Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes
Abstract
:1. Introduction
2. Review of Pharmacokinetic Concepts and Terminologies
3. Pathophysiology of Sepsis
4. Effect of Sepsis on Drug Distribution Volumes and Kinetics
5. Effect of Sepsis-Induced Acidemia on Drug Excretion Kinetics
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barr, D.A.; Lewis, J.M.; Feasey, N.; Schutz, C.; Kerkhoff, A.D.; Jacob, S.T.; Andrews, B.; Kelly, P.; Lakhi, S.; Muchemwa, L.; et al. Mycobacterium tuberculosis bloodstream infection prevalence, diagnosis, and mortality risk in seriously ill adults with HIV: A systematic review and meta-analysis of individual patient data. Lancet Infect. Dis. 2020, 20, 742–752. [Google Scholar] [CrossRef] [Green Version]
- Cummings, M.J.; O’Donnell, M.R. Inverting the pyramid: Increasing awareness of mycobacterial sepsis in sub-Saharan Africa. Int. J. Tuberc. Lung Dis. 2015, 19, 1128–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.C.; Jacob, S.; Banura, P.; Zhang, J.; Stroup, S.; Boulware, D.; Scheld, W.M.; Houpt, E.R.; Liu, J. Etiology of Sepsis in Uganda Using a Quantitative Polymerase Chain Reaction-based TaqMan Array Card. Clin. Infect. Dis. 2019, 68, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Schutz, C.; Barr, D.; Andrade, B.B.; Shey, M.; Ward, A.; Janssen, S.; Burton, R.; Wilkinson, K.A.; Sossen, B.; Fukutani, K.F.; et al. Clinical, microbiologic, and immunologic determinants of mortality in hospitalized patients with HIV-associated tuberculosis: A prospective cohort study. PLoS Med. 2019, 16, e1002840. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.M.; Feasey, N.A.; Rylance, J. Aetiology and outcomes of sepsis in adults in sub-Saharan Africa: A systematic review and meta-analysis. Crit. Care 2019, 23, 212. [Google Scholar] [CrossRef] [Green Version]
- Escada, R.O.D.S.; Velasque, L.; Ribeiro, S.R.; Cardoso, S.W.; Marins, L.M.S.; Grinsztejn, E.; Lourenço, M.C.D.S.; Grinsztejn, B.; Veloso, V.G. Mortality in patients with HIV-1 and tuberculosis co-infection in Rio de Janeiro, Brazil—Associated factors and causes of death. BMC Infect. Dis. 2017, 17, 373. [Google Scholar] [CrossRef]
- Jacob, S.T.; Pavlinac, P.B.; Nakiyingi, L.; Banura, P.; Baeten, J.M.; Morgan, K.; Magaret, A.; Manabe, Y.; Reynolds, S.J.; Liles, W.C.; et al. Mycobacterium tuberculosis bacteremia in a cohort of HIV-infected patients hospitalized with severe sepsis in Uganda—High frequency, low clinical and derivation of a clinical prediction score. PLoS ONE 2013, 8, e70305. [Google Scholar] [CrossRef]
- Crump, J.A.; Ramadhani, H.O.; Morrissey, A.B.; Saganda, W.; Mwako, M.S.; Yang, L.Y.; Chow, S.C.; Njau, B.N.; Mushi, G.S.; Maro, V.P.; et al. Bacteremic disseminated tuberculosis in sub-saharan Africa: A prospective cohort study. Clin. Infect. Dis. 2012, 55, 242–250. [Google Scholar] [CrossRef]
- Hazard, R.H.; Kagina, P.; Kitayimbwa, R.; Male, K.; McShane, M.; Mubiru, D.; Welikhe, E.; Moore, C.C.; Abdallah, A. Effect of Empiric Anti–Mycobacterium tuberculosis Therapy on Survival among Human Immunodeficiency Virus–Infected Adults Admitted with Sepsis to a Regional Referral Hospital in Uganda. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2019; p. ofz140. [Google Scholar]
- Nakiyingi, L.; Ssengooba, W.; Nakanjako, D.; Armstrong, D.; Holshouser, M.; Kirenga, B.J.; Shah, M.; Mayanja-Kizza, H.; Joloba, M.L.; Ellner, J.J.; et al. Predictors and outcomes of mycobacteremia among HIV-infected smear- negative presumptive tuberculosis patients in Uganda. BMC Infect. Dis. 2015, 15, 62. [Google Scholar] [CrossRef] [Green Version]
- McDonald, L.C.; Archibald, L.K.; Rheanpumikankit, S.; Tansuphaswadikul, S.; Eampokalap, B.; Nwanyanwu, O.; Kazembe, P.; Dobbie, H.; Reller, L.B.; Jarvis, W.R. Unrecognised Mycobacterium tuberculosis bacteraemia among hospital inpatients in less developed countries. Lancet 1999, 354, 1159–1163. [Google Scholar] [CrossRef]
