Arasu, M.V. Potential effect of Allium sativum bulb for the treatment of biofilm forming clinical pathogens recovered from periodontal and dental caries. Saudi J. Biol. Sci. 2020, 27, 1428–1434. [Google Scholar] [CrossRef]
- Hutomo, S.; Utami Putri, D.; Welviyanda, B.C.; Susilowati, H. Inhibition Effect of garlic (Allium sativum) extract on Streptococcus sanguinis biofilm formation involving bacterial motility mechanism. Mal. J. Med. Health Sci. 2021, 17, 169–174. [Google Scholar]
- Polito, F.; Amato, G.; Caputo, L.; De Feo, V.; Fratianni, F.; Candido, V.; Nazzaro, F. Chemical Composition and Agronomic Traits of Allium sativum and Allium ampeloprasum Leaves and Bulbs and Their Action against Listeria monocytogenes and Other Food Pathogens. Foods 2022, 11, 995. [Google Scholar] [CrossRef]
- Marchese, A.; Barbieri, R.; Sanches-Silva, A.; Daglia, M.; Nabavi, S.F.; Jafari, N.J.; Izadi, M.; Ajami, M.; Nabavi, S.M. Antifungal and antibacterial activities of allicin: A review. Trends Food Sci. Technol. 2016, 52, 49–56. [Google Scholar] [CrossRef]
- Jin, Z.; Li, L.; Zheng, Y.; An, P. Diallyl disulfide, the antibacterial component of garlic essential oil, inhibits the toxicity of Bacillus cereus ATCC 14579 at sub-inhibitory concentrations. Food Control 2021, 126, 108090. [Google Scholar] [CrossRef]
- Hab, R.M.; Nazlina, I.; Yaacob, W.A. Anti-biofilm and anti-adherence activities of sub fraction 18 of Melastoma malabathricum towards Streptococcus mutans. AIP Conf. Proc. 2014, 1614, 557–561. [Google Scholar] [CrossRef]
- Romeilah, R.M.; Fayed, S.A.; Mahmoud, G.I. Chemical compositions, antiviral and antioxidant activities of seven Essential oils. J. Appl. Sci. Res. 2010, 6, 50–62. [Google Scholar]
- Jirovetz, L.; Jäger, W.; Koch, H.P.; Remberg, G. Investigations of volatile constituents of the EO of Egyptian garlic (Allium sativum L.) by means of GC-MS and GC-FTIR. Z. Lebensm. Unters. Forsch. 1992, 194, 363–365. [Google Scholar] [CrossRef]
- Satyal, P.; Craft, J.D.; Dosoky, N.S.; Setzer, W.N. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods 2017, 6, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnayer, D.; Fabiano-Tixier, A.S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 2014, 19, 20034–20053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascrizzi, R.; Flamini, G. Leek or garlic? A chemical evaluation of elephant garlic volatiles. Molecules 2020, 25, 2082. [Google Scholar] [CrossRef]
- Corzo-Martinez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavuwengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.; Cheng, W. Antioxidant and antimicrobial effects of four garlic-derived organosulfur compounds in ground beef. Meat Sci. 2003, 63, 23–28. [Google Scholar] [CrossRef]
