Antimicrobial Resistance in New Zealand—A One Health Perspective
Abstract
:1. Introduction
2. Human Use of Antimicrobials in New Zealand
3. Veterinary Use of Antimicrobials in New Zealand
4. Antimicrobial Residues in the Environment
5. Antimicrobial Resistance in Humans and the Clinical Environment
6. Antimicrobial Resistance in Animals
6.1. AMR in Livestock
6.2. AMR in Companion Animals
Host Species | Bacterial Species | Sample Type | Resistance Phenotype | Prevalence | Method | Year of Sampling | Reference |
---|---|---|---|---|---|---|---|
Poultry | C. jejuni | Carcass | Fluoroquinolone Tetracycline | 10/72 (13.9%) 25/72 (34.7%) carcasses | Disc diffusion, CLSI | 2014 and 2015, respectively | [110] |
E. coli C. jejuni | Carcass rinsates | Gentamicin Tetracycline Erythromycin | 6/400 (1.5%) 18/400 (4.4%) isolates b 1/200 (0.5%) isolates b,d | Disc diffusion, CLSI Disc diffusion (no standard used) | 2005–2006 | [104] | |
E. coli C. jejuni | Carcass rinsates | Cefoxitin Tetracycline Ciprofloxacin Tetracycline | 3/909 (0.3%) 109/909 (12.1%) Isolates a,b,c 8/344 (2.3%) 1/344 (0.3%) isolates c | Broth microdilution plates, CLSI | 2009–2010 | [103] | |
Pigs | E. coli | Faeces | Gentamicin Tetracycline | 2/142 (1.4%) 61/142 (43%) isolates b | Disc diffusion, CLSI | March–October 2001 | [116] |
E. coli | Carcass swabs | Cefoxitin Tetracycline | 12/909 (1.3%) 440/909 (48.5%) isolates | Broth microdilution plates, CLSI | 2009–2010 | [103] | |
Dairy cattle | E. coli | Faeces | Putative hyperproducing AmpC | 11/78 (14.1%) pooled faeces from 7/26 (26.9%) dairy farms | Disc diffusion, EUCAST | May–July 2017 | [109] |
E. coli | Faeces | ESBLs | 1/116 (0.69%) pooled faeces from 1/15 (6.7%) dairy farms | Disc diffusion, EUCAST | August 2016–May 2017 | [107] | |
S. aureus | Clinical or subclinical mastitis milk | Cefoxitin | 1/50 (2%) isolates | Disc diffusion, CLSI | October 2015–January 2016 | [132] | |
S. aureus | Milk | Erythromycin Oxacillin | 4/320 (1.2%) 112/320 (34.9%) isolates | Broth microdilution plates, CLSI | September 2017–January 2018 | [111] | |
Beef | E. coli S. aureus | Clinical isolates | Tetracycline Oxacillin | 14/30 (46.7%) 1/6 (16.7%) isolates b,d | Disc diffusion, CLSI | 2003–2016 | [89] |
Calves | E. coli C. jejuni | Carcass swabs | Cefoxitin Tetracycline Ciprofloxacin Tetracycline | 9/909 (1%) 370/909 (40.7%) isolates a,b,c 8/344 (2.3%), 1/344 (0.3%) isolates c | Broth microdilution plates, CLSI | 2009–2010 | [103] |
Companion animals | Enterobacteriaceae | Faeces | ESBLs and/or plasmid-mediated AmpC | 6/18 (33.3%) dogs 3/18 (16.7%) cats | Disc diffusion, EUCAST | September 2015–September 2017 | [90] |
E. coli | Faeces | ESBLs and/or plasmid-mediated AmpC | 25/361 (6.9%) dogs 10/225 (4.4%) cats | Disc diffusion, CLSI | June 2021–June 2013 | [112] | |
Dogs | E. coli | Clinical urine samples | Cephalothin Enrofloxacin Clindamycin | 91/508 (17.9%) 9/500 (1.8%) 165/500 (32.5%) isolates | Disc diffusion, CLSI | 2012 | [114] |
Horses | E. coli | Ceftiofur Gentamicin Tetracycline | 11/24 (45.8%) 6/26 (23.1%) 16/25 (64%) isolates b | Disc diffusion, CLSI | 2004–2014 | [113] |
7. Antimicrobial Resistance in the Environment
7.1. AMR at Wastewater Treatment Plants
7.2. AMR after Waste Application to Land
7.2.1. Animal Waste to Land
7.2.2. Human Waste to Land
7.2.3. Greywater
7.3. AMR in Environmental Water
Environment a | Analytical Target | Sample Type | AMR Phenotype/AMR Abundance | Prevalence/Total Gene Abundance | Method | Year of Sampling | Comments | Reference |
---|---|---|---|---|---|---|---|---|
Human sewage and WWTP effluents | Resistome analysis | Raw municipal sewage | AMR genes with the highest relative abundance: Macrolide Beta-lactam Tetracycline Aminoglycoside | AMR gene levels in NZ sewage: approximately 530 fragments per kilobase per million fragments (FPKM) | Whole sample metagenomic shotgun sequencing | 2016 One sample | The study has been ongoing with more samples included from a number of NZ cities; the results are pending | [6] |
Resistome analysis | Raw municipal sewage, effluents, oxidation pond water and sediments | AMR genes with the highest relative abundance: Macrolide Beta-lactam Tetracycline Aminoglycoside | 400 different AMR genes identified across all the sample types | Whole sample metagenomic shotgun sequencing | 2019 | The number of resistance genes decreased throughout the treatment | [87] | |
Environmental water | E. coli | Urban waterways, dog faeces | ESBL, AmpC | n = 31 isolates 23% ESBL 23% AmpC | Disc diffusion, CLSI | 2017/2018 | E. coli were grown on selective agars | [177,178] |
E. coli | Large rural river | Streptomycin Sulphafurazole Tetracycline Trimethoprim Ampicillin Chloramphenicol b Nalidixic acid b Nitrofurantoin b Cefaclor b | 9/63 (2004) 16/80 (2012) | Disc diffusion, CLSI | 2004 and 2012 | Resistant isolates were resistant to a subset of the tested antimicrobials | [179] | |
vanA, vanB, mecA, ermA, ermB, tetA, tetB, tetK, tetM, aacA-aphD | Rural river freshwater biofilms | ermB, vanB and tetB genes were detected | In 2% of the 147 samples, AMR genes were detected, six sites/three rocks per site | PCR | 2010/2011 | [180] | ||
vanA, vanB, mecA, ermA, ermB, tetA, tetB, tetK, tetM, aacA-aphD | Freshwater biofilms from four waterways | ermB, tetK and tetM detected | 1.3% overall detection, 480 samples/20 sites/three rocks per site/eight samplings | PCR | 2010/2011 | [180,181] | ||
E. coli | Surface water (urban and rural streams) Mussels | ESBLs Ampicillin Chloramphenicol Ciprofloxacin | N/A | Disc diffusion, CLSI | 2017 | Isolation of E. coli on selective media containing different antimicrobials | [183,184] | |
