Prevalence and Molecular Characteristics of Polymyxin-Resistant Pseudomonas aeruginosa in a Chinese Tertiary Teaching Hospital
Abstract
:1. Introduction
2. Methods and Materials
2.1. Bacterial Isolates and Antibiotic Susceptibility Testing
2.2. Genome Sequencing, Assembly and Annotation
2.3. MLST and Phylogenetic Analyses
3. Results
3.1. Patient Demographics and Characteristics of the Polymyxin-Resistant P. aeruginosa Isolates
3.2. Antimicrobial Susceptibility and Detection of Polymyxin-Resistant P. aeruginosa
3.3. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raman, G.; Avendano, E.E.; Chan, J.; Merchant, S.; Puzniak, L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2018, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behzadi, P.; Barath, Z.; Gajdacs, M. It’s Not Easy Being Green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiotics 2021, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious diseases society of america guidance on the treatment of extended-spectrum beta-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar] [PubMed]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- World Health Organization. Antibiotic-Resistant Priority Pathogens List. 2017. Available online: https://www.doherty.edu.au/news-events/news/who-global-priority-pathogens-list-of-antibiotic-resistant-bacteria (accessed on 2 December 2021).
- Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q.T.; Li, J. Rescuing the last-line polymyxins: Achievements and challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef]
- Velkov, T.; Thompson, P.E.; Azad, M.A.K.; Roberts, K.D.; Bergen, P.J. History, chemistry and antibacterial spectrum. Adv. Exp. Med. Biol. 2019, 1145, 15–36. [Google Scholar]
- Jeannot, K.; Bolard, A.; Plesiat, P. Resistance to polymyxins in Gram-negative organisms. Int. J. Antimicrob. Agents 2017, 49, 526–535. [Google Scholar] [CrossRef]
- Satlin, M.J.; Lewis, J.S.; Weinstein, M.P.; Patel, J.; Humphries, R.M.; Kahlmeter, G.; Giske, C.G.; Turnidge, J. Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing position statements on polymyxin B and colistin clinical breakpoints. Clin. Infect. Dis. 2020, 71, e523–e529. [Google Scholar] [CrossRef]
- Sherry, N.; Howden, B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam—Epidemiology, laboratory detection and treatment implications. Expert Rev. Anti Infect. Ther. 2018, 16, 289–306. [Google Scholar] [CrossRef]
- Lekunberri, I.; Balcazar, J.L.; Borrego, C.M. Detection and quantification of the plasmid-mediated mcr-1 gene conferring colistin resistance in wastewater. Int. J. Antimicrob. Agents 2017, 50, 734–736. [Google Scholar] [CrossRef]
- Gales, A.C.; Jones, R.N.; Sader, H.S. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: Results from the SENTRY Antimicrobial Surveillance Program (2006-09). J. Antimicrob. Chemother. 2011, 66, 2070–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Li, X.; Yang, F.; Chen, W.; Zhao, Y.; Bai, G.; Zhang, Z. Molecular epidemiology and riskfactors of ventilator-associated Pneumonia infection caused by carbapenem-resistant Enterobacteriaceae. Front. Pharmacol. 2019, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Capone, A.; Giannella, M.; Fortini, D.; Giordano, A.; Meledandri, M.; Ballardini, M.; Venditti, M.; Bordi, E.; Capozzi, D.; Balice, M.P.; et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin. Microbiol. Infect. 2013, 19, E23–E30. [Google Scholar] [CrossRef] [Green Version]
- Baron, S.; Hadjadj, L.; Rolain, J.M.; Olaitan, A.O. Molecular mechanisms of polymyxin resistance: Knowns and unknowns. Int. J. Antimicrob. Agents 2016, 48, 583–591. [Google Scholar] [CrossRef] [PubMed]
