Degradation of Bacterial Antibiotic Resistance Genes during Exposure to Non-Thermal Atmospheric Pressure Plasma
Abstract
:1. Introduction
2. Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes in WWTPs
3. Plasma Discharge and Chemistry
4. Plasma as New Wastewater Treatment Process
5. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Wright, G.D. Q&A: Antibiotic resistance: Where does it come from and what can we do about it? BMC Biol. 2010, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J.J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; The Review on Antimicrobial Resistance: London, UK, 2014; pp. 1–16. Available online: https://amr-review.org/sites/default/files/AMR Review Paper - Tackling a crisis for the health and wealth of nations_1.pdf (accessed on 26 March 2022).
- Sachdeva, T.; Palur, S.; Sudhakar, R.V.; Rathinavelan, K.U. E. coli Group 1 Capsular Polysaccharide Exportation Nanomachinary as a Plausible Antivirulence Target in the Perspective of Emerging Antimicrobial Resistance. Front. Microbiol. 2017, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Amarasiri, M.; Sano, D. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zheng, J.; Liu, C.; Liu, L.; Liu, Y.; Fan, H. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: Effect of hydraulic flow direction and substrate type. Chem. Eng. J. 2017, 308, 692–699. [Google Scholar] [CrossRef]
- Kaur, R.; Yadav, B.; Tyagi, R.D. Microbiology of hospital wastewater. Curr. Dev. Biotechnol. Bioeng. 2020, 103–148. [Google Scholar]
- Hong, C.; Hong, P. Removal of antibiotic-resistant bacteria and antibiotic resistance genes affected by varying degrees of fouling on anaerobic microfiltration membranes. Environ. Sci. Technol. 2017, 51, 12200–12209. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Su, C.; Zhou, J.; Xu, L.; Qian, Y.; Chen, H. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem. Eng. J. 2017, 317, 309–316. [Google Scholar] [CrossRef]
- Czekalski, N.; Imminger, S.; Salhi, E.; Veljkovic, M.; Kleffel, K.; Drissner, D.; Hammes, F.; Burgmann, H.; Gunten, U.V. Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 11862–11871. [Google Scholar] [CrossRef]
- Sousa, J.M.; Macedo, G.; Pedrosa, M.; Becerra-Castro, C.; Castro-Silva, S.; Pereira, M.F.; Silva, A.; Nunes, O.C.; Manaia, C. Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. J. Hazard. Mater. 2017, 323, 434–441. [Google Scholar] [CrossRef]
- Sharma, V.K.; Johnson, N.; Cizmas, L.; McDonald, T.J.; Kim, H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 2016, 150, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Triggiano, F.; Calia, C.; Diella, G.; Montagna, M.T.; De Giglio, O.; Caggiano, G. The role of urban wastewater in the environmental transmission of antimicrobial resistance: The current situation in Italy (2010–2019). Microorganisms 2020, 8, 1567. [Google Scholar] [CrossRef] [PubMed]
- Macauley, J.J.; Qiang, Z.; Adams, C.D.; Surampalli, R.; Mormile, M.R. Mine Disinfection of Swine Wastewater Using Chlorine, Ultraviolet Light and Ozone. Water Res. 2006, 40, 2017–2026. [Google Scholar] [CrossRef]
- Stang, C.; Sidhu, J.P.S.; Toze, S.; Tienhm, A. Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment. Int. J. Hyg. Environ. Health 2019, 222, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Ren, H.; Geng, J.; Zhang, Y.; Zhang, Y.; Ding, L.; Xu, K. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environ. Sci. Pollut. Res. Int. 2015, 22, 7037–7044. [Google Scholar] [CrossRef]