E. coli, virulence genes, blaCTX-M | Rural river, water and sediments | blaCTX-M | blaCTX-M present at two sites in September (water and sediments) | PCR | May and September 2018 | [182] |
8. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- ESR. Annual Surveys of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae; Institute of Environmental Science and Research Ltd.: Porirua, New Zealand, 2014. [Google Scholar]
- Heffernan, H.; Pope, C.; Carter, P. Identification of Extended-Spectrum β-Lactamase Types, Plasmid-Mediated AMPC β-Lactamases and Strains among Urinary Escherichia coli and Klebsiella in New Zealand in 2006; Institute of Environmental Science and Research Limited (ESR): Porirua, New Zealand, 2007. [Google Scholar]
- Yu, J.; Tang, S.N.; Lee, P.K.H. Microbial Communities in Full-Scale Wastewater Treatment Systems Exhibit Deterministic Assembly Processes and Functional Dependency over Time. Environ. Sci. Technol. 2021, 55, 5312–5323. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization Geneva: Geneva, Switzerland, 2014. [Google Scholar]
- Hendriksen, R.S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.J.; McEwen, S.A. One Health-Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO); The South Centre and the United Nations Environment Programme (UNEP). Advancing the One Health response to Antimicrobial Resistance (AMR). 2021. Available online: https://www.unep.org/events/webinar/advancing-one-health-response-antimicrobial-resistance-amr (accessed on 20 April 2022).
- Ministry of Health and Ministry for Primary Industries. New Zealand Antimicrobial Resistance Action Plan; Ministry of Health: Wellington, New Zealand, 2017. [Google Scholar]
- European Commission. European One Health Action Plan Against Antimicrobial Resistance (AMR); European Commission: Ispra, Italy, 2017. [Google Scholar]
- Ministry of Health and Ministry for Primary Industries. Antimicrobial Resistance: New Zealand’s Current Situation and Identified Areas for Action; Ministry of Health and Ministry for Primary Industries: Wellington, New Zealand, 2017. [Google Scholar]
- Royal Society Te Apārangi. Antimicrobial Resistance—Implications for New Zealanders; Evidence update; Royal Society Te Apārangi: Wellington, New Zealand, 2017. [Google Scholar]
- A Report from the Prime Minister’s Chief Science Advisor Kaitohutohu Mātanga Pūtaiao Matua ki te Pirimia. Uniting Aotearoa against Infectious Disease and Antimicrobial Resistance, Auckland, Aotearoa New Zealand. 2022. Available online: https://www.pmcsa.ac.nz/topics/antimicrobial-resistance-and-infectious-disease/ (accessed on 20 April 2022).
- Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef] [PubMed]
- Manaia, C.M. Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Trends Microbiol. 2017, 25, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Stanton, I.C.; Bethel, A.; Leonard, A.F.C.; Gaze, W.H.; Garside, R. What is the research evidence for antibiotic resistance exposure and transmission to humans from the environment? A systematic map protocol. Environ. Evid. 2020, 9, 12. [Google Scholar] [CrossRef]
- Dohmen, W.; Van Gompel, L.; Schmitt, H.; Liakopoulos, A.; Heres, L.; Urlings, B.A.; Mevius, D.; Bonten, M.J.M.; Heederik, D.J.J. ESBL carriage in pig slaughterhouse workers is associated with occupational exposure. Epidemiol. Infect. 2017, 145, 2003–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wengenroth, L.; Berglund, F.; Blaak, H.; Chifiriuc, M.C.; Flach, C.F.; Pircalabioru, G.G.; Larsson, D.G.J.; Marutescu, L.; van Passel, M.W.J.; Popa, M.; et al. Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotics 2021, 10, 478. [Google Scholar] [CrossRef]
- Gilchrist, M.J.; Greko, C.; Wallinga, D.B.; Beran, G.W.; Riley, D.G.; Thorne, P.S. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 2007, 115, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Singer, A.C.; Shaw, H.; Rhodes, V.; Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front. Microbiol. 2016, 7, 1728. [Google Scholar] [CrossRef] [Green Version]
- Essack, S.Y. Environment: The neglected component of the One Health triad. Lancet Planet. Health 2018, 2, e238–e239. [Google Scholar] [CrossRef]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol 2018, 26, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waseem, H.; Williams, M.R.; Stedtfeld, R.D.; Hashsham, S.A. Antimicrobial Resistance in the Environment. Water Environ. Res. 2017, 89, 921–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef]
- Thomas, M.; Whyler, N.; Tomlin, A.; Tilyard, M. Ethnic disparities in community antibacterial dispensing in New Zealand—is current antibacterial dispensing for Māori and Pacific people insufficient or excessive, or both? N. Z. Med. J. 2019, 132, 100–104. [Google Scholar]
- Williamson, D.; Roos, R.; Verrall, A. Antibiotic Consumption in New Zealand, 2006–2014; The Institute of Environmental Science and Research Ltd.: Porirua, New Zealand, 2016. [Google Scholar]
- Thomas, M.; Tomlin, A.; Duffy, E.; Tilyard, M. Reduced community antibiotic dispensing in New Zealand during 2015–2018: Marked variation in relation to primary health organisation. N. Z. Med. J. 2020, 133, 33–35. [Google Scholar]
- Lapolla, W.J.; Levender, M.M.; Davis, S.A.; Yentzer, B.A.; Williford, P.M.; Feldman, S.R. Topical antibiotic trends from 1993 to 2007: Use of topical antibiotics for non-evidence-based indications. Dermatol. Surg. 2011, 37, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.A.; Monecke, S.; Heffernan, H.; Ritchie, S.R.; Roberts, S.A.; Upton, A.; Thomas, M.G.; Fraser, J.D. High Usage of Topical Fusidic Acid and Rapid Clonal Expansion of Fusidic Acid–Resistant Staphylococcus aureus: A Cautionary Tale. Clin. Infect. Dis. 2014, 59, 1451–1454. [Google Scholar] [CrossRef] [Green Version]
