Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Data Collection
2.3. Inclusion and Exclusion Criteria
2.4. Data Management and Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ducel, G.; Fabry, J.; Nicolle, L. (Eds.) Prevention of Hospital-Acquired Infections: A Practical Guide, 2nd ed.; World Health Organization: Geneva, Switzerland, 2002; Available online: https://apps.who.int/iris/handle/10665/67350 (accessed on 12 April 2021).
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Badia, J.M.; Casey, A.L.; Petrosillo, N.; Hudson, P.M.; Mitchell, S.A.; Crosby, C. Impact of surgical site infection on healthcare costs and patient outcomes: A systematic review in six European countries. J. Hosp. Infect. 2017, 96, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monahan, M.; Jowett, S.; Pinkney, T.; Brocklehurst, P.; Morton, D.G.; Abdali, Z.; Roberts, T.E. Surgical site infection and costs in low- and middle-income countries: A systematic review of the economic burden. PLoS ONE 2020, 15, e0232960. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Healthcare-Associated Infections: Surgical Site Infections. Annual Epidemiological Report for 2017; ECDC: Stockholm, Switzerland, 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-SSI.pdf (accessed on 21 May 2021).
- Lindsjö, C.; Sharma, M.; Mahadik, V.K.; Sharma, S.; Stålsby Lundborg, C.; Pathak, A. Surgical site infections, occurrence, and risk factors, before and after an alcohol-based handrub intervention in a general surgical department in a rural hospital in Ujjain, India. Am. J. Infect. Control 2015, 43, 1184–1189. [Google Scholar] [CrossRef]
- Kamat, U.; Ferreira, A.; Savio, R.; Motghare, D. Antimicrobial resistance among nosocomial isolates in a teaching hospital in Goa. Indian J. Community Med. 2008, 33, 89. [Google Scholar] [CrossRef] [PubMed]
- Mekhla, F.R.B. Determinants of superficial surgical site infections in abdominal surgeries at a Rural Teaching Hospital in Central India: A prospective study. J. Fam. Med. Prim. Care 2019, 8, 2258. [Google Scholar]
- Ma, N.; Cameron, A.; Tivey, D.; Grae, N.; Roberts, S.; Morris, A. Systematic review of a patient care bundle in reducing staphylococcal infections in cardiac and orthopaedic surgery. ANZ J. Surg. 2017, 87, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K.; Shukla, R.; Singh, P.; Kumar, R. Epidemiology and risk factors for surgical site infections in patients requiring orthopedic surgery. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 251–254. [Google Scholar] [CrossRef]
- Korol, E.; Johnston, K.; Waser, N.; Sifakis, F.; Jafri, H.S.; Lo, M.; Kyaw, M.H. A Systematic Review of Risk Factors Associated with Surgical Site Infections among Surgical Patients. PLoS ONE 2013, 8, e83743. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections: BACTERIA ANTIBIOTIC RESISTANCE. J. Orthop. Res. 2017, 36, 22–32. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jor.23656 (accessed on 2 May 2022). [CrossRef] [Green Version]
- Li, G.Q.; Guo, F.F.; Ou, Y.; Dong, G.W.; Zhou, W. Epidemiology and outcomes of surgical site infections following orthopedic surgery. Am. J. Infect. Control 2013, 41, 1268–1271. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulhim, F.A.; Baragbah, M.A.; Sadat-Ali, M.; Alomran, A.S.; Azam, M.Q. Prevalence of Surgical Site Infection in Orthopedic Surgery: A 5-year Analysis. Int. Surg. 2014, 99, 264–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumari, N.; Gupta, A.; Mathur, P.; Trikha, V.; Sharma, V.; Farooque, K.; Misra, M.C. Outcomes of surgical site infections in orthopedic trauma surgeries in a tertiary care centre in India. J. Postgrad. Med. 2014, 60, 254. [Google Scholar] [PubMed]
- Edwards, J.R.; Peterson, K.D.; Mu, Y.; Banerjee, S.; Allen-Bridson, K.; Morrell, G.; Dudeck, M.A.; Pollock, D.A.; Horan, T.C. National Healthcare Safety Network (NHSN) report: Data summary for 2006 through 2008, issued December 2009. Am. J. Infect. Control 2009, 37, 783–805. [Google Scholar] [CrossRef]
- Greene, L.R. Guide to the elimination of orthopedic surgery surgical site infections: An executive summary of the Association for Professionals in Infection Control and Epidemiology elimination guide. Am. J. Infect. Control 2012, 40, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Hagel, S.; Scheuerlein, H. Perioperative Antibiotic Prophylaxis and Antimicrobial Therapy of Intra-Abdominal Infections. Viszeralmedizin 2014, 30, 310–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECDC; Public Health England; Institut de Veillle Sanitaire. Systematic Review and Evidence-Based Guidance on Perioperative Antibiotic Prophylaxis; Publications Office: Stockholm, Sweden, 2013; Available online: https://data.europa.eu/doi/10.2900/85936 (accessed on 1 January 2022).
