Co-Administration of Remdesivir and Azithromycin May Protect against Intensive Care Unit Admission in COVID-19 Pneumonia Requiring Hospitalization: A Real-Life Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting, Design, and Inclusion Criteria
2.2. Procedures and Data Collection
2.3. Exposure and Outcome Variables
- -
- duration of COVID-19 related symptoms not exceeding 10 days.
- -
- presence of lung parenchyma abnormalities on chest imaging.
- -
- no need of oxygen therapy with high-flow nasal cannulae (HFNC), non-invasive or invasive mechanical ventilation, or extracorporeal membrane oxygenation (ECMO).
- -
- serum aspartate and alanine aminotransferase levels not exceeding 5 times the upper limit of reference.
- -
- glomerular filtration rate (GFR) not inferior to 30 mL/min.
2.4. Statistical Analyses
3. Results
3.1. General Characteristics of the Population
3.2. Effects of Treatments on Mortality
3.3. Effects of Treatments on Other Clinical Outcomes
3.4. Safety Issues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, A.; Rochwerg, B.; Lamontagne, F.; Siemieniuc, R.C.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; MacDonald, H.; Zeng, L.; et al. A living WHO guideline on drugs for COVID-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef] [PubMed]
- Bartoletti, M.; Azap, O.; Barac, A.; Bussini, L.; Ergonul, O.; Krause, R.; Paño-Pardo, J.R.; Power, N.R.; Sibani, M.; Szabo, B.G.; et al. ESCMID COVID-19 living guidelines: Drug treatment and clinical management. Clin. Microbiol. Infect. 2022, 28, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.; Griesel, M.; Mikolajewska, A.; Mueller, A.; Nothacker, M.; Kley, K.; Metzendorf, M.I.; Fischer, A.L.; Kopp, M.; Stegemann, M.; et al. Systemic corticosteroids for the treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 8, CD014963. [Google Scholar] [PubMed]
- Ansems, K.; Grundeis, F.; Dahms, K.; Mikolajevska, A.; Thieme, V.; Piechotta, V.; Metzendorf, M.I.; Stegemann, M.; Benstroem, C.; Fichtner, F. Remdesivir for the treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 8, CD014962. [Google Scholar] [PubMed]
- WHO. Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with COVID-19: Final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet 2022, 399, 1941–1953. [Google Scholar] [CrossRef]
- Kaka, A.S.; MacDonald, R.; Linskens, E.J.; Langsetmo, L.; Vela, K.; Duan-Porter, W.; Wilt, T.J. Major Update 2: Remdesivir for Adults With COVID-19: A Living Systematic Review and Meta-analysis for the American College of Physicians Practice Points. Ann. Intern. Med. 2022, 175, 701–709. [Google Scholar] [CrossRef]
- Russo, A.; Binetti, E.; Borrazzo, C.; Gentilini Cacciola, E.; Battistini, L.; Ceccarelli, G.; Mastroianni, C.M.; d’Ettorre, G. Efficacy of Remdesivir-Containing Therapy in Hospitalized COVID-19 Patients: A Prospective Clinical Experience. J. Clin. Med. 2021, 10, 3784. [Google Scholar] [CrossRef]
- Tejada, D.; Juanbeltz, R.; Rivero, M.; San Miguel, R.; Capdevila, F.; Beloqui, J.J.; Sarobe, M. Clinical course of patients with severe COVID-19 pneumonia treated with remdesivir: A real-life study. PLoS ONE 2022, 17, e0267283. [Google Scholar] [CrossRef]