- Duffy, E.; Thomas, M.; Hills, T.; Ritchie, S. The impacts of New Zealand’s COVID-19 epidemic response on community antibiotic use and hospitalisation for pneumonia, peritonsillar abscess and rheumatic fever. Lancet Reg. Health-West. Pac. 2021, 12, 100162. [Google Scholar] [CrossRef]
- Huang, Q.S.; Wood, T.; Jelley, L.; Jennings, T.; Jefferies, S.; Daniells, K.; Nesdale, A.; Dowell, T.; Turner, N.; Campbell-Stokes, P.; et al. Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand. Nat. Commun. 2021, 12, 1001. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Hillerton, J.E.; Irvine, C.R.; Bryan, M.A.; Scott, D.; Merchant, S.C. Use of antimicrobials for animals in New Zealand, and in comparison with other countries. N. Z. Vet. J. 2017, 65, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Ying, G.-G.; Singer, A.C.; Zhu, Y.-G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018, 110, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Pruden, A.; Larsson, D.G.J.; Amézquita, A.; Collignon, P.; Brandt, K.K.; Graham, D.W.; Lazorchak, J.M.; Suzuki, S.; Silley, P.; Snape, J.R.; et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ. Health Perspect. 2013, 121, 878–885. [Google Scholar] [CrossRef]
- Checcucci, A.; Trevisi, P.; Luise, D.; Modesto, M.; Blasioli, S.; Braschi, I.; Mattarelli, P. Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure. Front. Microbiol. 2020, 11, 1416. [Google Scholar] [CrossRef]
- Troiano, E.; Beneduce, L.; Gross, A.; Ronen, Z. Antibiotic-Resistant Bacteria in Greywater and Greywater-Irrigated Soils. Front. Microbiol. 2018, 9, 2666. [Google Scholar] [CrossRef]
- Blau, K.; Jacquiod, S.; Sørensen, S.J.; Su, J.-Q.; Zhu, Y.-G.; Smalla, K.; Jechalke, S. Manure and Doxycycline Affect the Bacterial Community and Its Resistome in Lettuce Rhizosphere and Bulk Soil. Front. Microbiol. 2019, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- New Zealand Food Safety. Antibiotic Sales Analysis 2017; New Zealand Food Safety: Wellington, New Zealand, 2019. [Google Scholar]
- New Zealand Food Safety. Antibiotic Sales Analysis 2014–2016; New Zealand Food Safety: Wellington, New Zealand, 2018. [Google Scholar]
- New Zealand Food Safety. 2019 Antibiotic Agricultural Compound Sales Analysis; New Zealand Food Safety: Wellington, New Zealand, 2021. [Google Scholar]
- New Zealand Veterinary Association. Antimicrobial Resistance (AMR); NZVA: Wellington, New Zealand, 2015; Available online: https://nzva.org.nz/resource/general/amr/ (accessed on 26 May 2022).
- Hillerton, E.; Allison, A. Antibiotic Resistance: Challenges and Opportunities; Report to the New Zealand Veterinary Association; PWC New Zealand: Auckland, New Zealand, 2015; p. 28. [Google Scholar]
- Biggs, A.; Barrett, D.; Bradley, A.; Green, M.; Reyher, K.; Zadoks, R. Antibiotic dry cow therapy: Where next? Vet. Rec. 2016, 178, 93–94. [Google Scholar] [CrossRef] [Green Version]
- Keown, A. The 2020 Goal for Dry-cow Antibiotics—Are We There Yet? VetScript; New Zealand Veterinary Association: Auckland, New Zealand, 2020; pp. 40–43. [Google Scholar]
- New Zealand Veterinary Association. NZVA Position on DCT; NZVA: Wellington, New Zealand, 2015. [Google Scholar]
- McDougall, S.; Gohary, K.; Bates, A.; Compton, C. Antimicrobial usage on farm. In Proceedings of the New Zealand Milk Quality Conference, Hamilton, New Zealand, 20–21 June 2016; pp. 45–50. [Google Scholar]
- Bryan, M.; Hea, S.Y. A survey of antimicrobial use in dairy cows from farms in four regions of New Zealand. N. Z. Vet. J. 2017, 65, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Dairy, N.Z. Antibiotic Use on Dairy Farms. 2021. Available online: https://www.dairynz.co.nz/animal/cow-health/mastitis/drying-off/antibiotic-use-on-dairy-farms/ (accessed on 10 March 2022).
- Pleydell, E.J.; Souphavanh, K.; Hill, K.E.; French, N.P.; Prattley, D.J. Descriptive epidemiological study of the use of antimicrobial drugs by companion animal veterinarians in New Zealand. N. Z. Vet. J. 2012, 60, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- New Zealand Food Safety ACVM Register. ACVM Register—Veterinary Medicines, Agricultural Chemicals and Vertebrate Toxic Agents; Ministry of Primary Industries: Wellington, New Zealand, 2021. [Google Scholar]
- Ministry for Primary Industries. Maximum Residue Levels for Agricultural Compounds; Ministry for Primary Industries: Wellington, New Zealand, 2021; p. 72. [Google Scholar]
- Baietto, L.; Corcione, S.; Pacini, G.; Perri, G.D.; D’Avolio, A.; De Rosa, F.G. A 30-years review on pharmacokinetics of antibiotics: Is the right time for pharmacogenetics? Curr. Drug Metab. 2014, 15, 581–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonvin, F.; Omlin, J.; Rutler, R.; Schweizer, W.B.; Alaimo, P.J.; Strathmann, T.J.; McNeill, K.; Kohn, T. Direct Photolysis of Human Metabolites of the Antibiotic Sulfamethoxazole: Evidence for Abiotic Back-Transformation. Environ. Sci. Technol. 2013, 47, 6746–6755. [Google Scholar] [CrossRef] [PubMed]
- García-Galán, M.J.; Frömel, T.; Müller, J.; Peschka, M.; Knepper, T.; Díaz-Cruz, S.; Barceló, D. Biodegradation studies of N4-acetylsulfapyridine and N4-acetylsulfamethazine in environmental water by applying mass spectrometry techniques. Anal. Bioanal. Chem. 2012, 402, 2885–2896. [Google Scholar] [CrossRef]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Medsafe. Licensed Medicine Manufacturing Sites. 2022. Available online: https://www.medsafe.govt.nz/regulatory/licensed.asp (accessed on 5 March 2022).