- AbuOun, M.; Stubberfield, E.J.; Duggett, N.A.; Kirchner, M.; Dormer, L.; Nunez-Garcia, J.; Randall, L.P.; Lemma, F.; Crook, D.W.; Teale, C.; et al. mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Antimicrob. Chemother. 2018, 73, 2904. [Google Scholar] [CrossRef] [PubMed]
- Borowiak, M.; Fischer, J.; Hammerl, J.A.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi, B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Carroll, L.M.; Gaballa, A.; Guldimann, C.; Sullivan, G.; Henderson, L.O.; Wiedmann, M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype typhimurium isolate. mBio 2019, 10, e00853-19. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Chen, Q.; Shen, F.; Jiang, Y.; Wu, X.; Hua, X.; Fu, Y.; Yu, Y. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during treatment with tigecycline and polymyxin. Emerg. Microbes Infect. 2021, 10, 1129–1136. [Google Scholar] [CrossRef]
- Liao, W.; Quan, J.; Liu, L.; Zhao, D.; Jiang, Y.; Du, X.; Zhao, F.; Yu, Y.; Zhou, Z. New insights into the mechanisms of colistin resistance in Klebsiella aerogenes of clinical origin. Int. J. Antimicrob. Agents 2020, 55, 105990. [Google Scholar] [CrossRef]
- Jayol, A.; Nordmann, P.; Brink, A.; Poirel, L. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system. Antimicrob. Agents Chemother. 2015, 59, 2780–2784. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute 2022, 32nd ed.; M02, M07 and M11; CLSI: Wayne, PA, USA, 2022; pp. 1–362. [Google Scholar]
- Clarke, J.D. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb. Protoc. 2009, 3, pdb-prot5177. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Koh, G. Faster single-end alignment generation utilizing multi-thread for BWA. Biomed. Mater. Eng. 2015, 26 (Suppl. S1), S1791–S1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Valle, I.F.; Giampieri, E.; Simonetti, G.; Padella, A.; Manfrini, M.; Ferrari, A.; Papayannidis, C.; Zironi, I.; Garonzi, M.; Bernardi, S.; et al. Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data. BMC Bioinform. 2016, 17, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for Phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef]
- Lee, H.; Hsu, F.F.; Turk, J.; Groisman, E.A. The pmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J. Bacteriol. 2004, 186, 4124–4133. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.H.; Siu, L.K.; Chang, F.Y.; Tsai, Y.K.; Lin, Y.T.; Chiu, S.K.; Huang, L.-Y.; Lin, J.-C. A novel deletion mutation in pmrB contributes to concurrent colistin resistance in carbapenem-resistant Escherichia coli sequence type 405 of clinical origin. Antimicrob. Agents Chemother. 2021, 65, e0137421, Erratum in Antimicrob. Agents Chemother. 2020, 64, e00220-20. [Google Scholar] [CrossRef]
- Romano, K.P.; Warrier, T.; Poulsen, B.E.; Nguyen, P.H.; Loftis, A.R.; Saebi, A.; Pentelute, B.L.; Hung, D.T. Mutations in pmrB confer cross-resistance between the LptD inhibitor POL7080 and colistin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e00511-19. [Google Scholar] [CrossRef] [Green Version]
- Schurek, K.N.; Sampaio, J.L.; Kiffer, C.R.; Sinto, S.; Mendes, C.M.; Hancock, R.E. Involvement of pmrAB and phoPQ in polymyxin B adaptation and inducible resistance in non-cystic fibrosis clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 4345–4351. [Google Scholar] [CrossRef] [Green Version]