- Tucci, G.; Romanini, E.; Zanoli, G.; Pavan, L.; Fantoni, M.; Venditti, M. Prevention of surgical site infections in orthopaedic surgery: A synthesis of current recommendations. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, S224–S239. [Google Scholar]
- Centers for Disease Control and Prevention. Outpatient Procedure Component Surgical Site Infection (OPC-SSI) Surveillance; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/nhsn/pdfs/opc/opc-ssi-protocol-current-508.pdf (accessed on 14 April 2021).
- Van Mourik, M.S.M.; van Rooden, S.M.; Abbas, M.; Aspevall, O.; Astagneau, P.; Bonten, M.J.M.; Carrara, E.; Gomila-Grange, A.; De Greeff, S.C.; Gubbels, S.; et al. PRAISE: Providing a roadmap for automated infection surveillance in Europe. Clin. Microbiol. Infect. 2021, 27, S3–S19. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Surveillance of Surgical Site Infections and Prevention Indicators in European Hospitals: HAI-Net SSI Protocol, Version 2.2. 2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/3c8fcb38-83c2-11e7-b5c6-01aa75ed71a1/language-en (accessed on 13 April 2021).
- World Health Organization. Global Guidelines for the Prevention of Surgical Site Infection; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Manivannan, B.; Gowda, D.; Bulagonda, P.; Rao, A.; Raman, S.S.; Natarajan, S.V. Surveillance, Auditing, and Feedback Can Reduce Surgical Site Infection Dramatically: Toward Zero Surgical Site Infection. Surg. Infect. 2018, 19, 313–320. [Google Scholar] [CrossRef]
- Sharma, M.; Damlin, A.L.; Sharma, A.; Stålsby Lundborg, C. Antibiotic prescribing in medical intensive care units—A comparison between two private sector hospitals in Central India. Infect. Dis. 2015, 47, 302–309. [Google Scholar] [CrossRef]
- Sharma, M.; Eriksson, B.; Marrone, G.; Dhaneria, S.; Lundborg, C.S. Antibiotic prescribing in two private sector hospitals; one teaching and one non-teaching: A cross-sectional study in Ujjain, India. BMC Infect. Dis. 2012, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Protocol for Surgical Site Infection Surveillance with a Focus on Settings with Limited Resources. 2018. Available online: https://www.who.int/infection-prevention/tools/surgical/SSI-surveillance-protocol.pdf (accessed on 15 September 2021).
- Collee, J.G. Mackie & McCartney Practical Medical Microbiology; Churchill Livingstone: New York, NY, USA, 1996. [Google Scholar]
- Petti, C.A.; Clinical and Laboratory Standards Institute (Eds.) Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing: Approved Guideline; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; p. 73. [Google Scholar]
- World Health Organization; Collaborating Centre for Drug Statistics Methodology. ATC Classification Index with DDDs. Available online: https://www.whocc.no/use_of_atc_ddd/ (accessed on 15 April 2021).