- Larsson, D.G.J. Pollution from drug manufacturing: Review and perspectives. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2014, 369, 20130571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Bielen, A.; Šimatović, A.; Kosić-Vukšić, J.; Senta, I.; Ahel, M.; Babić, S.; Jurina, T.; González Plaza, J.J.; Milaković, M.; Udiković-Kolić, N. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 2017, 126, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Marathe, N.P.; Regina, V.R.; Walujkar, S.A.; Charan, S.S.; Moore, E.R.; Larsson, D.G.; Shouche, Y.S. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS ONE 2013, 8, e77310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Yang, M.; Hu, J.; Zhang, J.; Liu, R.; Gu, X.; Zhang, Y.; Wang, Z. Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ. Microbiol. 2009, 11, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Kristiansson, E.; Fick, J.; Janzon, A.; Grabic, R.; Rutgersson, C.; Weijdegård, B.; Söderström, H.; Larsson, D.G. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 2011, 6, e17038. [Google Scholar] [CrossRef] [PubMed]
- Tisler, T.; Zagorc-Koncan, J. The ‘whole-effluent’ toxicity approach. Int. J. Environ. Pollut. 2007, 31, 3–12. [Google Scholar] [CrossRef]
- Gunnarsson, L.; Kristiansson, E.; Rutgersson, C.; Sturve, J.; Fick, J.; Förlin, L.; Larsson, D.G. Pharmaceutical industry effluent diluted 1:500 affects global gene expression, cytochrome P450 1A activity, and plasma phosphate in fish. Environ. Toxicol. Chem. 2009, 28, 2639–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsson, G.; Orn, S.; Larsson, D.G. Effluent from bulk drug production is toxic to aquatic vertebrates. Environ. Toxicol. Chem. 2009, 28, 2656–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, P.A.; Zhu, Z.; van Opijnen, T. Antibiotics Disrupt Coordination between Transcriptional and Phenotypic Stress Responses in Pathogenic Bacteria. Cell. Rep. 2017, 20, 1705–1716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.Y.; Xu, P.P.; Xia, Z.J.; Wang, J.; Xiong, J.; Li, Y.Z. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli. FEMS Microbiol. Lett. 2013, 348, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Kinney, C.A.; Furlong, E.T.; Werner, S.L.; Cahill, J.D. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ. Toxicol. Chem. 2006, 25, 317–326. [Google Scholar] [CrossRef]
- Iwu, C.D.; Korsten, L.; Okoh, A.I. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiol. Open 2020, 9, e1035. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.F.; McLain, J.E. Soil persistence and fate of carbamazepine, lincomycin, caffeine, and ibuprofen from wastewater reuse. J. Environ. Qual. 2012, 41, 1473–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbagli, A.; Jensen, B.N.; Raza, M.; Schüth, C.; Rossetto, R. Assessment of soil buffer capacity on nutrients and pharmaceuticals in nature-based solution applications. Environ. Sci. Pollut. Res. Int. 2019, 26, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. 2015, 20, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Hoa, P.T. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in indochina. Front. Microbiol. 2012, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Karkman, A.; Pärnänen, K.; Larsson, D.G.J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 2019, 10, 80. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist. Updates 2012, 15, 162–172. [Google Scholar] [CrossRef]
- Gullberg, E.; Albrecht, L.M.; Karlsson, C.; Sandegren, L.; Andersson, D.I. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals. mBio 2014, 5, e01918-14. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson-Palme, J.; Larsson, D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, A.K.; Stanton, I.; Gaze, W.H.; Snape, J. Dawning of a new ERA: Environmental Risk Assessment of antibiotics and their potential to select for antimicrobial resistance. Water Res. 2021, 200, 117233. [Google Scholar] [CrossRef]
- Stewart, M. Pharmaceutical Residues in the Auckland Estuarine Environment; Prepared by NIWA for Auckland Council; Auckland Council: Auckland, New Zealand, 2013. [Google Scholar]
- Pattis, I.; Dupont, P.-Y.; Weaver, L.; Humphries, B.; Liu, Y.; Cornelius, A.; Chappell, A.; Rowland, G.; Dyet, K. Antimicrobial resistance in a New Zealand wastewater treatment plant. In Proceedings of the 6th One Health Aotearoa Symposium, Christchurch, New Zealand, 8–9 December 2020. [Google Scholar]
- Williamson, D.A.; Heffernan, H. The changing landscape of antimicrobial resistance in New Zealand. N. Z. Med. J. 2014, 127, 41–54. [Google Scholar]
- Rogers, B.A.; Ingram, P.R.; Runnegar, N.; Pitman, M.C.; Freeman, J.T.; Athan, E.; Havers, S.M.; Sidjabat, H.E.; Jones, M.; Gunning, E.; et al. Community-onset Escherichia coli infection resistant to expanded-spectrum cephalosporins in low-prevalence countries. Antimicrob. Agents Chemother. 2014, 58, 2126–2134. [Google Scholar] [CrossRef] [Green Version]
- Toombs-Ruane, L.J.; Benschop, J.; French, N.P.; Biggs, P.J.; Midwinter, A.C.; Marshall, J.C.; Chan, M.; Drinković, D.; Fayaz, A.; Baker, M.G.; et al. Carriage of Extended-Spectrum-Beta-Lactamase- and AmpC Beta-Lactamase-Producing Escherichia coli Strains from Humans and Pets in the Same Households. Appl. Environ. Microbiol. 2020, 86, e01613-20. [Google Scholar] [CrossRef] [PubMed]
- Drinkovic, D.; Morris, A.J.; Dyet, K.; Bakker, S.; Heffernan, H. Plasmid-mediated AmpC beta-lactamase-producing Escherichia coli causing urinary tract infection in the Auckland community likely to be resistant to commonly prescribed antimicrobials. N. Z. Med. J. 2015, 128, 50–59. [Google Scholar]
