Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance
Abstract
:1. Introduction
2. Results
2.1. Case Studies
2.1.1. Case 1
2.1.2. Case 2
2.1.3. Case 3
2.1.4. Case 4
2.1.5. Case 5
2.2. Sequence Analysis of rpoB and rrl Genes
2.3. Sequence Analysis of erm(41) Gene
2.4. Examination of Susceptibility to Antibiotics
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gopalaswamy, R.; Shanmugam, S.; Mondal, R.; Subbian, S. Of tuberculosis and non-tuberculous mycobacterial infections—A comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci. 2020, 27, 74. [Google Scholar] [CrossRef] [PubMed]
- Wassilew, N.; Hoffmann, H.; Andrejak, C.; Lange, C. Pulmonary disease caused by non-tuberculous mycobacteria. Respiration 2016, 91, 386–402. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkinham, J.O., 3rd. Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 2015, 36, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Lopeman, R.C.; Harrison, J.; Desai, M.; Cox, J.A.G. Mycobacterium abscessus: Environmental bacterium turned clinical nightmare. Microorganisms 2019, 7, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogelson, S.B.; Camus, A.C.; Lorenz, W.W.; Vasireddy, R.; Vasireddy, S.; Smith, T.; Brown-Elliott, B.A.; Wallace, R.J., Jr.; Hasan, N.A.; Reischl, U.; et al. Variation among human, veterinary and environmental Mycobacterium chelonae-abscessus complex isolates observed using core genome phylogenomic analysis, targeted gene comparison, and anti-microbial susceptibility patterns. PLoS ONE 2019, 14, e0214274. [Google Scholar] [CrossRef] [PubMed]
- Hoefsloot, W.; van Ingen, J.; Andrejak, C.; Angeby, K.; Bauriaud, R.; Bemer, P.; Beylis, N.; Boeree, M.J.; Cacho, J.; Chihota, V.; et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur. Respir. J. 2013, 42, 1604–1613. [Google Scholar] [CrossRef]
- Namkoong, H.; Kurashima, A.; Morimoto, K.; Hoshino, Y.; Hasegawa, N.; Ato, M.; Mitarai, S. Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan. Emerg. Infect. Dis. 2016, 22, 1116–1117. [Google Scholar] [CrossRef] [Green Version]
- Modra, H.; Ulmann, V.; Caha, J.; Hubelova, D.; Konecny, O.; Svobodova, J.; Weston, R.T.; Pavlik, I. Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in the Czech Republic. Int. J. Environ. Res. Public Health 2019, 16, 3969. [Google Scholar] [CrossRef] [Green Version]
- Johansen, M.D.; Herrmann, J.L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 18, 392–407. [Google Scholar] [CrossRef]
- American Thoracic Society: Statements, Guidelines & Reports. Available online: https://www.thoracic.org/statements/ (accessed on 11 February 2022).