- Kim, J.W.; Huh, J.E.; Kyung, S.H.; Kyung, K.H. Antimicrobial activity of alk(en)yl sulfides found in Essential oils of garlic and onion. Food Sci. Biothechnol. 2004, 13, 235–239. [Google Scholar]
- Tsao, S.; Yin, M. In vitro activity of four diallyl sulfides occurring naturally in garlic and Chinese leek oils. J. Med. Microbiol. 2001, 50, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastaki, S.M.A.; Ojha, S.; Kalasz, H.; Adeghate, E. Chemical constituents and medicinal properties of Allium species. Mol. Cell. Biochem. 2021, 476, 4301–4321. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Naureen, I.; Riaz, M.; Anjum, F.; Fatima, H.; Asif Rafiq, M. Biofilm Inhibition and Antibacterial Potential of Different Varieties of Garlic (Allium sativum) Against Sinusitis Isolates. Dose-Response 2021, 19, 15593258211050491. [Google Scholar] [CrossRef] [PubMed]
- Snoussi, M.; Noumi, E.; Hajlaoui, H.; Bouslama, L.; Hamdi, A.; Saeed, M.; Alreshidi, M.; Adnan, M.; Al-Rashidi, A.; Aouadi, K.; et al. Phytochemical Profiling of Allium subhirsutum L. Aqueous Extract with Antioxidant, Antimicrobial, Antibiofilm, and Anti-Quorum Sensing Properties: In Vitro and In Silico Studies. Plants 2022, 11, 495. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Caputo, L.; Amato, G.; Fratianni, F.; Coppola, R.; Candido, V.; De Feo, V.; Nazzaro, F. Chemical characterization and antibiofilm activities of bulbs and leaves of two aglione (Allium ampeloprasum var. holmense Asch. et Graebn.) landraces grown in Southern Italy. Molecules 2020, 25, 5486. [Google Scholar]
- Hatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Front. Microbiol. 2021, 12, 613077. [Google Scholar] [CrossRef]
- Fratianni, F.; Ombra, M.N.; d’Acierno, A.; Caputo, L.; Amato, G.; De Feo, V.; Coppola, R.; Nazzaro, F. Polyphenols content and in vitro α-glycosidase activity of different italian monofloral honeys, and their effect on selected pathogenic and probiotic bacteria. Microorganisms 2021, 9, 1694. [Google Scholar] [CrossRef]
- Fratianni, F.; d’Acierno, A.; Ombra, M.N.; Amato, G.; De Feo, V.; Ayala-Zavala, J.F.; Coppola, R.; Nazzaro, F. Fatty acid composition, antioxidant, and in vitro anti-inflammatory activity of five cold-pressed Prunus seed oils of Prunus, and their anti-biofilm effect against pathogenic bacteria. Front Nutr. 2021, 8, 775751. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopeia, 5th ed.; Council of Europe: Strasbourg, France, 2004. [Google Scholar]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavour and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Kairo, S.K.; Bedwell, J.; Tyler, P.C.; Carter, A.; Corbel, M.J. Development of a tetrazolium salt assay for rapid determination of viability of BCG vaccines. Vaccine 1999, 17, 2423–2428. [Google Scholar] [CrossRef]