- Morris, A.J.; Jackways, T.M.; Morgan, A.; Robertson, R.; McIntyre, M. Reduction in surgical site infections in the Southern Cross Hospitals network, 2004–2015: Successful outcome of a long-term surveillance and quality improvement project. N. Z. Med. J. 2018, 131, 27–39. [Google Scholar]
- Najjar, Y.W.; Al-Wahsh, Z.M.; Hamdan, M.; Saleh, M.Y. Risk factors of orthopedic surgical site infection in Jordan: A prospective cohort study. Int. J. Surg. Open 2018, 15, 1–6. [Google Scholar] [CrossRef]
- Dhammi, I.; Kumar, S.; Haq, R.U. Prophylactic antibiotics in orthopedic surgery. Indian J. Orthop. 2015, 49, 373. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical Practice Guidelines for Antimicrobial Prophylaxis in Surgery. Surg. Infect. 2013, 14, 73–156. [Google Scholar] [CrossRef]
- Mazmudar, A.; Vitello, D.; Chapman, M.; Tomlinson, J.S.; Bentrem, D.J. Gender as a risk factor for adverse intraoperative and postoperative outcomes of elective pancreatectomy: Gender’s Role in Pancreatectomy Outcomes. J. Surg. Oncol. 2017, 115, 131–136. [Google Scholar] [CrossRef]
- Al-Qurayshi, Z.; Baker, S.M.; Garstka, M.; Ducoin, C.; Killackey, M.; Nichols, R.L.; Kandil, E. Post-Operative Infections: Trends in Distribution, Risk Factors, and Clinical and Economic Burdens. Surg. Infect. 2018, 19, 717–722. [Google Scholar] [CrossRef]
- Aghdassi, S.J.S.; Schröder, C.; Gastmeier, P. Gender-related risk factors for surgical site infections. Results from 10 years of surveillance in Germany. Antimicrob. Resist. Infect. Control 2019, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Schimmel, J.J.P.; Horsting, P.P.; de Kleuver, M.; Wonders, G.; van Limbeek, J. Risk factors for deep surgical site infections after spinal fusion. Eur. Spine J. 2010, 19, 1711–1719. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, J.A.; Lipsky, B.A.; Tabak, Y.P.; Derby, K.G.; Kim, M.; Gupta, V. Surgical site infections: Causative pathogens and associated outcomes. Am. J. Infect. Control 2010, 38, 112–120. [Google Scholar] [CrossRef]
- Rutberg, H.; Borgstedt-Risberg, M.; Gustafson, P.; Unbeck, M. Adverse events in orthopedic care identified via the Global Trigger Tool in Sweden—Implications on preventable prolonged hospitalizations. Patient Saf. Surg. 2016, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Akshaya, D.; Sarala, K.S.; Sharmila, R. A Study of Select Determinants for Hospital Stay Among Surgical Patients in a Tertiary Care Hospital. IJMAS 2016, 2, 37–43. [Google Scholar]
- Ribeiro, M.; Monteiro, F.J.; Ferraz, M.P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2012, 2, 176–194. [Google Scholar] [CrossRef] [Green Version]
- Machowska, A.; Sparrentoft, J.; Dhakaita, S.K.; StålsbyLundborg, C.; Sharma, M. Perioperative antibiotic prescribing in surgery departments of two private sector hospitals in Madhya Pradesh, India. Perioper. Med. 2019, 8, 10. [Google Scholar] [CrossRef]
- Menz, B.D.; Charani, E.; Gordon, D.L.; Leather, A.J.; Moonesinghe, S.R.; Phillips, C.J. Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice. Infect. Drug Resist. 2021, 14, 5235–5252. [Google Scholar] [CrossRef]
- Forget, V.; Fauconnier, J.; Boisset, S.; Pavese, P.; Vermorel, C.; Bosson, J.L.; Saragaglia, D.; Tonetti, J.; Mallaret, M.R.; Landelle, C. Risk factors for Staphylococcus aureus surgical site infections after orthopaedic and trauma surgery in a French university hospital. Int. J. Hyg. Environ. Health 2020, 229, 113585. [Google Scholar] [CrossRef]
- Chlebicki, M.P.; Safdar, N.; O’Horo, J.C.; Maki, D.G. Preoperative chlorhexidine shower or bath for prevention of surgical site infection: A meta-analysis. Am. J. Infect. Control 2013, 41, 167–173. [Google Scholar] [CrossRef]
- Webster, J.; Osborne, S. Preoperative Bathing or Showering with Skin Antiseptics to Prevent Surgical Site Infection. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; p. CD004985. Available online: https://doi.wiley.com/10.1002/14651858.CD004985.pub4 (accessed on 23 February 2022).