- Pletzer, D.; Sun, E.; Ritchie, C.; Wilkinson, L.; Liu, L.T.; Trimble, M.J.; Wolfmeier, H.; Blimkie, T.M.; Hancock, R.E.W. Surfing motility is a complex adaptation dependent on the stringent stress response in Pseudomonas aeruginosa LESB58. PLoS Pathog. 2020, 16, e1008444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikkelsen, H.; McMullan, R.; Filloux, A. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS ONE 2011, 6, e29113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.G.; Liu, Z.Y.; Liao, X.P.; Sun, R.Y.; Li, R.B.; Liu, Y.; Fang, L.X.; Sun, J.; Liu, Y.H.; Zhang, R.M. Retrospective data insight into the global distribution of carbapenemase-producing Pseudomonas aeruginosa. Antibiotics 2021, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Xu, C.; Fang, R.; Cao, J.; Zhang, X.; Zhao, Y.; Dong, G.; Sun, Y.; Zhou, T. Resistance and heteroresistance to colistin in Pseudomonas aeruginosa isolates from Wenzhou, China. Antimicrob. Agents Chemother. 2019, 63, e00556-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giamarellou, H. Epidemiology of infections caused by polymyxin-resistant pathogens. Int. J. Antimicrob. Agents 2016, 48, 614–621. [Google Scholar] [CrossRef]
- Wi, Y.M.; Choi, J.Y.; Lee, J.Y.; Kang, C.I.; Chung, D.R.; Peck, K.R.; Song, J.-H.; Ko, K.S. Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea. Int. J. Antimicrob. Agents 2017, 49, 767–769. [Google Scholar] [CrossRef]
- Baek, M.S.; Chung, E.S.; Jung, D.S.; Ko, K.S. Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2020, 75, 917–924. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Huang, Q.; Wang, Y.; Yuan, Q.; Li, X.; Xia, P.; Sun, F. Changes in the resistance and epidemiological characteristics of Pseudomonas aeruginosa during a ten-year period. J. Microbiol. Immunol. Infect. 2021, 54, 261–266. [Google Scholar] [CrossRef]
- Galetti, R.; Andrade, L.N.; Varani, A.M.; Darini, A.L.C. SPM-1-producing Pseudomonas aeruginosa ST277 carries a chromosomal pack of acquired resistance genes: An example of high-risk clone associated with ‘intrinsic resistome’. J. Glob. Antimicrob. Resist. 2019, 16, 183–186. [Google Scholar] [CrossRef]
- Takahashi, T.; Tada, T.; Shrestha, S.; Hishinuma, T.; Sherchan, J.B.; Tohya, M.; Kirikae, T.; Sherchand, J.B. Molecular characterisation of carbapenem-resistant Pseudomonas aeruginosa clinical isolates in Nepal. J. Glob. Antimicrob. Resist. 2021, 26, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, H.; Jiang, Q.; Wang, Q.; Li, S.; Huang, Y. Bronchoscope-related Pseudomonas aeruginosa pseudo-outbreak attributed to contaminated rinse water. Am. J. Infect. Control 2020, 48, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Zarkotou, O.; Pournaras, S.; Voulgari, E.; Chrysos, G.; Prekates, A.; Voutsinas, D.; Themeli-Digalaki, K.; Tsakris, A. Risk factors and outcomes associated with acquisition of colistin-resistant KPC-producing Klebsiella pneumoniae: A matched case-control study. J. Clin. Microbiol. 2010, 48, 2271–2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniadou, A.; Kontopidou, F.; Poulakou, G.; Koratzanis, E.; Galani, I.; Papadomichelakis, E.; Kopterides, P.; Souli, M.; Armaganidis, A.; Giamarellou, H. Colistin-resistant isolates of Klebsiella pneumoniae emerging in intensive care unit patients: First report of a multiclonal cluster. J. Antimicrob. Chemother. 2007, 59, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Patel, G.; Huprikar, S.; Calfee, D.P.; Jenkins, S.G. Decreased susceptibility to polymyxin B during treatment for carbapenem-resistant Klebsiella pneumoniae infection. J. Clin. Microbiol. 2009, 47, 1611–1612. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Galani, I.; Karaiskos, I.; Lu, J.; Aye, S.M.; Huang, J.; Velkov, T.; Giamarellou, H.; Li, J. Multifaceted mechanisms of colistin resistance revealed by genomic analysis of multidrug-resistant Klebsiella pneumoniae isolates from individual patients before and after colistin treatment. J. Infect. 2019, 79, 312–321. [Google Scholar] [CrossRef]