- Rao, P.; Moore, C.; Mbonde, A.; Nuwagira, E.; Orikiriza, P.; Nyehangane, D.; Al-Shaer, M.; Peloquin, C.; Gratz, J.; Pholwat, S.; et al. Population Pharmacokinetics and Significant under-Dosing of Anti-Tuberculosis Medications in People with HIV and Critical Illness. Antibiotics 2021, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Towzer, T.N.; Rowland, M. Introduction to Pharmacokinetics and Pharmacodynamics: The Quantitative Basis of Drug Therapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Sprung, C.L.; Schein, R.M.H.; Balk, R.A. The new sepsis consensus definitions: The good, the bad and the ugly. Intensive Care Med. 2016, 42, 2024–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paepe, P.; Belpaire, F.M.; Buylaert, W.A. Pharmacokinetic and Pharmacodynamic Considerations When Treating Patients with Sepsis and Septic Shock. Clin. Pharmacokinet. 2002, 41, 1135–1151. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, I.M.J. The haemodynamics of human septic shock. Anaesthesia 2001, 56, 130–144. [Google Scholar] [CrossRef]
- Gumbo, T. Chemotherapy of Tuberculosis, Mycobacterium avium Complex Disease, and Leprosy. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L.L., Chabner, B., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2018; pp. 1067–1086. [Google Scholar]
- Zhang, Y.; Scorpio, A.; Nikaido, H.; Sun, Z. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Bacteriol. 1999, 181, 2044–2049. [Google Scholar] [CrossRef] [Green Version]
- Pasipanodya, J.G.; McIlleron, H.; Burger, A.; Wash, P.A.; Smith, P.; Gumbo, T. Serum Drug Concentrations Predictive of Pulmonary Tuberculosis Outcomes. J. Infect. Dis. 2013, 208, 1464–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chideya, S.; Winston, C.A.; Peloquin, C.A.; Bradford, W.Z.; Hopewell, P.C.; Wells, C.D.; Reingold, A.L.; Kenyon, T.A.; Moeti, T.L.; Tappero, J.W. Isoniazid, Rifampin, Ethambutol, and Pyrazinamide Pharmacokinetics and Treatment Outcomes among a Predominantly HIV-Infected Cohort of Adults with Tuberculosis from Botswana. Clin. Infect. Dis. 2009, 48, 1685–1694. [Google Scholar] [CrossRef]
- Taccone, F.S.; Laterre, P.-F.; Dugernier, T.; Spapen, H.; Delattre, I.; Witebolle, X.; De Backer, D.; Layeux, B.; Wallemacq, P.; Vincent, J.-L.; et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit. Care 2010, 14, R126. [Google Scholar] [CrossRef] [Green Version]
- Kothekar, A.T.; Divatia, J.V.; Myatra, S.; Patil, A.; Krishnamurthy, M.N.; Maheshwarappa, H.M.; Siddiqui, S.; Gurjar, M.; Biswas, S.; Gota, V. Clinical pharmacokinetics of 3-h extended infusion of meropenem in adult patients with severe sepsis and septic shock: Implications for empirical therapy against Gram-negative bacteria. Ann. Intensive Care 2020, 10, 4. [Google Scholar] [CrossRef]
- Marik, P.E. Aminoglycoside Volume of Distribution and Illness Severity in Critically Ill Septic Patients. Anaesth. Intensive Care 1993, 21, 172–173. [Google Scholar] [CrossRef]
- Taccone, F.S.; Laterre, P.F.; Spapen, H.; Dugernier, T.; Delattre, I.; Layeux, B.; De Backer, D.; Wittebole, X.; Wallemacq, P.; Vincent, J.L.; et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit. Care 2010, 14, R53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gumbo, T.; Louie, A.; Deziel, M.R.; Liu, W.; Parsons, L.M.; Salfinger, M.; Drusano, G.L. Concentration-Dependent Mycobacterium tuberculosis Killing and Prevention of Resistance by Rifampin. Antimicrob. Agents Chemother. 2007, 51, 3781–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gumbo, T.; Louie, A.; Liu, W.; Ambrose, P.G.; Bhavnani, S.M.; Brown, D.; Drusano, G.L. Isoniazid’s Bactericidal Activity Ceases because of the Emergence of Resistance, Not Depletion of Mycobacterium tuberculosis in the Log Phase of Growth. J. Infect. Dis. 2007, 195, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Chigutsa, E.; Pasipanodya, J.G.; Visser, M.E.; van Helden, P.D.; Smith, P.J.; Sirgel, F.A.; Gumbo, T.; McIlleron, H. Impact of Nonlinear Interactions of Pharmacokinetics and MICs on Sputum Bacillary Kill Rates as a Marker of Sterilizing Effect in Tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gumbo, T.; Dona, C.S.W.S.; Meek, C.; Leff, R. Pharmacokinetics-Pharmacodynamics of Pyrazinamide in a Novel In Vitro Model of Tuberculosis for Sterilizing Effect: A Paradigm for Faster Assessment of New Antituberculosis Drugs. Antimicrob. Agents Chemother. 2009, 53, 3197–3204. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Meek, C.; Leff, R.; Gumbo, T. Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular Mycobacterium avium. Antimicrob. Agents Chemother. 2010, 54, 1728–1733. [Google Scholar] [CrossRef] [Green Version]