- Yoon, Y.; Dodd, M.C.; Lee, Y. Elimination of transforming activity and gene degradation during UV and UV/H2O2 treatment of plasmid-encoded antibiotic resistance genes. Environ. Sci. Water Res. Technol. 2018, 4, 1239–1251. [Google Scholar] [CrossRef]
- Ahmed, Y.; Lu, J.; Yuan, Z.; Bond, P.L.; Guo, J. Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH. Water Res. 2020, 179, 115878. [Google Scholar] [CrossRef]
- Dunlop, P.; Ciavola, M.; Rizzo, L.; McDowell, D.; Byrne, J. Effect of photocatalysis on the transfer of antibiotic resistance genes in urban wastewater. Catal. Today 2015, 240, 55–60. [Google Scholar] [CrossRef]
- Qiu, Z.; Yu, Y.; Chen, Z.; Jin, M.; Yang, D.; Zhao, Z.; Wang, J.; Shen, Z.; Wang, X.; Qian, D.; et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl. Acad. Sci. USA 2012, 109, 4944–4949. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.N.; Chen, H.; Gao, R.X.; Zhu, Y.G.; Rensing, C. Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. Chemosphere 2017, 184, 53–61. [Google Scholar] [CrossRef]
- Jutkina, J.; Rutgersson, C.; Flach, C.F.; Larsson, D.G.J. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci. Total Environ. 2016, 548–549, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Seier-Petersen, M.A.; Jasni, A.; Aarestrup, F.M.; Vigre, H.; Mullany, P.; Roberts, A.P.; Agersø, Y. Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J. Antimicrob. Chemother. 2014, 69, 343–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yin, H.; Li, G.; Wang, W.; Wong, P.K.; Zhao, H.; An, T. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Water Res. 2019, 149, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Y.; Jin, M.; Yuan, Z.; Bond, P.; Guo, J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res. 2020, 169, 115229. [Google Scholar] [CrossRef]
- Barjasteh, A.; Dehghani, Z.; Lamichhane, P.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Liao, X.; Cullen, P.J.; Liu, D.; Muhammad, A.I.; Chen, S.; Ye, X.; Wang, J.; Ding, T. Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Sci. Total Environ. 2018, 645, 1287–1295. [Google Scholar] [CrossRef]
- Yang, Y.; Wan, K.; Yang, Z.; Li, D.; Li, G.; Zhang, S.; Wang, L.; Yu, X. Inactivation of antibiotic resistant Escherichia coli and degradation of its resistance genes by glow discharge plasma in an aqueous solution. Chemosphere 2020, 252, 126476. [Google Scholar] [CrossRef]
- Liao, X.; Liu, D.; Chen, S.; Ye, X.; Ding, T. Degradation of antibiotic resistance contaminants in wastewater by atmospheric cold plasma: Kinetics and mechanisms. Environ. Technol. 2021, 42, 58–71. [Google Scholar] [CrossRef]
- Song, R.; Li, H.; Kang, Z.; Zhong, R.; Wang, Y.; Zhang, Y.; Qu, G.; Wang, T. Surface plasma induced elimination of antibiotic-resistant Escherichia coli and resistance genes: Antibiotic resistance, horizontal gene transfer, and mechanisms. Sep. Purif. Technol. 2021, 275, 119185. [Google Scholar] [CrossRef]
- Li, H.; Song, R.; Wang, Y.; Zhong, R.; Zhang, Y.; Zhou, J.; Wang, T.; Jia, H.; Zhu, L. Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. Water Res. 2021, 204, 117630. [Google Scholar] [CrossRef]
- Li, H.; Song, R.; Wang, Y.; Zhong, R.; . Zhou, J.; Wang, T.; Jia, H.; Zhu, L. Insights into DNA Structures during Antibiotic-Resistance Gene Elimination by Mesoporous Plasma. ACS Environ. Sci. Technol. Water 2022, 2, 128–136. [Google Scholar] [CrossRef]
- Uluseker, C.; Kaster, K.M.; Thorsen, K.; Basiry, D.; Shobana, S.; Jain, M.; Kumar, G.; Kommedal, R.; Pala-Ozkok, I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021, 12, 717809. [Google Scholar] [CrossRef] [PubMed]