- ESR. Enterobacterales with Acquired Carbapenemases, 2020; Institute of Environmental Science and Research Ltd.: Porirua, New Zealand, 2021; p. 7. [Google Scholar]
- Hammoudi Halat, D.; Ayoub Moubareck, C. The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics 2020, 9, 186. [Google Scholar] [CrossRef]
- WHO. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; World Health Organiszation: Geneva, Switzerland, 2017. [Google Scholar]
- ESR. Acquired Carbapenemase-Producing Organisms; Institute of Environmental Science and Research Ltd.: Porirua, New Zealand, 2022. [Google Scholar]
- Yoon, E.J.; Jeong, S.H. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front. Microbiol. 2021, 12, 614058. [Google Scholar] [CrossRef] [PubMed]
- ESR. 2017 Survey of Methicillin-Resistant Staphylococcus aureus (MRSA); Institute of Environmental Science and Research Ltd.: Porirua, New Zealand, 2018. [Google Scholar]
- ESR. Antimicrobial Resistance Data from Hospital and Community Laboratories; Institute of Environmental Science and Research Ltd.: Porirua, New Zealand, 2012. [Google Scholar]
- ESR. Vancomycin-Resistant Enterococci, 2020; Institute of Environmental Science and Research Ltd.: Porirua, New Zealand, 2021; p. 4. [Google Scholar]
- Levitus, M.; Rewane, A.; Perera, T. Vancomycin-Resistant Enterococci. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Reyes, K.B.A.; Zervos, M. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect. Dis. Clin. N. Am. 2016, 30, 953–965. [Google Scholar] [CrossRef]
- Werner, G.; Klare, I.; Witte, W. Arrangement of the vanA gene cluster in enterococci of different ecological origin. FEMS Microbiol. Lett. 1997, 155, 55–61. [Google Scholar] [CrossRef]
- Heffernan, H.; Wong, T.L.; Lindsay, J.; Bowen, B.; Woodhouse, R. A Baseline Survey of Antimicrobial Resistance in Bacteria from Selected New Zealand Foods, 2009–2010; MAF Technical Paper No: 2011/53; New Zealand Ministry of Agriculture and Forestry: Wellington, New Zealand, 2011. [Google Scholar]
- Pleydell, E.; Rogers, L.; Kwan, E.; French, N. Low levels of antibacterial drug resistance expressed by Gram-negative bacteria isolated from poultry carcasses in New Zealand. N. Z. Vet. J. 2010, 58, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Petrovski, K.R.; Grinberg, A.; Williamson, N.B.; Abdalla, M.E.; Lopez-Villalobos, N.; Parkinson, T.J.; Tucker, I.G.; Rapnicki, P. Susceptibility to antimicrobials of mastitis-causing Staphylococcus aureus, Streptococcus uberis and Str. dysgalactiae from New Zealand and the USA as assessed by the disk diffusion test. Aust. Vet. J. 2015, 93, 227–233. [Google Scholar] [CrossRef]
- Grinberg, A.; Lopez-Villalobos, N.; Lawrence, K.; Nulsen, M. Prediction of penicillin resistance in Staphylococcus aureus isolates from dairy cows with mastitis, based on prior test results. N. Z. Vet. J. 2005, 53, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.A.; Aplin, J.; Biggs, P.J.; Breckell, G.; Benschop, J.; Fayaz, A.; Toombs-Ruane, L.J.; Midwinter, A.C. Characterisation of AmpC and extended-spectrum beta-lactamase producing E. coli from New Zealand dairy farms. Int. Dairy J. 2021, 117, 104998. [Google Scholar] [CrossRef]
- McDougall, S.; Hussein, H.; Petrovski, K. Antimicrobial resistance in Staphylococcus aureus, Streptococcus uberis and Streptococcus dysgalactiae from dairy cows with mastitis. N. Z. Vet. J. 2014, 62, 68–76. [Google Scholar] [CrossRef]
- Burgess, S.A.; Cookson, A.L.; Brousse, L.; Ortolani, E.; Benschop, J.; Akhter, R.; Brightwell, G.; McDougall, S. The epidemiology of AmpC-producing Escherichia coli isolated from dairy cattle faeces on pasture-fed farms. J. Med. Microbiol. 2021, 70, 001447. [Google Scholar] [CrossRef] [PubMed]
- French, N.P.; Zhang, J.; Carter, G.P.; Midwinter, A.C.; Biggs, P.J.; Dyet, K.; Gilpin, B.J.; Ingle, D.J.; Mulqueen, K.; Rogers, L.E.; et al. Genomic Analysis of Fluoroquinolone- and Tetracycline-Resistant Campylobacter jejuni Sequence Type 6964 in Humans and Poultry, New Zealand, 2014–2016. Emerg. Infect. Dis. 2019, 25, 2226–2234. [Google Scholar] [CrossRef] [Green Version]
- McDougall, S.; Penry, J.; Dymock, D. Antimicrobial susceptibilities in dairy herds that differ in dry cow therapy usage. J. Dairy Sci. 2021, 104, 9142–9163. [Google Scholar] [CrossRef]
- Karkaba, A.; Grinberg, A.; Benschop, J.; Pleydell, E. Characterisation of extended-spectrum β-lactamase and AmpC β-lactamase-producing Enterobacteriaceae isolated from companion animals in New Zealand. N. Z. Vet. J. 2017, 65, 105–112. [Google Scholar] [CrossRef]
- Toombs-Ruane, L.J.; Riley, C.B.; Kendall, A.T.; Hill, K.E.; Benschop, J.; Rosanowski, S.M. Antimicrobial susceptibility of bacteria isolated from neonatal foal samples submitted to a New Zealand veterinary pathology laboratory (2004 to 2013). N. Z. Vet. J. 2016, 64, 107–111. [Google Scholar] [CrossRef] [Green Version]
- McMeekin, C.H.; Hill, K.E.; Gibson, I.R.; Bridges, J.P.; Benschop, J. Antimicrobial resistance patterns of bacteria isolated from canine urinary samples submitted to a New Zealand veterinary diagnostic laboratory between 2005–2012. N. Z. Vet. J. 2017, 65, 99–104. [Google Scholar] [CrossRef]
- Lawrence, K.E.; Wakeford, L.; Toombs-Ruane, L.J.; MacLachlan, C.; Pfeffer, H.; Gibson, I.R.; Benschop, J.; Riley, C.B. Bacterial isolates, antimicrobial susceptibility and multidrug resistance in cultures from samples collected from beef and pre-production dairy cattle in New Zealand (2003–2016). N. Z. Vet. J. 2019, 67, 180–187. [Google Scholar] [CrossRef]