- Stefaniuk, E.M.; Tyski, S. Colistin resistance in Enterobacterales strains—A current view. Pol. J. Microbiol. 2019, 68, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, J.H.; Harper, M.; Harrison, P.; Hale, J.D.; Vinogradov, E.; Seemann, T.; Henry, R.; Crane, B.; St. Michael, F.; Cox, A.D.; et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 2010, 54, 4971–4977. [Google Scholar] [CrossRef] [Green Version]
- Abdul Momin, M.H.F.; Bean, D.C.; Hendriksen, R.S.; Haenni, M.; Phee, L.M.; Wareham, D.W. CHROMagar COL-APSE: A selective bacterial culture medium for the isolation and differentiation of colistin-resistant Gram-negative pathogens. J. Med. Microbiol. 2017, 66, 1554–1561. [Google Scholar] [CrossRef]
- Jones-Dias, D.; Manageiro, V.; Ferreira, E.; Barreiro, P.; Vieira, L.; Moura, I.B.; Manuela, C. Architecture of class 1, 2, and 3 integrons from Gram negative bacteria recovered among fruits and vegetables. Front. Microbiol. 2016, 7, 1400. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Velkov, T. Polymyxins: Mode of action. Adv. Exp. Med. Biol. 2019, 1145, 37–54. [Google Scholar] [PubMed]
- Khalifa, H.O.; Ahmed, A.M.; Oreiby, A.F.; Eid, A.M.; Shimamoto, T.; Shimamoto, T. Characterisation of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli isolated from animals in Egypt. Int. J. Antimicrob. Agents 2016, 47, 413–414. [Google Scholar] [CrossRef] [PubMed]
- El-Mokhtar, M.A.; Hetta, H.F. Ambulance vehicles as a source of multidrug-resistant infections: A multicenter study in Assiut City, Egypt. Infect. Drug Resist. 2018, 11, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chandler, C.E.; Leung, L.M.; McElheny, C.L.; Mettus, R.T.; Shanks, R.M.Q.; Liu, J.H.; Goodlett, D.R.; Ernst, R.K.; Doi, Y. Structural modification of lipopolysaccharide conferred by mcr-1 in Gram-negative ESKAPE pathogens. Antimicrob. Agents Chemother. 2017, 61, e00580-17. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Zhou, Q.; He, W.; Lin, Q.; Yang, J.; Liu, J.H. mcr-1 and plasmid prevalence in Escherichia coli from livestock. Lancet Infect. Dis. 2020, 20, 1126. [Google Scholar] [CrossRef]
- Oliver, A.; Mulet, X.; Lopez-Causape, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updates 2015, 21–22, 41–59. [Google Scholar] [CrossRef]
Isolate | Gender | Age (Year) | Underlying Disease | Ward | Polymyxin Treatment † | Length of Hospital Stay (Day) | Outcome | Specimen (Collection Date, Day/Month/Year) | MLST Type | Carbapenem Resistance Gene |
---|---|---|---|---|---|---|---|---|---|---|
149 | Female | 37 | Severe acute pancreatitis; sepsis | Emergency Intensive Care Unit (EICU) | No treatment; considered as colonization in bile | 40 | Survived | Bile (10 September 2021) | ST360 | blaOXA-50, blaPDC-5 |
150 | Male | 37 | Skin, soft tissue and respiratory infection due to extensive burns (52% flame burns degree II-III) | Burns ward | Local use of topical polymyxin B plus IV polymyxin B sulfate 50 mg 12-hourly (both administered for the same 27 days) | 54 | Survived | Wound (10 September 2021) | ST823 | blaPDC-7, blaVIM-2 |
166 | Female | 70 | Diffuse large B-cell lymphoma; neutropenia; decompensated cirrhosis due to autoimmune hepatitis. | Dermatology | No treatment; considered as colonization in sputum | 6 | Survived | Sputum (23 September 2021) | ST1621 | blaOXA-50, blaPDC-10 |
167 | Female | 48 | Dermatomyositis; thrombocytopenia | Dermatology | Local use of topical polymyxin B for 8 days | 29 | Survived | Wound (23 September 2021) | NT (not detected) | blaPDC-7, blaVIM-2 |