- Von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verburg, I.; García-Cobos, S.; Leal, L.H.; Waar, K.; Friedrich, A.W.; Schmitt, H. Abundance and antimicrobial resistance of three bacterial species along a complete wastewater pathway. Microorganisms 2019, 7, 312. [Google Scholar] [CrossRef] [Green Version]
- Łuczkiewicz, A.; Jankowska, K.; Fudala-Książek, S.; Olańczuk-Neyman, K. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res. 2010, 44, 5089–5097. [Google Scholar] [CrossRef]
- Neudorf, K.D.; Huang, Y.N.; Ragush, C.M.; Yost, C.K.; Jamieson, R.C.; Truelstrup Hansen, L. Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. Sci. Total Environ. 2017, 598, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, J.; Chen, H.; Bond, P.L.; Yuan, Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017, 123, 468–478. [Google Scholar] [CrossRef]
- Gallert, C.; Fund, K.; Winter, J. Antibiotic resistance of bacteria in raw and biologically treated sewage and in groundwater below leaking sewers. Appl. Microbiol. Biotechnol. 2005, 69, 106–112. [Google Scholar] [CrossRef]
- Goldstein, R.E.R.; Micallef, S.A.; Gibbs, S.G.; George, A.; Claye, E.; Sapkota, A.; Joseph, S.W.; Sapkota, A.R. Detection of Vancomycin-Resistant Enterococci (VRE) at Four U.S. Wastewater Treatment Plants that Provide Effluent for Reuse. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total Environ. 2019, 20, 134023. [Google Scholar] [CrossRef]
- Biswal, B.K.; Mazza, A.; Masson, L.; Gehr, R.; Frigon, D. Impact of wastewater treatment processes on antimicrobial resistance genes and their co-occurrence with virulence genes in Escherichia coli. Water Res. 2014, 50, 245–253. [Google Scholar] [CrossRef]
- Alexander, J.; Bollmann, A.; Seitz, W.; Schwartz, T. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci. Total Environ. 2015, 512–513, 316–325. [Google Scholar] [CrossRef]
- Amador, P.P.; Fernandes, R.M.; Prudêncio, M.C.; Barreto, M.P.; Duarte, I.M. Antibiotic resistance in wastewater: Occurrence and fate of Enterobacteriaceae producers of Class A and Class C β-lactamases. J. Environ. Sci. Heal. Part A Toxic Hazard. Subst. Environ. Eng. 2015, 50, 26–39. [Google Scholar] [CrossRef]
- Szczepanowski, R.; Linke, B.; Krahn, I.; Gartemann, K.H.; Gützkow, T.; Eichler, W.; Pühler, A.; Schlüter, A. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 2009, 155, 2306–2319. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, B.; Zou, S.; Fang, H.H.P.; Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 2014, 62, 97–106. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhang, T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across china and other global locations. Environ. Sci. Technol. 2011, 45, 2598–2604. [Google Scholar] [CrossRef]
- Grabow, W.O.; Prozesky, O.W. Drug resistance of coliform bacteria in hospital and city sewage. Antimicrob. Agents Chemother. 1973, 3, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Rowe, W.; Baker-Austin, C.; Verner-Jeffreys, D.W.; Ryan, J.J.; Micallef, C.; Maskell, D.J.; Pearce, G.P. Overexpression of antibiotic resistance genes in hospital effluents over time. J. Antimicrob. Chemother. 2017, 72, 1617–1623. [Google Scholar] [CrossRef]
- Gaşpar, C.M.; Cziszter, L.T.; Lăzărescu, C.F.; Ţibru, I.; Pentea, M.; Butnariu, M. Antibiotic resistance among Escherichia coli isolates from hospital wastewater compared to community wastewater. Water 2021, 13, 3449. [Google Scholar] [CrossRef]
- Szekeres, E.; Baricz, A.; Chiriac, C.M.; Farkas, A.; Opris, O.; Soran, M.L.; Andrei, A.S.; Rudi, K.; Balcázar, J.L.; Dragos, N.; et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 2017, 225, 304–315. [Google Scholar] [CrossRef]