- Nulsen, M.F.; Mor, M.B.; Lawton, D.E.B. Antibiotic resistance among indicator bacteria isolated from healthy pigs in New Zealand. N. Z. Vet. J. 2008, 56, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Rushton-Green, R.; Darnell, R.L.; Taiaroa, G.; Carter, G.P.; Cook, G.M.; Morgan, X.C. Agricultural Origins of a Highly Persistent Lineage of Vancomycin-Resistant Enterococcus faecalis in New Zealand. Appl. Environ. Microbiol. 2019, 85, e00137-19. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; French, N. Antimicrobial Resistant Bacteria in Dairy Cattle: A Review; New Zealand Food Safety and Science Research Centre, Massey University: Palmerston North, New Zealand, 2017; p. 60. [Google Scholar]
- Collis, R.M.; Burgess, S.A.; Biggs, P.J.; Midwinter, A.C.; French, N.P.; Toombs-Ruane, L.; Cookson, A.L. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Dairy Farm Environments: A New Zealand Perspective. Foodborne Pathog. Dis. 2019, 16, 5–22. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hordijk, J.; Wagenaar, J.A.; Kant, A.; van Essen-Zandbergen, A.; Dierikx, C.; Veldman, K.; Wit, B.; Mevius, D. Cross-sectional study on prevalence and molecular characteristics of plasmid mediated ESBL/AmpC-producing Escherichia coli isolated from veal calves at slaughter. PLoS ONE 2013, 8, e65681. [Google Scholar] [CrossRef] [Green Version]
- Weber, L.P.; Dreyer, S.; Heppelmann, M.; Schaufler, K.; Homeier-Bachmann, T.; Bachmann, L. Prevalence and Risk Factors for ESBL/AmpC-E. coli in Pre-Weaned Dairy Calves on Dairy Farms in Germany. Microorganisms 2021, 9, 2135. [Google Scholar] [CrossRef] [PubMed]
- Odenthal, S.; Akineden, Ö.; Usleber, E. Extended-spectrum β-lactamase producing Enterobacteriaceae in bulk tank milk from German dairy farms. Int. J. Food Microbiol. 2016, 238, 72–78. [Google Scholar] [CrossRef]
- Chen, C.M.; Ke, S.C.; Li, C.R.; Wu, Y.C.; Chen, T.H.; Lai, C.H.; Wu, X.X.; Wu, L.T. High Diversity of Antimicrobial Resistance Genes, Class 1 Integrons, and Genotypes of Multidrug-Resistant Escherichia coli in Beef Carcasses. Microb. Drug Resist. 2017, 23, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Vogt, D.; Overesch, G.; Endimiani, A.; Collaud, A.; Thomann, A.; Perreten, V. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb. Drug Resist. 2014, 20, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Harrow, S.A.; Gilpin, B.J.; Klena, J.D. Characterization of erythromycin resistance in Campylobacter coli and Campylobacter jejuni isolated from pig offal in New Zealand. J. Appl. Microbiol. 2004, 97, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Van Den Broek, I.V.F.; Van Cleef, B.A.G.L.; Haenen, A.; Broens, E.M.; Van Der Wolf, P.J.; Van Den Broek, M.J.M.; Huijsdens, X.W.; Kluytmans, J.A.J.W.; Van De Giessen, A.W.; Tiemersma, E.W. Methicillin-resistant Staphylococcus aureus in people living and working in pig farms. Epidemiol. Infect. 2009, 137, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Dahms, C.; Hübner, N.-O.; Cuny, C.; Kramer, A. Occurrence of methicillin-resistant Staphylococcus aureus in farm workers and the livestock environment in Mecklenburg-Western Pomerania, Germany. Acta Vet. Scand. 2014, 56, 53. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, A.; Kingsbury, D.D.; Gibson, I.R.; Kirby, B.M.; Mack, H.J.; Morrison, D. Clinically overt infections with methicillin-resistant Staphylococcus aureus in animals in New Zealand: A pilot study. N. Z. Vet. J. 2008, 56, 237–242. [Google Scholar] [CrossRef]
- McDougall, S.; Clausen, L.; Ha, H.J.; Gibson, I.; Bryan, M.; Hadjirin, N.; Lay, E.; Raisen, C.; Ba, X.; Restif, O.; et al. Mechanisms of β-lactam resistance of Streptococcus uberis isolated from bovine mastitis cases. Vet. Microbiol. 2020, 242, 108592. [Google Scholar] [CrossRef] [PubMed]
- Nisa, S.; Bercker, C.; Midwinter, A.C.; Bruce, I.; Graham, C.F.; Venter, P.; Bell, A.; French, N.P.; Benschop, J.; Bailey, K.M.; et al. Combining MALDI-TOF and genomics in the study of methicillin resistant and multidrug resistant Staphylococcus pseudintermedius in New Zealand. Sci. Rep. 2019, 9, 1271. [Google Scholar] [CrossRef] [Green Version]
- Greening, S.S.; Zhang, J.; Midwinter, A.C.; Wilkinson, D.A.; McDougall, S.; Gates, M.C.; French, N.P. The Genetic Relatedness and Antimicrobial Resistance Patterns of Mastitis-Causing Staphylococcus aureus Strains Isolated from New Zealand Dairy Cattle. Vet. Sci. 2021, 8, 287. [Google Scholar] [CrossRef]
- Karkman, A.; Johnson, T.A.; Lyra, C.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 2016, 92, fiw014. [Google Scholar] [CrossRef] [Green Version]
- Buelow, E.; Bayjanov, J.R.; Majoor, E.; Willems, R.J.; Bonten, M.J.; Schmitt, H.; van Schaik, W. Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiol. Ecol. 2018, 94, fiy087. [Google Scholar] [CrossRef] [PubMed]
- Czekalski, N.; Berthold, T.; Caucci, S.; Egli, A.; Buergmann, H. Increased Levels of Multiresistant Bacteria and Resistance Genes after Wastewater Treatment and Their Dissemination into Lake Geneva, Switzerland. Front. Microbiol. 2012, 3, 106. [Google Scholar] [CrossRef] [Green Version]
- McConnell, M.M.; Hansen, L.T.; Neudorf, K.D.; Hayward, J.L.; Jamieson, R.C.; Yost, C.K.; Tong, A. Sources of Antibiotic Resistance Genes in a Rural River System. J. Environ. Qual. 2018, 47, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Osinska, A.; Harnisz, M.; Korzeniewska, E. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water. Environ. Sci. Pollut. Res. Int. 2016, 23, 10818–10831. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.; Tang, A.; Wang, H.; Liu, X.; Huang, Z.; Wang, Z.; Zhang, J.; Wei, Y.; Su, Y.; Zhang, Y. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes. Bioresour. Technol. 2019, 272, 489–500. [Google Scholar] [CrossRef]