- Kim, S.Y.; Shin, S.J.; Jeong, B.H.; Koh, W.J. Successful antibiotic treatment of pulmonary disease caused by Mycobacterium abscessus subsp. abscessus with C-to-T mutation at position 19 in erm(41) gene: Case report. BMC Infect. Dis. 2016, 16, 207. [Google Scholar] [CrossRef] [Green Version]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J., Jr.; Andrejak, C.; Bottger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respir. J. 2020, 56, e1–e36. [Google Scholar] [CrossRef]
- Floto, R.A.; Olivier, K.N.; Saiman, L.; Daley, C.L.; Herrmann, J.L.; Nick, J.A.; Noone, P.G.; Bilton, D.; Corris, P.; Gibson, R.L.; et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax 2016, 71 (Suppl. S1), i1–i22. [Google Scholar] [CrossRef] [Green Version]
- Maurer, F.P.; Ruegger, V.; Ritter, C.; Bloemberg, G.V.; Bottger, E.C. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). J. Antimicrob. Chemother. 2012, 67, 2606–2611. [Google Scholar] [CrossRef] [Green Version]
- Bastian, S.; Veziris, N.; Roux, A.L.; Brossier, F.; Gaillard, J.L.; Jarlier, V.; Cambau, E. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob. Agents Chemother. 2011, 55, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Mase, A.; Yamaguchi, F.; Funaki, T.; Yamazaki, Y.; Shikama, Y.; Fukuchi, K. PCR amplification of the erm(41) gene can be used to predict the sensitivity of Mycobacterium abscessus complex strains to clarithromycin. Exp. Ther. Med. 2020, 19, 945–955. [Google Scholar] [CrossRef] [Green Version]
- Koh, W.J.; Jeon, K.; Lee, N.Y.; Kim, B.J.; Kook, Y.H.; Lee, S.H.; Park, Y.K.; Kim, C.K.; Shin, S.J.; Huitt, G.A.; et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am. J. Respir. Crit. Care Med. 2011, 183, 405–410. [Google Scholar] [CrossRef]
- Mougari, F.; Amarsy, R.; Veziris, N.; Bastian, S.; Brossier, F.; Bercot, B.; Raskine, L.; Cambau, E. Standardized interpretation of antibiotic susceptibility testing and resistance genotyping for Mycobacterium abscessus with regard to subspecies and erm41 sequevar. J. Antimicrob. Chemother. 2016, 71, 2208–2212. [Google Scholar] [CrossRef] [Green Version]
- Lyu, J.; Kim, B.J.; Kim, B.J.; Song, J.W.; Choi, C.M.; Oh, Y.M.; Lee, S.D.; Kim, W.S.; Kim, D.S.; Shim, T.S. A shorter treatment duration may be sufficient for patients with Mycobacterium massiliense lung disease than with Mycobacterium abscessus lung disease. Respir. Med. 2014, 108, 1706–1712. [Google Scholar] [CrossRef] [Green Version]
- Nash, K.A.; Brown-Elliott, B.A.; Wallace, R.J., Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 2009, 53, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Degiacomi, G.; Sammartino, J.C.; Chiarelli, L.R.; Riabova, O.; Makarov, V.; Pasca, M.R. Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients. Int. J. Mol. Sci. 2019, 20, 5868. [Google Scholar] [CrossRef] [Green Version]
- Szturmowicz, M.; Oniszh, K.; Wyrostkiewicz, D.; Radwan-Rohrenschef, P.; Filipczak, D.; Zabost, A. Non-tuberculous mycobacteria in respiratory specimens of patients with obstructive lung diseases-colonization or disease? Antibiotics 2020, 9, 424. [Google Scholar] [CrossRef]
- Feng, J.Y.; Chen, W.C.; Chen, Y.Y.; Su, W.J. Clinical relevance and diagnosis of nontuberculous mycobacterial pulmonary disease in populations at risk. J. Formos. Med. Assoc. 2020, 119 (Suppl. S1), S23–S31. [Google Scholar] [CrossRef]