- Hassoun-Kheir, N.; Stabholz, Y.; Kreft, J.U.; de la Cruz, R.; Romalde, J.L.; Nesme, J.; Sørensen, S.J.; Smets, B.F.; Graham, D.; Paul, M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci. Total Environ. 2020, 743, 140804. [Google Scholar] [CrossRef]
- Sabri, N.A.; Schmitt, H.; Van der Zaan, B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020, 8, 102245. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Rezaei, F.; Vanraes, P.; Nikiforov, A.; Morent, R.; De Geyter, N. Applications of Plasma-Liquid Systems: A Review. Materials 2019, 12, 2751. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, C.H. Applications of plasma-activated liquid in the medical field. Biomedicines 2021, 9, 1700. [Google Scholar] [CrossRef]
- Perinban, S.; Orsat, V.; Raghavan, V. Nonthermal Plasma–Liquid Interactions in Food Processing: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1985–2008. [Google Scholar] [CrossRef] [Green Version]
- Zeghioud, H.; Nguyen-Tri, P.; Khezami, L.; Amrane, A.; Assadi, A.A. Review on discharge Plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. J. Water Process Eng. 2020, 38, 101664. [Google Scholar] [CrossRef]
- Bruggeman, P.; Kushner, M.; Locke, B.; Gardeniers, J.; Graham, W.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma-liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Bruggeman, P.; Leys, C. Non-thermal plasmas in and in contact with liquids. J. Phys. D Appl. Phys. 2009, 42, 053001. [Google Scholar] [CrossRef]
- Vanraes, P.; Nikiforov, Y.A.; Leys, C. Electrical Discharge in Water Treatment Technology for Micropollutant Decomposition. In Plasma Science and Technology. Progress in Physical States and Chemical Reactions; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.E. Plasma-based water purification: Challenges and prospects for the future. Phys. Plasmas 2017, 24, 055501. [Google Scholar] [CrossRef]
- Invernizzi, L.; Muja, C.; Sainct, F.P.; Guillot, P. Investigation of RONS Production and Complex Molecules Degradation Induced by an APPJ Generated by Two Different Source. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 4, 121–129. [Google Scholar] [CrossRef]
- Ghimire, B.; Sornsakdanuphap, J.; Hong, J.Y.; Uhm, H.S.; Weltmann, D.K.; Choi, E.H. The effect of the gap distance between an atmospheric-pressure plasma jet nozzle and liquid surface on OH and N2 species concentrations. Phys. Plasmas 2017, 24, 073502. [Google Scholar] [CrossRef]
- Marotta, E.; Ceriani, E.; Schiorlin, M.; Ceretta, C.; Paradisi, C. Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor. Water Res. 2012, 46, 6239–6246. [Google Scholar] [CrossRef]
- Yasuoka, K.; Sasaki, K.; Hayashi, R. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles. Plasma Sources Sci. Technol. 2011, 20, 034009. [Google Scholar] [CrossRef]
- Liao, X.; Liu, D.; Ding, T. Nonthermal Plasma Induces the Viable-but-Nonculturable State in Staphylococcus aureus via Metabolic Suppression and the Oxidative Stress Response. Appl. Environ. Microbiol. 2020, 86, 5. [Google Scholar] [CrossRef]
- Joshi, S.G.; Cooper, M.; Yost, A.; Paff, M.; Ercan, U.K.; Fridman, G.; Friedman, G.; Fridman, A.; Brooks, A.D. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 2011, 55, 1053–1062. [Google Scholar] [CrossRef] [Green Version]
- Tseng, S.; Abramzon, N.; Jackson, J.O.; Lin, W.J. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Appl. Microbiol. Biotechnol. 2012, 93, 2563–2570. [Google Scholar] [CrossRef]
- Lee, C.; Subhadra, B.; Choi, H.G.; Suh, H.W.; Uhm, H.S.; Kim, H.J. Inactivation of Mycobacteria by Radicals from Non-Thermal Plasma Jet. J. Microbiol. Biotechnol. 2019, 28, 1401–1411. [Google Scholar] [CrossRef]