N. | Compound | % | RT | KI | |||
---|---|---|---|---|---|---|---|
‘Bianco del Veneto’ | ‘Staravec’ | ||||||
Aerial Part | Bulbs | Aerial Part | Bulbs | ||||
1 | 2,4-Dimethylhexane | - | 0.1 | 1.4 | 0.2 | 5.1 | 758 |
2 | Methyl-2-propenyl disulfide | - | T | - | - | 8.0 | 797 |
3 | 2,2-Bis(ethylthio)-propane | - | 2.0 | - | 0.4 | 9.2 | 812 |
4 | α-Pinene | - | - | 0.2 | - | 9.8 | 819 |
5 | 2,2-Dimethylhexyl propanoate | - | T | - | - | 9.8 | 819 |
6 | 2,2-Dimethylbutyl propanoate | - | T | - | - | 10.2 | 824 |
7 | 2,4-Dimethyldecane | - | T | 0.5 | T | 10.9 | 834 |
8 | 2,2,3,4-Tetramethylpentane | - | T | - | - | 11.1 | 836 |
9 | 2,6-Dimethylnonane | - | T | - | T | 11.2 | 837 |
10 | 1,8-Cineole | - | T | 0.1 | T | 11.4 | 841 |
11 | 2,3,5,8-Tetramethyldecane | - | 0.1 | 1.5 | 0.2 | 12.2 | 851 |
12 | 4-Methyl-1-undecene | - | T | 0.6 | 1.8 | 12.4 | 853 |
13 | 2-Hydroxyethyl disulfide | 0.9 | 0.1 | - | 0.2 | 15.2 | 889 |
14 | 3,4-Dimethyl thiophene | - | - | 0.2 | T | 15.3 | 891 |
15 | Bis (1,1-dimethylpropyl) disulfide | - | - | 0.7 | - | 16.4 | 896 |
16 | Tridecane | - | 0.1 | - | 0.1 | 16.6 | 907 |
17 | 1,11-Thio-bis-butine | - | - | 1.0 | - | 16.7 | 909 |
18 | Dimethyl sulfide | - | 0.8 | 0.9 | 0.7 | 17.7 | 921 |
19 | (Z)-Methyl propenyl disulfide | - | - | 0.8 | - | 18.0 | 925 |
20 | 2,6,10-Trimethyldodecane | - | - | 1.4 | 0.2 | 18.2 | 928 |
21 | Dodecylsulfide | - | - | 0.2 | T | 18.5 | 932 |
22 | Dodecyl-7-en disulfide | - | - | 3,0 | 0.8 | 18.6 | 934 |
23 | Dodecyl-8-en disulfide | - | - | 2.1 | - | 18.9 | 937 |
24 | 2-Methoxy-4-vinylphenol | 11.1 | - | 2.4 | - | 19.9 | 951 |
25 | Hexanal | - | - | 0.6 | - | 20.1 | 953 |
26 | (E)-Allyl propyl sulfide | - | 0.3 | 0.4 | 0.4 | 21.1 | 965 |
27 | (Z)-Allyl propyl sulfide | - | 1.4 | 1.4 | - | 21.6 | 972 |
28 | Hexanol | - | - | 0.8 | - | 22.2 | 979 |
29 | Octane | - | - | 1.8 | 1.7 | 22.4 | 982 |
30 | Decane disulfide | - | - | 1.5 | - | 23.1 | 992 |
31 | Geranyl isovalerate | - | - | 0.5 | - | 23.3 | 994 |
32 | Nonanal | - | - | 3.9 | - | 23.4 | 995 |
33 | Nonene | - | - | 4.0 | - | 24.1 | 1000 |
34 | Decene | 17.0 | - | 8.2 | 0.2 | 24.3 | 1003 |
35 | 2,4-Bis (1,1-dimethylphenol) | 0.8 | 0.9 | 1.3 | 2.6 | 24.7 | 1009 |
36 | 2-Butyloctanol | - | 0.9 | 3.6 | 0.8 | 25.1 | 1014 |
37 | 3,7,12-Trimethyldodecan-1-ol | 0.6 | - | - | - | 25.3 | 1017 |
38 | (E)-9-Octadecene | - | 0.1 | 0.2 | 0.1 | 26.5 | 1033 |
39 | 4-Methylundecene | 0.8 | 0.1 | - | - | 26.6 | 1035 |
40 | n-Nonane | - | - | 1.5 | - | 26.8 | 1038 |
41 | Propyl trisulfide | - | 0.3 | 1.6 | - | 27.4 | 1046 |
42 | 1,3,5-Tritiane | 9.4 | 0.9 | 3.0 | - | 28.3 | 1057 |