- Diwan, V.; Hanna, N.; Purohit, M.; Chandran, S.; Riggi, E.; Parashar, V.; Tamhankar, A.J.; Lundborg, C.S. Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. Int. J. Environ. Res. Public Health 2018, 15, 1281. [Google Scholar] [CrossRef] [Green Version]
- Woelber, E.; Schrick, E.J.; Gessner, B.D.; Evans, H.L. Proportion of Surgical Site Infections Occurring after Hospital Discharge: A Systematic Review. Surg. Infect. 2016, 17, 510–519. [Google Scholar] [CrossRef]
- Pathak, A.; Sharma, S.; Sharma, M.; Mahadik, V.K.; Lundborg, C.S. Feasibility of a Mobile Phone-Based Surveillance for Surgical Site Infections in Rural India. Telemed. J. E-Health 2015, 21, 946–949. [Google Scholar] [CrossRef]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 2013, 6, 14–17. [Google Scholar]
All Operated Patients n = 1205 (%) | SSI Patients n = 91 (%) | Non-SSI Patients n = 1114 (%) | |
---|---|---|---|
Age, median (25–75th), years | 35 (19–50) | 35 (22–50) | 35 (18–50) |
Age, years | |||
≤18 | 301 (25) | 18 (20) | 283 (25) |
19–60 | 760 (63) | 64 (70) | 696 (62) |
>60 | 144 (12) | 9 (10) | 135 (12) |
ASA score | |||
ASA I | 1013 (84) | 63 (69) | 950 (85) |
ASA II | 148 (12) | 22 (24) | 126 (11) |
ASA III | 43 (4) | 6 (7) | 37 (3) |
ASA IV | 1 (0) | 0 | 1 (0) |
Antibiotic prescribed 14 days before hospital admission | 73 (6) | 17 (19) | 56 (5) |
Previous hospitalization | 173 (14) | 33 (36) | 140 (13) |
All Operated Patients n = 1205 (%) | SSI Patients n = 91 (%) | Non-SSI Patients n = 1114 (%) | |
---|---|---|---|
Type of wound a | |||
Closed | 1034 (86) | 64 (70) | 970 (87) |
Compound fracture | 37 (3) | 9 (10) | 28 (3) |
Clean | 3 (0) | 0 | 3 (0) |
Contaminated | 23 (2) | 3 (3) | 20 (2) |
Nature of surgery a | |||
Elective | 1113 (92) | 80 (88) | 1033 (93) |
Emergency | 17 (1) | 2 (2) | 15 (1) |
Duration of surgery a, min | |||
≤60 | 425 (35) | 40 (44) | 385 (35) |
61–120 | 375 (31) | 22 (24) | 353 (32) |
>120 | 208 (17) | 13 (14) | 195 (18) |
Hair removal method a | |||
Shaving | 1057 (88) | 76 (84) | 981 (88) |
Clipping | 2 (0) | 0 | 2 (0) |
Preoperative shower | 267 (22) | 42 (46) | 225 (20) |
Preoperative LOS, median (25–75th), days | 5 (3–9) | 4 (2–8) | 5 (3–9) |
Preoperative LOS a, days | |||
1–3 | 325 (27) | 24 (26) | 301 (27) |
4–7 | 379 (31) | 28 (31) | 351 (32) |
8–15 | 312 (26) | 16 (18) | 296 (27) |
>15 | 90 (7) | 9 (10) | 81 (7) |
Postoperative LOS, median (25–75th), days | 8 (3–14) | 13 (4–21) | 8 (3–14) |
Postoperative LOS a, days | |||
1–3 | 223 (19) | 7 (8) | 216 (19) |
4–7 | 239 (20) | 8 (9) | 231 (21) |