- Liang, S.; Lin, H.; Habteselassie, M.; Huang, Q. Electrochemical inactivation of bacteria with a titanium sub-oxide reactive membrane. Water Res. 2018, 145, 172–180. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Z.; Shen, C.; Xu, Y. Inactivation of antibiotic-resistant bacteria and antibiotic resistance genes by electrochemical oxidation/electroFenton process. Water Sci. Technol. 2020, 81, 2221–2231. [Google Scholar] [CrossRef]
- McKinney, C.W.; Pruden, A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ. Sci. Technol. 2012, 46, 13393–13400. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Chung, H.J.; Wen Di, D.Y.; Dodd, M.C.; Hur, H.G.; Lee, Y. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2. Water Res. 2017, 123, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Magureanu, M.; Piroi, D.; Mandache, N.B.; David, V.; Medvedovici, A.; Parvulesc, V.I. Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment. Water Res. 2010, 44, 3445–3453. [Google Scholar] [CrossRef]
- Kim, K.S.; Yang, C.S.; Mok, Y.S. Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chem. Eng. J. 2013, 219, 19–27. [Google Scholar] [CrossRef]
- Nguyen, P.T.T.; Nguyen, H.T.; Tran, U.N.P.; Manh, B. Removal of Antibiotics from Real Hospital Wastewater by Cold Plasma Technique. J. Chem. 2021, 2021, 13. [Google Scholar] [CrossRef]
ARB or ARGs | Antibiotic Resistance Profiles | Origin | WWTP Sample | Country | References | |||
---|---|---|---|---|---|---|---|---|
Influent | Activated Sludge | Effluent | Effluent Concentrations of ARB or ARGs | |||||
ARB | ||||||||
Escherichia coli | Ciprofloxacin, cotrimoxazole, ampicillin | Nursing home, hospital, and community wastewater collection point | + | na * | + | 5 log | The Netherlands | [35] |
Enterococcus | Penicillin G, ampicillin, vancomycin | Industrial, hospital, and nursing home | + | na * | + | 2 log | Germany | [39] |
Staphylococcus aureus | Multi-resistant | Community wastewater collection point | na * | na * | + | nd * | USA | [40] |
Klebsiella spp. | Ciprofloxacin, cotrimoxazole, ampicillin, trimethoprim | Nursing home, hospital, and community wastewater collection point | + | na * | + | 5 log | The Netherlands | [35] |
Aeromonas spp. | Ciprofloxacin, cotrimoxazole, ampicillin, trimethoprim | Nursing home, hospital, and community wastewater collection point | + | na * | + | 5 log | The Netherlands | [35] |
ARGs (adapted from [41]) | ||||||||
ampR | Beta-lactams | Community wastewater collection point | + | na * | + | reduction | Canada | [42] |
blaAmpC | Hospital, community wastewater collection point, and receiving rivers | + | na * | + | increase | Germany | [43] | |
blaTEM | Hospital, domestic, and industrial | + | na * | + | increase | Portugal | [44] | |
mecA | Community wastewater collection point and receiving rivers | + | na * | + | nd * | Canada | [37] | |
tetA | Tetracycline | Community wastewater collection point | na * | + | + | nd * | Germany | [45] |
Community wastewater collection point | + | na * | + | increase | Canada | [42] | ||
Community wastewater collection point | + | + | + | reduction | China | [46] | ||
Sewage treatment plants (STPs) | + | + | + | reduction | [47] | |||
mdtG | Multidrug efflux pump genes | Community wastewater collection point | + | + | + | reduction | China | [46] |
mdtH | + | + | + | |||||
mdtN | + | + | + |
Plasma Discharge | Discharge Characteristics | Strain | Antibiotic Resistance Profiles † | Volume | Initial Concentration | Matrices | Strain and Resistance Gene Reduction † | References |
---|---|---|---|---|---|---|---|---|