43 | Undecane | - | - | 1.1 | - | 28.4 | 1057 |
44 | Undecene | - | - | 1.2 | - | 28.6 | 1061 |
45 | Methyl 2-propenyl trisulfide | 1.9 | - | - | - | 28.9 | 1065 |
46 | 12-Methyl tridecanoate | - | 0.3 | 8.7 | - | 29.5 | 1073 |
47 | Methyl triacontanoate | - | 0.1 | 0.8 | 0.2 | 29.6 | 1075 |
48 | Ethyl 2-oxo-tetradecanoate | - | 0.1 | 0.9 | 0.2 | 30.0 | 1080 |
49 | Propenyl trisulfure | - | 0.2 | 4.7 | 0.7 | 30.0 | 1081 |
50 | 2-Butyl-2-ethylpropanediol | - | 0.1 | - | - | 30.5 | 1086 |
51 | Methyl pentadecanoate | 7.0 | 0.7 | - | 0.6 | 30.8 | 1091 |
52 | 12-Methyl tetradecanoate | - | 0.3 | - | 0.4 | 31.0 | 1093 |
53 | 2-Hexyloctanol | - | 0.3 | - | - | 31.1 | 1095 |
54 | Vinyl trisulfide | - | - | - | 0.4 | 31.9 | 1099 |
55 | 2-Butyloctanol | 0.7 | - | - | - | 32.0 | 1101 |
56 | 14-Methyl pentadecanoate | - | 0.4 | - | 0.4 | 32.8 | 1113 |
57 | 9-Methyl esadecanoate | 0.6 | 1,0 | - | 0.2 | 33.1 | 1116 |
58 | Diallyl disulfide | 8.1 | 27.9 | 0.5 | 16.6 | 33.8 | 1126 |
59 | Allyl propyl disulfide | 16.1 | 0.1 | 10.1 | 1.1 | 34.1 | 1131 |
60 | 14-Methyl esadecanoate | 0.3 | 0.4 | - | - | 35.0 | 1143 |
61 | Methyl heptanoate | - | 0.5 | 0.2 | 0.4 | 35.5 | 1151 |
62 | 9- Methyl octadecenoate | - | T | - | - | 36.2 | 1160 |
63 | Allicin | 17.5 | 50.9 | 0.8 | 62.2 | 36.9 | 1171 |
64 | Methyl allicin | 5.3 | 1.3 | - | 0.7 | 37.3 | 1177 |
65 | (Z)-Hexadecenal | - | 0.1 | - | 0.1 | 37.5 | 1179 |
66 | Methyl octadeca-8,11-dienoate | - | 1.3 | - | 1.2 | 37.7 | 1182 |
67 | Methyl-10-oxo-octadecanoate | - | 0.2 | - | 0.1 | 38.0 | 1187 |
68 | Diallyl trisulfide | - | 0.3 | - | 0.3 | 38.2 | 1189 |
69 | Methyl diallyl trisulfide | - | 1.1 | - | 0.9 | 38.4 | 1192 |
70 | Ethyl diallyl trisulfide | - | 3.1 | - | 0.6 | 39.6 | 1203 |
71 | Vinyl diallyl trisulfide | - | 0.1 | - | - | 40.8 | 1221 |
72 | (Z)-7-Hexadecenal | - | 0.1 | - | - | 41.8 | 1238 |
73 | Di-tert-dodecyl disulfide | - | T | - | - | 42.1 | 1242 |
74 | 5,9,13-Trimethyl tetradecanoate | - | 0.1 | - | - | 42.4 | 1246 |
75 | Methyl esacosanoate | - | T | - | - | 43.9 | 1270 |
76 | Diallyl tetrasulfide | - | - | 11.4 | - | 48.4 | 1338 |
Total | 98.1 | 99.1 | 92.8 | 97.7 |
A. baumannii | E. coli | L. monocytogenes | S. aureus | ||
---|---|---|---|---|---|
‘Bianco del Veneto’ | Aerial Parts | 40 ± 2 | 30 ± 3 | 30 b ± 3 | 40 ± 2 |
Bulbs | 30 ± 2 | 30 ± 3 | 30 b ± 3 | 30 b ± 2 | |
‘Staravec’ | Aerial Parts | 30 ± 2 | 35 ± 3 | 40 ± 2 | 35 ± 3 |
Bulbs | 40 ± 2 | 40 ± 4 | 40 ± 2 | 40 ± 3 | |
Tetracycline | 31 ± 1 | 24 ± 3 | 39 ± 2 | 38 ± 2 |
A. baumannii | E. coli | L. monocytogenes | S. aureus | ||
---|---|---|---|---|---|
‘Bianco del Veneto’ | Aerial parts 10 µL/mL | 0 | 17.63 a ± 1.77 | 47.23 a ± 0.84 | 0 |