190 | Male | 51 | Severe abdominal infection due to acute suppurative appendicitis with perforation; septic shock | EICU | IV polymyxin B sulfate 50 mg 12-hourly for 24 days | 87 | Survived | Extravasate Fluid (30 September 2021) | ST277 | blaOXA-50, blaPDC-3 |
206 | Male | 76 | ANCA-associated vasculitis with cerebral infarction | Neurology | No treatment; considered as colonization in sputum | 27 | Survived | Sputum (3 November 2021) | ST671 | blaOXA-50, blaPDC-10 |
207 | Male | 61 | Vitiligo | Respiratory | No treatment; considered as colonization in sputum | 2 | Survived | Sputum (3 November 2021) | ST277 | blaOXA-50, blaPDC-5 |
211 | Male | 47 | Skin, soft tissue and respiratory infection due to extensive burns (75% flame burns, 50% degree III) | Burns wards | Local use of topical polymyxin B for 41 days; IV polymyxin B sulfate 50 mg 12-hourly plus aerosolized polymyxin B 25 mg 12-hourly (both administered for the same 32 days) | 79 | Survived | Sputum (4 November 2021) | ST823 | blaPDC-7, blaVIM-2 |
Isolate | CAZ | AZT | IMP | CIP | TIM | CPE | MEM | AK | CL | LEV | PMB | TM | TZP | SCF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
149 | 16 | 32 | ≥16 | 1 | ≥128 | 16 | ≥16 | 4 | 4 | 0.5 | 4 | ≤1 | ≥128 | 16 |
150 | 16 | ≥64 | ≥16 | ≥4 | ≥128 | 8 | ≥16 | ≥64 | ≥16 | ≥8 | 4 | ≥16 | 32 | ≥64 |
166 | 2 | 8 | 1 | 2 | 16 | 2 | 0.5 | ≤2 | ≥16 | 0.5 | 4 | ≤1 | ≤4 | ≤8 |
167 | 16 | 4 | ≥16 | ≥4 | ≥128 | 8 | ≥16 | ≥64 | ≥16 | ≥8 | 16 | ≥16 | 16 | ≥64 |
190 | ≥64 | ≥64 | ≥16 | ≥4 | ≥128 | ≥16 | ≥16 | ≥64 | ≥16 | ≥8 | 8 | ≥16 | ≥128 | ≥64 |
206 | 2 | 4 | 2 | ≤0.25 | 32 | 4 | ≥0.25 | ≤2 | ≥16 | 0.25 | 4 | ≤1 | 8 | ≤8 |
207 | ≥64 | ≥64 | ≥16 | ≥4 | ≥128 | 16 | ≥16 | ≥64 | ≥16 | ≥8 | 16 | ≤1 | ≥128 | ≥64 |
211 | 16 | 4 | ≥16 | ≥4 | ≥128 | 16 | ≥16 | ≥64 | ≥16 | ≥8 | 4 | ≥16 | 32 | ≥64 |
Isolate | pmrB | pmrA | phoQ |
---|---|---|---|
149 | 1033T>C (Y345H) | 212T>G (L71R) | - |
150 | 43G>A (V15I), 202G>A (G68S), 1033T>C (Y345H) | - | - |
166 | 43G>A (V15I), 202G>A (G68S), 1033T>C (Y345H) | 212T>G (L71R) | - |
167 | 464G>A (R155H), 1033T>C (Y345H) | 212T>G (L71R) | |
190 | 1033T>C (Y345H), 1105C>G (P369A), 1384G>A (A462T) | 212T>G (L71R) | - |
206 | 43G>A (V15I), 202G>A (G68S), 1033T>C (Y345H) | - | 789G>T (Q263H) |
207 | 1033T>C (Y345H), 1105C>G (P369A), 1384G>A (A462T) | 212T>G (L71R) | - |
211 | 43G>A (V15I), 202G>A (G68S), 1033T>C (Y345H) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, C.; Zhu, Y.; Yang, Z.; Shi, D.; Ni, Y.; Hua, L.; Li, J. Prevalence and Molecular Characteristics of Polymyxin-Resistant Pseudomonas aeruginosa in a Chinese Tertiary Teaching Hospital. Antibiotics 2022, 11, 799. https://doi.org/10.3390/antibiotics11060799
Xiao C, Zhu Y, Yang Z, Shi D, Ni Y, Hua L, Li J. Prevalence and Molecular Characteristics of Polymyxin-Resistant Pseudomonas aeruginosa in a Chinese Tertiary Teaching Hospital. Antibiotics. 2022; 11(6):799. https://doi.org/10.3390/antibiotics11060799
Chicago/Turabian StyleXiao, Chenlu, Yan Zhu, Zhitao Yang, Dake Shi, Yuxing Ni, Li Hua, and Jian Li. 2022. "Prevalence and Molecular Characteristics of Polymyxin-Resistant Pseudomonas aeruginosa in a Chinese Tertiary Teaching Hospital" Antibiotics 11, no. 6: 799. https://doi.org/10.3390/antibiotics11060799
APA StyleXiao, C., Zhu, Y., Yang, Z., Shi, D., Ni, Y., Hua, L., & Li, J. (2022). Prevalence and Molecular Characteristics of Polymyxin-Resistant Pseudomonas aeruginosa in a Chinese Tertiary Teaching Hospital. Antibiotics, 11(6), 799. https://doi.org/10.3390/antibiotics11060799