Discharge above liquid surface | V = 14 kV | Staphylococcus aureus (MRSA) | i-mecA | 109 CFU/mL | PBS * (pH = 7) | Staphylococcus aureus (MRSA) = 5 log | [27] | |
Freq. * = 10 kHz | i-mecA = 0.8 log | |||||||
Power = 2.94 W/cm2 | e-mecA | e-mecA = 2.6 log | ||||||
Time = 0 to 8 min | E. coli multi-resistant | i-blaTEM | 109 CFU/mL | PBS * (pH = 7) | E. coli multi-resistant = 3 log | [29] | ||
i-tet | i-blaTEM = 1.26 log | |||||||
e-blaTEM | i-tet = 1.55 log | |||||||
e-tet | e-blaTEM = 3.26 log | |||||||
e-tet = 3.14 log | ||||||||
Discharge in bubbles | V = 18 kV | E. coli multi-resistant | tet C | 300 mL | 108 CFU/mL | PBS * (pH = 7) | E. coli multi-resistant = 7 log | [30] |
Freq. * = 50 Hz | tet W | tet C = 1.04 log | ||||||
Power = 12 W | blaTEM-1 | tetW = 0.61 log | ||||||
Gas = Dry air at 2.5 L/min | aac(3)-II | blaTEM-1 = 1.84 log | ||||||
Time = 10 min | Integron gene (intI1) | aac(3)-II = 2.2 log | ||||||
intI1 = 2.3 log | ||||||||
E. coli multi-resistant | Integron gene (intI1) | 500 mL | 108 CFU/mL | PBS * (pH = 7) | E. coli multi-resistant = 4.5 log | [31] | ||
intI1 = 3.10 log | ||||||||
Discharge in liquid | V = 500 V | E. coli multi-resistant | tet A | 150 mL | 108 CFU/mL | Saline (0.9%) | E. coli multi-resistant = 7 log | [28] |
Current = 100 mA | tet R | tet A = 5.8 log | ||||||
Power = 50 W | aph A | tet R = 5.4 log | ||||||
Time = 30 min | Transposase gene (tnpA) | aph A = 5.5 log | ||||||
tnpA = 5.5 log |
Processes | Strain | Antibiotic Resistance Profiles | Volume | Removal Efficiency of ARB | Removal Efficiency of ARGs | Time | Energy Yield | Reference |
---|---|---|---|---|---|---|---|---|
Plasma | E. coli | TetC, TetW, blaTEM-1, aac(3)-II, and integron gene (intI1) | 300 mL | 7 log | 1–2 log | 10 min | 18 kV | [30] |
E. coli | tet A,tet R,aph A, and transposase gene (tnpA) | 150 mL | 7 log | 5–6 log | 30 min | 500 V | [31] | |
Electrochemical | E. coli | __ | 150 mL | 5 log | __ | 30 min | 2.4 mA/cm2 | [72] |
Electrochemical oxidation/electro-Fenton | E. coli | tetA | 300 mL | 6 log | 3–5 log | 120 min | 21.42 mA/cm2 | [73] |
Photo-Fenton/LED | E. coli | blaTEM-1 and tetA | 50 mL | 6 log | 6–8 log | 30 min | 19.2 mW/cm2 | [18] |
UV irradiation | E.coli | tetA | 10 mL | 4–5 log | 3–4 log | 1 min (ARB) and 30 min (ARGs) | 20 mJ/cm2 (ARB) and 400 mJ/cm2 (ARGs) | [74] |
UV/H2O2 | E. coli | ampR and kanR | 120 mL | 5 log | 3 log | 5 min | 100 mJ/cm2 | [75] |
Photocatalytic oxidation | E. coli | __ | 200 mL | 3 log | __ | 120 min | 80 W/m2 | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courti, I.; Muja, C.; Maho, T.; Sainct, F.P.; Guillot, P. Degradation of Bacterial Antibiotic Resistance Genes during Exposure to Non-Thermal Atmospheric Pressure Plasma. Antibiotics 2022, 11, 747. https://doi.org/10.3390/antibiotics11060747
Courti I, Muja C, Maho T, Sainct FP, Guillot P. Degradation of Bacterial Antibiotic Resistance Genes during Exposure to Non-Thermal Atmospheric Pressure Plasma. Antibiotics. 2022; 11(6):747. https://doi.org/10.3390/antibiotics11060747
Chicago/Turabian StyleCourti, Ibtissam, Cristina Muja, Thomas Maho, Florent P. Sainct, and Philippe Guillot. 2022. "Degradation of Bacterial Antibiotic Resistance Genes during Exposure to Non-Thermal Atmospheric Pressure Plasma" Antibiotics 11, no. 6: 747. https://doi.org/10.3390/antibiotics11060747
APA StyleCourti, I., Muja, C., Maho, T., Sainct, F. P., & Guillot, P. (2022). Degradation of Bacterial Antibiotic Resistance Genes during Exposure to Non-Thermal Atmospheric Pressure Plasma. Antibiotics, 11(6), 747. https://doi.org/10.3390/antibiotics11060747