- Chmiel, J.F.; Aksamit, T.R.; Chotirmall, S.H.; Dasenbrook, E.C.; Elborn, J.S.; LiPuma, J.J.; Ranganathan, S.C.; Waters, V.J.; Ratjen, F.A. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann. Am. Thorac. Soc. 2014, 11, 1298–1306. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.W.; Huang, C.K.; Sy, C.L.; Wu, K.S.; Tsai, H.C.; Lee, S.S. Treatment for Mycobacterium abscessus complex-lung disease. J. Formos. Med. Assoc. 2020, 119 (Suppl. S1), S58–S66. [Google Scholar] [CrossRef]
- Jeon, K.; Kwon, O.J.; Lee, N.Y.; Kim, B.J.; Kook, Y.H.; Lee, S.H.; Park, Y.K.; Kim, C.K.; Koh, W.J. Antibiotic treatment of Mycobacterium abscessus lung disease: A retrospective analysis of 65 patients. Am. J. Respir. Crit. Care Med. 2009, 180, 896–902. [Google Scholar] [CrossRef]
- Pasipanodya, J.G.; Ogbonna, D.; Ferro, B.E.; Magombedze, G.; Srivastava, S.; Deshpande, D.; Gumbo, T. Systematic Review and meta-analyses of the effect of chemotherapy on pulmonary Mycobacterium abscessus outcomes and disease recurrence. Antimicrob. Agents Chemother. 2017, 61, e01206-17. [Google Scholar] [CrossRef] [Green Version]
- Koh, W.J.; Stout, J.E.; Yew, W.W. Advances in the management of pulmonary disease due to Mycobacterium abscessus complex. Int. J. Tuberc. Lung Dis. 2014, 18, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Varghese, B.; Al-Hajoj, S. A global update on rare non-tuberculous mycobacteria in humans: Epidemiology and emergence. Int. J. Tuberc. Lung Dis. 2020, 24, 214–223. [Google Scholar] [CrossRef]
- Harada, T.; Akiyama, Y.; Kurashima, A.; Nagai, H.; Tsuyuguchi, K.; Fujii, T.; Yano, S.; Shigeto, E.; Kuraoka, T.; Kajiki, A.; et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J. Clin. Microbiol. 2012, 50, 3556–3561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, W.J.; Jeong, B.H.; Kim, S.Y.; Jeon, K.; Park, K.U.; Jhun, B.W.; Lee, H.; Park, H.Y.; Kim, D.H.; Huh, H.J.; et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin. Infect. Dis. 2017, 64, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Jhun, B.W.; Kim, S.Y.; Kim, D.H.; Lee, H.; Jeon, K.; Kwon, O.J.; Huh, H.J.; Ki, C.S.; Lee, N.Y.; et al. Treatment outcomes of macrolide-susceptible Mycobacterium abscessus lung disease. Diagn. Microbiol. Infect. Dis. 2018, 90, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Bemer, P.; Peuchant, O.; Guet-Revillet, H.; Bador, J.; Balavoine, C.; Basille, D.; Beltramo, G.; Blanc, F.X.; Blanchard, E.; Boulanger, S.; et al. Management of patients with pulmonary mycobacteriosis in France: A multicenter retrospective cohort study. BMC Pulm. Med. 2021, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.M.; Grogono, D.M.; Rodriguez-Rincon, D.; Everall, I.; Brown, K.P.; Moreno, P.; Verma, D.; Hill, E.; Drijkoningen, J.; Gilligan, P.; et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016, 354, 751–757. [Google Scholar] [CrossRef] [Green Version]
- Redondo, N.; Mok, S.; Montgomery, L.; Flanagan, P.R.; McNamara, E.; Smyth, E.G.; O’Sullivan, N.; Schaffer, K.; Rogers, T.R.; Fitzgibbon, M.M. Genomic analysis of Mycobacterium abscessus complex isolates collected in ireland between 2006 and 2017. J. Clin. Microbiol. 2020, 58, e00295-20. [Google Scholar] [CrossRef]
- Teri, A.; Sottotetti, S.; Arghittu, M.; Girelli, D.; Biffi, A.; D’Accico, M.; Dacco, V.; Gambazza, S.; Pizzamiglio, G.; Trovato, A.; et al. Molecular characterization of Mycobacterium abscessus subspecies isolated from patients attending an Italian Cystic Fibrosis Centre. New Microbiol. 2020, 43, 127–132. [Google Scholar]