- Hassoun-Kheir, N.; Stabholz, Y.; Kreft, J.U.; de la Cruz, R.; Romalde, J.L.; Nesme, J.; Sørensen, S.J.; Smets, B.F.; Graham, D.; Paul, M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci. Total Environ. 2020, 743, 140804. [Google Scholar] [CrossRef]
- Li, L.; Nesme, J.; Quintela-Baluja, M.; Balboa, S.; Hashsham, S.; Williams, M.R.; Yu, Z.; Sørensen, S.J.; Graham, D.W.; Romalde, J.L.; et al. Extended-Spectrum β-Lactamase and Carbapenemase Genes are Substantially and Sequentially Reduced during Conveyance and Treatment of Urban Sewage. Environ. Sci. Technol. 2021, 55, 5939–5949. [Google Scholar] [CrossRef]
- Ju, F.; Beck, K.; Yin, X.; Maccagnan, A.; McArdell, C.S.; Singer, H.P.; Johnson, D.R.; Zhang, T.; Burgmann, H. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME J. 2019, 13, 346–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alderton, I.; Palmer, B.R.; Heinemann, J.A.; Pattis, I.; Weaver, L.; Gutiérrez-Ginés, M.J.; Horswell, J.; Tremblay, L.A. The role of emerging organic contaminants in the development of antimicrobial resistance. Emerg. Contam. 2021, 7, 160–171. [Google Scholar] [CrossRef]
- Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom. 2015, 16, 964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Water, N.Z. New Zealand Wastewater Treatment Plant Inventory. 2021. Available online: https://www.waternz.org.nz/WWTPInventory (accessed on 21 February 2022).
- Beca, G.H.D.; Boffa Miskel, B. The New Zealand Wastewater Sector. Prepared for the Ministry for the Environment. October 2020. Available online: https://environment.govt.nz/assets/Publications/Files/wastewater-sector-report.pdf (accessed on 30 November 2021).
- Uluseker, C.; Kaster, K.M.; Thorsen, K.; Basiry, D.; Shobana, S.; Jain, M.; Kumar, G.; Kommedal, R.; Pala-Ozkok, I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021, 12, 3003. [Google Scholar] [CrossRef]
- Pei, M.; Zhang, B.; He, Y.; Su, J.; Gin, K.; Lev, O.; Shen, G.; Hu, S. State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants. Environ. Int. 2019, 131, 105026. [Google Scholar] [CrossRef]
- Cass, S.; Lowe, H. How much municipal wastewater passed through land in new zealand? In Proceedings of the Water NZ Annual Conference and Expo, Rotorua, New Zealand, 19–21 October 2016. [Google Scholar]
- Fouz, N.; Pangesti, K.N.A.; Yasir, M.; Al-Malki, A.L.; Azhar, E.I.; Hill-Cawthorne, G.A.; Abd El Ghany, M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop. Med. Infect. Dis. 2020, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Hernroth, B.; Lothigius, A.; Bölin, I. Factors influencing survival of enterotoxigenic Escherichia coli, Salmonella enterica (serovar Typhimurium) and Vibrio parahaemolyticus in marine environments. FEMS Microbiol. Ecol. 2010, 71, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Lothigius, A.; Sjöling, A.; Svennerholm, A.M.; Bölin, I. Survival and gene expression of enterotoxigenic Escherichia coli during long-term incubation in sea water and freshwater. J. Appl. Microbiol. 2010, 108, 1441–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinholt, R. The value of biosolids in New Zealand—An industry assessment. In Proceedings of the Water New Zealand Conference & Expo 2019, Hamilton, New Zealand, 18–20 September 2019; p. 15. [Google Scholar]
- Geser, N.; Stephan, R.; Hächler, H. Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res. 2012, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, S.D.; Ahmed, M.F.E.; El-Adawy, H.; Hotzel, H.; Engelmann, I.; Weiß, D.; Monecke, S.; Ehricht, R. Surveillance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Dairy Cattle Farms in the Nile Delta, Egypt. Front. Microbiol. 2016, 7, 1020. [Google Scholar] [CrossRef] [Green Version]
- Chambers, L.; Yang, Y.; Littier, H.; Ray, P.; Zhang, T.; Pruden, A.; Strickland, M.; Knowlton, K. Metagenomic Analysis of Antibiotic Resistance Genes in Dairy Cow Feces following Therapeutic Administration of Third Generation Cephalosporin. PLoS ONE 2015, 10, e0133764. [Google Scholar] [CrossRef] [Green Version]
- Dahms, C.; Hübner, N.-O.; Kossow, A.; Mellmann, A.; Dittmann, K.; Kramer, A. Occurrence of ESBL-Producing Escherichia coli in Livestock and Farm Workers in Mecklenburg-Western Pomerania, Germany. PLoS ONE 2015, 10, e0143326. [Google Scholar] [CrossRef]
- Massé, D.I.; Saady, N.M.C.; Gilbert, Y. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview. Animals 2014, 4, 146–163. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Spongberg, A.L.; Witter, J.D. Sorption and biodegradation of selected antibiotics in biosolids. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2009, 44, 454–461. [Google Scholar] [CrossRef]
- Macedo, G.; Hernandez-Leal, L.; van der Maas, P.; Heederik, D.; Mevius, D.; Schmitt, H. The impact of manure and soil texture on antimicrobial resistance gene levels in farmlands and adjacent ditches. Sci. Total Environ. 2020, 737, 139563. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, D.; Xue, J.; Weaver, L.; Wakelin, S.A.; Feng, Y.; Li, Z. Changes in microbial community structure during pig manure composting and its relationship to the fate of antibiotics and antibiotic resistance genes. J. Hazard. Mater. 2020, 389, 122082. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Wen, Q. Effects of chlortetracycline on the fate of multi-antibiotic resistance genes and the microbial community during swine manure composting. Environ. Pollut. 2018, 237, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.S.; Garner, E.; Pruden, A.; Aga, D.S. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. Environ. Pollut. 2018, 236, 764–772. [Google Scholar] [CrossRef]