8–15 | 440 (37) | 28 (31) | 412 (37) |
>15 | 203 (17) | 33 (36) | 170 (15) |
Oxygen support | 1031 (86) | 73 (80) | 958 (86) |
Blood transfusion | 405 (34) | 27 (30) | 378 (34) |
Drain | 41 (3) | 8 (9) | 33 (3) |
Implant | 297 (25) | 49 (54) | 248 (22) |
Antibiotic prescription | 1133 (94) | 91 (100) | 1042 (94) |
PAP | 840 (70) | 42 (46) | 798 (72) |
Antibiotic during hospital stay before PAP | 258 (21) | 43 (47) | 215 (19) |
Duration of antibiotic treatment before PAP, days | |||
1–7 | 186 (15) | 29 (32) | 157 (14) |
8–14 | 44 (4) | 8 (9) | 36 (3) |
>14 | 28 (2) | 6 (7) | 22 (2) |
Postoperative antibiotic | 1036 (86) | 75 (82) | 961 (86) |
Duration of postoperative antibiotic, days | |||
1–7 | 440 (37) | 17 (19) | 423 (38) |
8–14 | 374 (31) | 24 (26) | 350 (31) |
>14 | 248 (21) | 36 (40) | 212 (19) |
Antibiotic duration, median (25–75th), days | 12 (4–16) | 24 (8–36) | 11 (4–15) |
Total antibiotic duration a, days | |||
1–7 | 384 (32) | 21 (23) | 363 (33) |
8–14 | 319 (26) | 19 (21) | 300 (27) |
>14 | 391 (32) | 50 (55) | 341 (31) |
Antibiotics Tested | Gram-Positive Organisms | Gram-Negative Organisms | |||
---|---|---|---|---|---|
S. aureus (n = 5) | Pseudomonas (n = 4) | Klebsiella (n = 4) | E. coli (n = 2) | Total | |
Penicillin | 5 | - | - | - | - |
Erythromycin | 4 | - | - | - | - |
Ciprofloxacin | 3 | 3 | 1 | 1 | 5/10 |
Cefoxitin | 3 | - | 1 | 1 | 2/6 |
Tetracycline | 2 | - | 3 | 1 | 4/6 |
Cotrimoxazole | 4 | - | 2 | 2 | 4/6 |
Vancomycin | - | - | - | - | - |
Linezolid | - | - | - | - | - |
Clindamycin | - | - | - | - | - |
Amikacin | 3 | 3 | 1 | 0 | 4/10 |
Gentamycin | 3 | 3 | 1 | 1 | 5/10 |
Ampicillin | - | - | 3 | 1 | 4/6 |
Amoxiclav | - | - | 2 | 1 | 3/6 |
Piperacillin Tazobactam | - | 3 | 1 | 0 | 4/10 |
Cefuroxime | - | - | 2 | 1 | 4/6 |
Cefepime | - | 3 | 2 | 1 | 6/10 |
Cefotaxime | - | - | 2 | 1 | 3/6 |
Ceftriaxone | - | - | 2 | 1 | 3/6 |
Ceftazidime | - | 3 | 2 | 1 | 6/10 |
Meropenem | - | 1 | 0 | 0 | 1/10 |
Aztreonam | - | 3 | 0 | 1 | 4/10 |
Antibiotics Groups/Subgroups/Substances with ATC Codes | Total Prescriptions n = 3030 (%) | Prescriptions for SSI Patients n = 332 (%) | Prescriptions for Non-SSI Patients n = 2698 (%) |
---|---|---|---|
Tetracyclines; J01A | |||
Tetracyclines; J01AA02 | 5 (0) | 5 (0) | |
β-lactams, Penicillins; J01C | |||
Combinations of penicillins, incl. β-lactam inhibitors; J01CR02 | 281 (9) | 36 (11) | 245 (9) |
J01CR05 | 3 (0) | 2 (1) | 1 (0) |
J01CR50 | 1 (0) | 1 (0) | |
Other β-lactams; J01D | |||
Second-generation cephalosporins; J01DC02 | 3 (0) | 1 (0) | 2 (0) |