- Weiner, M.; Benator, D.; Burman, W.; Peloquin, C.A.; Khan, A.; Vernon, A.; Jones, B.; Silva-Trigo, C.; Zhao, Z.; Hodge, T.; et al. Association between Acquired Rifamycin Resistance and the Pharmacokinetics of Rifabutin and Isoniazid among Patients with HIV and Tuberculosis. Clin. Infect. Dis. 2005, 40, 1481–1491. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.B.; Belmonte, R.; Crowe, H.M. Drug Malabsorption and Resistant Tuberculosis in HIV-Infected Patients. N. Engl. J. Med. 1995, 332, 336–337. [Google Scholar] [CrossRef]
- Peloquin, C.A.; Nitta, A.T.; Burman, W.J.; Brudney, K.F.; Miranda-Massari, J.R.; McGuinness, M.E.; Berning, S.E.; Gerena, G.T. Low Antituberculosis Drug Concentrations in Patients with AIDS. Ann. Pharmacother. 1996, 30, 919–925. [Google Scholar] [CrossRef]
- Pasipanodya, J.G.; Gumbo, T. A Meta-Analysis of Self-Administered vs. Directly Observed Therapy Effect on Microbiologic Failure, Relapse, and Acquired Drug Resistance in Tuberculosis Patients. Clin. Infect. Dis. 2013, 57, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Volmink, J.; Garner, P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst. Rev. 2006, 2, CD003343. [Google Scholar] [CrossRef] [Green Version]
- Calver, A.D.; Falmer, A.A.; Murray, M.; Strauss, O.J.; Streicher, E.; Hanekom, M.; Liversage, T.; Masibi, M.; Van Helden, P.D.; Warren, R.; et al. Emergence of Increased Resistance and Extensively Drug-Resistant Tuberculosis Despite Treatment Adherence, South Africa. Emerg. Infect. Dis. 2010, 16, 264–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasipanodya, J.G.; Srivastava, S.; Gumbo, T. Meta-Analysis of Clinical Studies Supports the Pharmacokinetic Variability Hypothesis for Acquired Drug Resistance and Failure of Antituberculosis Therapy. Clin. Infect. Dis. 2012, 55, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Pasipanodya, J.G.; Meek, C.; Leff, R.; Gumbo, T. Multidrug-Resistant Tuberculosis Not due to Noncompliance but to between-Patient Pharmacokinetic Variability. J. Infect. Dis. 2011, 204, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
Drug | Dose (mg/kg) | Cmax a (mg/L) | Target Cmax (mg/L) | % Attained Cmax | AUC0–24 b (mg ×·h/L) | Target AUC0–24 | % Attained target AUC0–24 |
---|---|---|---|---|---|---|---|
Median (IQR) c | Median (IQR) | Median (IQR) | |||||
Rifampin | 10.1 (9–10.7) | 3.8 (2.3–5.3) | ≥8.0 | 8.2 | 21.7 (13.4–31.2) | ≥35.4 | 16.3 |
Isoniazid | 5.0 (4.5–5.4) | 3.6 (2.3–4.6) | ≥3.0 | 63.3 | 22.5 (14.3–34) | ≥52.0 | 4.1 |
Pyrazinamide | 25.4 (23–28) | 34 (28.3–44) | ≥20 | 87.8 | 351 (237.1–477.9) | ≥363 | 38.8 |
Ethambutol | 18.4 (16.5–19.6) | 1.8 (1.3–2.2) | ≥2.0 | 30.6 | 14.3 (10.6–26.6) | - | - |
Drug | ka (h−1) | Bioavailability (F) | Protein Binding (%) | Clearance (CL/F) (L/h) | Vd (L) |
---|---|---|---|---|---|
Rifampin a | 1.15 | 0.68 | 60–90 | 12.6 b | 58.2 |
Isoniazid | 2.3 | ≈1.0 | ≈0 | 13.32 c | 40.2 |
Pyrazinamide | 3.56 | ≈0.95 | 10 | 3.96 | 34.2 |
Ethambutol | 0.7 | 0.77 (±8) | 6–30 | 31 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odongo, C.O.; Nakiyingi, L.; Nkeramihigo, C.G.; Seifu, D.; Bisaso, K.R. Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes. Antibiotics 2022, 11, 895. https://doi.org/10.3390/antibiotics11070895
Odongo CO, Nakiyingi L, Nkeramihigo CG, Seifu D, Bisaso KR. Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes. Antibiotics. 2022; 11(7):895. https://doi.org/10.3390/antibiotics11070895
Chicago/Turabian StyleOdongo, Charles Okot, Lydia Nakiyingi, Clovis Gatete Nkeramihigo, Daniel Seifu, and Kuteesa Ronald Bisaso. 2022. "Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes" Antibiotics 11, no. 7: 895. https://doi.org/10.3390/antibiotics11070895
APA StyleOdongo, C. O., Nakiyingi, L., Nkeramihigo, C. G., Seifu, D., & Bisaso, K. R. (2022). Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes. Antibiotics, 11(7), 895. https://doi.org/10.3390/antibiotics11070895