- Dolliver, H.; Gupta, S.; Noll, S. Antibiotic degradation during manure composting. J. Environ. Qual. 2008, 37, 1245–1253. [Google Scholar] [CrossRef]
- Keenum, I.; Williams, R.K.; Ray, P.; Garner, E.D.; Knowlton, K.F.; Pruden, A. Combined effects of composting and antibiotic administration on cattle manure–borne antibiotic resistance genes. Microbiome 2021, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, B.; Zou, S.; Fang, H.H.; Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 2014, 62, 97–106. [Google Scholar] [CrossRef]
- Yang, S.F.; Lin, C.F.; Wu, C.J.; Ng, K.K.; Lin, A.Y.; Hong, P.K. Fate of sulfonamide antibiotics in contact with activated sludge-sorption and biodegradation. Water Res. 2012, 46, 1301–1308. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015, 119, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Polesel, F.; Lehnberg, K.; Dott, W.; Trapp, S.; Thomas, K.V.; Plósz, B.G. Factors influencing sorption of ciprofloxacin onto activated sludge: Experimental assessment and modelling implications. Chemosphere 2015, 119, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Gekenidis, M.-T.; Walsh, F.; Drissner, D. Tracing Antibiotic Resistance Genes along the Irrigation Water Chain to Chive: Does Tap or Surface Water Make a Difference? Antibiotics 2021, 10, 1100. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.H.; Qiao, M.; Su, J.Q.; Chen, Z.; Zhou, X.; Zhu, Y.G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 2014, 48, 9079–9085. [Google Scholar] [CrossRef]
- Zaayman, M.A. Investigating Environmental and Health Risks of Greywater Use in New Zealand. Soil Science. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2014. [Google Scholar]
- Blaak, H.; Lynch, G.; Italiaander, R.; Hamidjaja, R.A.; Schets, F.M.; Husman, A.M.D. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater. PLoS ONE 2015, 10, e0127752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, H.A.; Biggs, P.J.; Midwinter, A.C.; Burgess, S.A. Genome Sequences for Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Strains Isolated from Different Water Sources. Microbiol. Resour. Announc. 2021, 10, e0032821. [Google Scholar] [CrossRef]
- Burgess, S.A.; Francois, M.; Midwinter, A.C.; Biggs, P.J. Draft Genome Sequences of Seven Extended-Spectrum β-Lactamase-Producing Escherichia coli Strains Isolated from New Zealand Waterways. Microbiol. Resour. Announc. 2021, 10, e01445-20. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Toombs-Ruane, L.; Biggs, P.; Midwinter, A.; Benschop, J. Urban waterways—A vehicle for the spread of antimicrobial resistant E. coli? NZMS Conf. 2018. [Google Scholar]
- Schousboe, M.I.; Aitken, J.; Welsh, T.J. Increase in antibiotic resistant Escherichia coli in a major New Zealand river: Comparison between 2004 and 2012—An interval of 8 years. N. Z. J. Med. Lab. 2015, 69, 10–14. [Google Scholar]
- Winkworth, C.L. Antibiotic resistance genes in freshwater biofilms along a whole river. J. Water Health 2013, 11, 186–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkworth-Lawrence, C.; Lange, K. Antibiotic resistance genes in freshwater biofilms may reflect influences from high-intensity agriculture. Microb. Ecol. 2016, 72, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Fish & Game New Zealand. Holiday Warning—Health Threat Posed By Canterbury Rivers. 2018. Available online: https://fishandgame.org.nz/news/holiday-warning-health-threat-posed-by-canterbury-rivers/ (accessed on 10 March 2022).
- Van Hamelsveld, S.; Adewale, M.E.; Kurenbach, B.; Godsoe, W.; Harding, J.S.; Remus-Emsermann, M.N.P.; Heinemann, J.A. Prevalence of antibiotic-resistant Escherichia coli isolated from urban and agricultural streams in Canterbury, New Zealand. FEMS Microbiol. Lett. 2019, 366, fnz104. [Google Scholar] [CrossRef] [PubMed]
- Van Hamelsveld, S.; Heinemann, J.A. Surface water and mahinga kai as vectors of antibiotic resistance. In Proceedings of the 5th One Health Aotearoa, Wellington, New Zealand, 10–11 December 2019. [Google Scholar]
- Paull, D.; Heinemann, J. Sharing is not always caring: Antibiotic-resistant bacteria and their travelling genes. In Proceedings of the 6th One Health Aotearoa Symposium, Christchurch, New Zealand, 8–9 December 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattis, I.; Weaver, L.; Burgess, S.; Ussher, J.E.; Dyet, K. Antimicrobial Resistance in New Zealand—A One Health Perspective. Antibiotics 2022, 11, 778. https://doi.org/10.3390/antibiotics11060778
Pattis I, Weaver L, Burgess S, Ussher JE, Dyet K. Antimicrobial Resistance in New Zealand—A One Health Perspective. Antibiotics. 2022; 11(6):778. https://doi.org/10.3390/antibiotics11060778
Chicago/Turabian StylePattis, Isabelle, Louise Weaver, Sara Burgess, James E. Ussher, and Kristin Dyet. 2022. "Antimicrobial Resistance in New Zealand—A One Health Perspective" Antibiotics 11, no. 6: 778. https://doi.org/10.3390/antibiotics11060778
APA StylePattis, I., Weaver, L., Burgess, S., Ussher, J. E., & Dyet, K. (2022). Antimicrobial Resistance in New Zealand—A One Health Perspective. Antibiotics, 11(6), 778. https://doi.org/10.3390/antibiotics11060778