J01DC10 | 1 (0) | 1 (0) | |
Third- generation cephalosporins; J01DD01 | 43 (1) | 9 (3) | 34 (1) |
J01DD04 | 12 (0) | 12 (0) | |
J01DD08 | 1 (0) | 1 (0) | |
J01DD12 | 2 (0) | 2 (0) | |
J01DD13 | 8 (0) | 8 (0) | |
J01DD62 | 380 (13) | 27 (8) | 353 (13) |
J01DD63 | 738 (24) | 70 (21) | 668 (25) |
Carbapenems; J01DH51 | 1 (0) | 1 (0) | |
Sulfonamides and Trimethoprim; J01E | |||
Combinations of sulfonamides and trimethoprim; J01EE01 | 3 (0) | 3 (0) | |
Macrolides, Lincosamides and Streptogramins; J01F | |||
Lincosamides; J01FF01 | 6 (0) | 3 (1) | 3 (0) |
Aminoglycosides; J01G | |||
Other aminogylcosides; J01GB03 | 23 (1) | 8 (2) | 15 (1) |
J01GB06 | 1107 (37) | 96 (29) | 1011 (38) |
Quinolones; J01M | |||
Fluoroquinolones; J01MA01 | 1 (0) | 1 (0) | |
J01MA02 | 79 (3) | 19 (6) | 60 (2) |
J01MA06 | 3 (0) | 1 (0) | 2 (0) |
Combinations of antibacterials; J01R | |||
Combinations of antibacterials; J01RA75 | 1 (0) | 1 (0) | |
Other antibacterials; J01X | |||
Imidazole derivatives; J01XD01 | 84 (3) | 22 (7) | 62 (2) |
Other antibacterials; J01XX08 | 244 (8) | 37 (11) | 207 (8) |
Risk Factor | Univariable Analysis | Multivariable Analysis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | |||||||||||
AIC = 454, BIC = 523 | AIC = 482, BIC = 512 | AIC = 447, BIC = 487 | |||||||||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
Sex | Female | 1 | |||||||||||
Male | 3.42 | 1.79–6.49 | 0.000 | 2.57 | 1.25–5.29 | 0.010 | 2.93 | 1.48–5.77 | 0.002 | 2.64 | 1.32–5.30 | 0.006 | |
Age, years | ≤18 | 1.00 | |||||||||||
19–60 | 1.45 | 0.84–2.48 | 0.182 | ||||||||||
>60 | 1.05 | 0.46–2.39 | 0.911 | ||||||||||
ASA score | ASA I | 1 | |||||||||||
ASA II | 2.63 | 1.57–4.43 | 0.000 | 1.30 | 0.67–2.49 | 0.437 | |||||||
ASA III | 2.45 | 0.99–6.01 | 0.051 | 2.08 | 0.76–5.72 | 0.156 | |||||||
Previous hospitalization | 4.14 | 2.57–6.66 | 0.000 | 1.65 | 0.85–3.19 | 0.139 | 2.15 | 1.25–3.69 | 0.006 | ||||
Antibiotic prescribed 14 days before hospital admission | 4.71 | 2.59–8.58 | 0.000 | 1.45 | 0.61–3.42 | 0.400 | |||||||
PAP | 0.34 | 0.21–0.53 | 0.000 | 1.11 | 0.52–2.34 | 0.789 | |||||||
Antibiotic treatment during hospital stay before PAP | 3.75 | 2.42–5.80 | 0.000 | 3.93 | 2.33–6.63 | 0.000 | 3.92 | 2.40–6.43 | 0.000 | 4.19 | 2.51–7.00 | 0.000 | |
Duration of preoperative antibiotic, days | 1–7 | 1 | |||||||||||
8–14 | 1.2 | 0.51–2.85 | 0.674 | ||||||||||
>14 | 1.48 | 0.55–3.96 | 0.438 | ||||||||||
Postoperative antibiotic | 0.75 | 0.42–1.31 | 0.311 | ||||||||||
Duration of postoperative antibiotic, days | 1–7 | 1 | |||||||||||