Aerial parts 20 µL/mL | 25.18 a ± 3.79 | 50.52 a ± 1.61 | 60.55 a ± 1.30 | 16.70 a ± 1.14 | |
Bulbs 10 µL/mL | 18.59 a ± 2.5 | 40.31 a ± 1.46 | 59.18 a ± 0.54 | 49.69 a ± 1.19 | |
Bulbs 20 µL/mL | 57.34 a ± 1.34 | 48.90 a ± 1.97 | 64.29 a ± 1.77 | 63.18 a ± 1.15 | |
‘Staravec’ | Aerial parts 10 µL/mL | 18.09 a ± 0.34 | 5.06 a ± 0.16 | 0 | 11.25 a ± 1.4 |
Aerial parts 20 µL/mL | 45.61 a ± 0.16 | 27.56 a ± 0.12 | 0 | 26.31 a ± 0.9 | |
Bulbs 10 µL/mL | 0 | 0 | 0 | 0 | |
Bulbs 20 µL/mL | 0 | 0 | 0 | 0 |
A. baumannii | E. coli | L. monocytogenes | S. aureus | ||
---|---|---|---|---|---|
‘Bianco del Veneto’ | Aerial parts 10 µL/mL | 19.73 a ± 0.17 | 0 | 0 | 0 |
Aerial parts 20 µL/mL | 45.19 a ± 0.84 | 0 | 0 | 12.77 a ± 1.14 | |
Bulbs 10 µL/mL | 0 | 0 | 0 | 47.32 a ± 1.19 | |
Bulbs 20 µL/mL | 24.10 a ± 1.66 | 0 | 0 | 61.44 a ± 1.15 | |
‘Staravec’ | Aerial parts 10 µL/mL | 46.86 a ± 1.46 | 62.44 a ± 1.34 | 0 | 3.91 a ± 0.13 |
Aerial parts 20 µL/mL | 54.13 a ± 2.96 | 65.71 a ± 1.70 | 10.38 a ± 0.95 | 52.71 a ± 1.17 | |
Bulbs 10 µL/mL | 0 | 45.74 a ± 1.81 | 0 | 51.52 a ± 1.73 | |
Bulbs 20 µL/mL | 59.79 a ± 1.12 | 62.64 a ± 0.83 | 0 | 55.55 a ± 1.27 |
Cultivars 1 | Bulb Skin Color | Clove Skin Color | Bulb Mean Weight | Bulb Equatorial Diameter | Cloves Per Bulb | Clove Mean Weight |
---|---|---|---|---|---|---|
(g) | (mm) | (n.) | (g) | |||
‘Bianco del Veneto’ | white | white | 47.2 ± 1.16 a | 53.1 ± 0.74 a | 13.2 ± 0.75 a | 3.0 ± 0.10 a |
‘Staravec’ | white | white | 40.0 ± 0.96 b | 47.8 ± 1.16 b | 12.9 ± 0.60 a | 2.6 ± 0.06 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazzaro, F.; Polito, F.; Amato, G.; Caputo, L.; Francolino, R.; D’Acierno, A.; Fratianni, F.; Candido, V.; Coppola, R.; De Feo, V. Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens. Antibiotics 2022, 11, 724. https://doi.org/10.3390/antibiotics11060724
Nazzaro F, Polito F, Amato G, Caputo L, Francolino R, D’Acierno A, Fratianni F, Candido V, Coppola R, De Feo V. Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens. Antibiotics. 2022; 11(6):724. https://doi.org/10.3390/antibiotics11060724
Chicago/Turabian StyleNazzaro, Filomena, Flavio Polito, Giuseppe Amato, Lucia Caputo, Rosaria Francolino, Antonio D’Acierno, Florinda Fratianni, Vincenzo Candido, Raffaele Coppola, and Vincenzo De Feo. 2022. "Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens" Antibiotics 11, no. 6: 724. https://doi.org/10.3390/antibiotics11060724
APA StyleNazzaro, F., Polito, F., Amato, G., Caputo, L., Francolino, R., D’Acierno, A., Fratianni, F., Candido, V., Coppola, R., & De Feo, V. (2022). Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens. Antibiotics, 11(6), 724. https://doi.org/10.3390/antibiotics11060724