- Adekambi, T.; Colson, P.; Drancourt, M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J. Clin. Microbiol. 2003, 41, 5699–5708. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.E.; Chang, C.L.; Whang, J.; Kim, H.J.; Kwon, O.J.; Koh, W.J.; Shin, S.J. Efficient differentiation of Mycobacterium abscessus complex isolates to the species level by a novel PCR-based variable-number tandem-repeat assay. J. Clin. Microbiol. 2011, 49, 1107–1109. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Yagi, T.; Ichikawa, K.; Nakagawa, T.; Moriyama, M.; Uchiya, K.; Nikai, T.; Ogawa, K. Evaluation of a rapid detection method of clarithromycin resistance genes in Mycobacterium avium complex isolates. J. Antimicrob. Chemother. 2011, 66, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Biehle, J.R.; Cavalieri, S.J.; Saubolle, M.A.; Getsinger, L.J. Evaluation of Etest for susceptibility testing of rapidly growing mycobacteria. J. Clin. Microbiol. 1995, 33, 1760–1764. [Google Scholar] [CrossRef] [Green Version]
Diagnostics/Antibiotics/ | M. a. bolletii | M. a. abscessus | M. a. massiliense | ||
---|---|---|---|---|---|
Therapeutics Outcome | Case 1 (Str1) | Case 2 (Str2) | Case 5 (Str5) | Case 3 (Str3) | Case 4 (Str4) |
Diagnostics | CF | GvHD, RI | CF | IPF | CF |
Clinical relevance 1 | Yes | Yes | Yes | No | Yes |
Clarithromycin | 1 (3 d) 64 (14 d) | 0.125 (3 d) 1 (14 d) | 0.125 (3 d) 0.125 (14 d) | 0.125 (3 d) 0.125 (14 d) | 1 (3 d) 1 (14 d) |
Amikacin | 8 | 8 | 2 | 8 | 1 |
Imipenem | 4 | 8 | 1 | 32 | 2 |
Linezolid | >256 | >256 | 16 | 24 | 8 |
Tigecycline | 0.25-2 | 0.38 | 0.25 | 0.25 | 0.5 |
Ciprofloxacin | 8 > 32 | >32 | 2 | 16 | 2 |
Moxifloxacin | >32 | >32 | 1 | 8 | 2 |
Cefoxitin | 8 | 8 | 8 | 16 | 16 |
Doxycycline | 4 | >8 | 128 | >8 | 4 |
Time to conversion of sputum to negativity | 4 years | 2 weeks | 4 weeks | Not | 4 weeks |
Therapeutics outcome | Recovered | Died | Treated | Not treated | Treated |
erm(41) Gene | M. a. abscessus | M. a. bolletii | M. a. massiliense |
---|---|---|---|
Amplicon size | 673 bp | 673 bp | 397 bp (deletion at nucleotides 64, 65 and 159–432) |
Promoter sequence at position −35 | TATCGA | TGTCGA | TGTCGA |
Nucleotide at position 28 | T or C | T | T |
Nucleotide at position 312 | A | C | - |
Nucleotide at position 336 | T | C | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryskova, L.; Bolehovska, R.; Kukla, R.; Svarc, M.; Zavrelova, A.; Vanicek, H.; Pavlik, I.; Bostik, P. Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance. Antibiotics 2022, 11, 873. https://doi.org/10.3390/antibiotics11070873
Ryskova L, Bolehovska R, Kukla R, Svarc M, Zavrelova A, Vanicek H, Pavlik I, Bostik P. Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance. Antibiotics. 2022; 11(7):873. https://doi.org/10.3390/antibiotics11070873
Chicago/Turabian StyleRyskova, Lenka, Radka Bolehovska, Rudolf Kukla, Michal Svarc, Alzbeta Zavrelova, Hubert Vanicek, Ivo Pavlik, and Pavel Bostik. 2022. "Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance" Antibiotics 11, no. 7: 873. https://doi.org/10.3390/antibiotics11070873
APA StyleRyskova, L., Bolehovska, R., Kukla, R., Svarc, M., Zavrelova, A., Vanicek, H., Pavlik, I., & Bostik, P. (2022). Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance. Antibiotics, 11(7), 873. https://doi.org/10.3390/antibiotics11070873