8–14 | 1.71 | 0.90–3.23 | 0.100 | ||||||||||
>14 | 4.23 | 2.32–7.69 | 0.000 | 1.05 | 1.00–1.09 | 0.043 | 1.05 | 1.01–1.09 | 0.028 | 1.04 | 1.00–1.09 | 0.051 | |
Preoperative LOS, days | 1–3 | 1 | |||||||||||
4–7 | 1.00 | 0.57–1.76 | 0.999 | ||||||||||
8–15 | 0.68 | 0.35–1.30 | 0.243 | ||||||||||
>15 | 1.39 | 0.62–3.12 | 0.419 | ||||||||||
Postoperative LOS, days | 1–3 | 1 | |||||||||||
4–7 | 1.07 | 0.38–2.99 | 0.900 | ||||||||||
8–15 | 2.10 | 0.90–4.88 | 0.086 | ||||||||||
>15 | 5.99 | 2.59–13.87 | 0.000 | 3.03 | 1.65–5.58 | 0.000 | 2.95 | 1.67–5.20 | 0.000 | 3.30 | 1.83–5.95 | 0.000 | |
Preoperative shower | 3.94 | 2.49–6.24 | 0.000 | 4.14 | 1.99–8.56 | 0.000 | 5.49 | 3.29–9.16 | 0.000 | 4.73 | 2.72–8.22 | 0.000 | |
Hair removal | Not done | 1.00 | |||||||||||
Previous night | 0.65 | 0.36–1.19 | 0.161 | ||||||||||
Same day | 0.56 | 0.15–2.03 | 0.375 | ||||||||||
Shaving | 0.59 | 0.33–1.08 | 0.087 | ||||||||||
Type of fracture | Closed | 1 | |||||||||||
Compound | 4.87 | 2.21–10.76 | 0.000 | 1.97 | 0.73–5.35 | 0.182 | |||||||
Nature of surgery | Elective | 1 | |||||||||||
Emergency | 1.72 | 0.39–7.66 | 0.476 | ||||||||||
Duration of surgery, min | ≤60 | 1.00 | |||||||||||
61–120 | 0.60 | 0.35–1.03 | 0.064 | ||||||||||
>120 | 0.64 | 0.34–1.23 | 0.180 | ||||||||||
Blood transfusion | 0.88 | 0.54–1.43 | 0.601 | ||||||||||
Oxygen support | 0.75 | 0.29–1.93 | 0.547 | ||||||||||
Drain | 3.21 | 1.43–7.20 | 0.005 | 1.83 | 0.74–4.50 | 0.189 | 1.73 | 0.71–4.22 | 0.231 | ||||
Implants | 4.07 | 2.64–6.29 | 0.000 | 1.34 | 0.71–2.50 | 0.366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skender, K.; Machowska, A.; Singh, V.; Goel, V.; Marothi, Y.; Lundborg, C.S.; Sharma, M. Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India. Antibiotics 2022, 11, 748. https://doi.org/10.3390/antibiotics11060748
Skender K, Machowska A, Singh V, Goel V, Marothi Y, Lundborg CS, Sharma M. Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India. Antibiotics. 2022; 11(6):748. https://doi.org/10.3390/antibiotics11060748
Chicago/Turabian StyleSkender, Kristina, Anna Machowska, Vivek Singh, Varun Goel, Yogyata Marothi, Cecilia Stålsby Lundborg, and Megha Sharma. 2022. "Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India" Antibiotics 11, no. 6: 748. https://doi.org/10.3390/antibiotics11060748
APA StyleSkender, K., Machowska, A., Singh, V., Goel, V., Marothi, Y., Lundborg, C. S., & Sharma, M. (2022). Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India. Antibiotics, 11(6), 748. https://doi.org/10.3390/antibiotics11060748