- Cogliati Dezza, F.; Oliva, A.; Mauro, V.; Romani, F.E.; Aronica, R.; Savelloni, G.; Casali, E.; Valeri, S.; Cancelli, F.; Mastroianni, C.M. Real-life use of remdesivir-containing regimens in COVID-19: A retrospective case-control study. Infez. Med. 2022, 30, 211–222. [Google Scholar]
- Goldberg, E.; Zvi, H.B.; Sheena, L.; Sofer, S.; Krause, I.; Sklan, E.H.; Shlomai, A. A real-life setting evaluation of the effect of remdesivir on viral load in COVID-19 patients admitted to a large tertiary centre in Israel. Clin. Microbiol. Infect. 2021, 27, 917.e1–917.e4. [Google Scholar] [CrossRef]
- Soriano, A.; Montejano, R.; Sanz-Moreno, J.; Figueira, J.C.; Grau, S.; Güerri-Fernández, R.; Castro-Gómez, A.; Pérez-Román, I.; Hidalgo-Vega, A.; González-Domínguez, A. Impact of Remdesivir on the Treatment of COVID-19 During the First Wave in Spain. Adv. Ther. 2021, 38, 4057–4069. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C.; Meira, F.; Cózar-Llistó, A.; Dueñas, G.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Cardozo, C.; Hernandez-Meneses, M.; Alonso-Navarro, R.; et al. COVID19-researcher group. Real-life use of remdesivir in hospitalized patients with COVID-19. Rev. Esp. Quimioter. 2022, 34, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Simioli, F.; Nicoletta, C.; Valentino, M.R.; Martino, M.; Annunziata, A.; Carannante, N.; Di Micco, P.; Fiorentino, G. Remdesivir in Severe COVID-19 and Non-Invasive Ventilation: A Real-Life Experience. Healthcare 2021, 9, 1108. [Google Scholar] [CrossRef] [PubMed]
- Poliseno, M.; Gallo, C.; Cibelli, D.C.; Minafra, G.A.; Bottalico, I.F.; Bruno, S.R.; D’Errico, M.L.; Montemurro, L.; Rizzo, M.; Barbera, L.; et al. Efficacy and Safety of Remdesivir over Two Waves of the SARS-CoV-2 Pandemic. Antibiotics 2021, 10, 1477. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Suardi, L.R.; Tiseo, G.; Barbieri, C.; Giusti, L.; Galfo, V.; Forniti, A.; Caroselli, C.; Della Sala, L.; Tempini, S.; et al. Early Use of Remdesivir and Risk of Disease Progression in Hospitalized Patients With Mild to Moderate COVID-19. Clin. Ther. 2022, 44, 364–373. [Google Scholar] [CrossRef]
- Oliver, M.E.; Hinks, T.S.C. Azithromycin in viral infections. Rev. Med. Virol. 2021, 31, e2163. [Google Scholar] [CrossRef]
- Ayerbe, L.; Risco-Risco, C.; Forgnone, I.; Pérez-Piñar, M.; Ayis, S. Azithromycin in patients with COVID-19: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2022, 77, 303–309. [Google Scholar] [CrossRef]
- Kamel, A.M.; Monem, M.S.A.; Sharaf, N.A.; Magdy, N.; Farid, S.F. Efficacy and safety of azithromycin in COVID-19 patients: A systematic review and meta-analysis of randomized clinical trials. Rev. Med. Virol. 2022, 32, e2258. [Google Scholar] [CrossRef]
- Vaughn, V.M.; Gandhi, T.N.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Ratz, D.; McLaughlin, E.; Chopra, V.; Flanders, S.A. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19): A Multi-hospital Cohort Study. Clin. Infect. Dis. 2021, 72, e533–e541. [Google Scholar] [CrossRef]
- Lai, A.; Bergna, A.; Menzo, S.; Zehender, G.; Caucci, S.; Ghisetti, V.; Rizzo, F.; Maggi, F.; Cerutti, F.; Giurato, G.; et al. Collaborative Group SCIRE SARS-CoV-2 Italian Research Enterprise. Circulating SARS-CoV-2 variants in Italy, October 2020–March 2021. Virol. J. 2021, 18, 168. [Google Scholar] [CrossRef]
- Meschi, T.; Rossi, S.; Volpi, A.; Ferrari, C.; Sverzellati, N.; Brianti, E.; Fabi, M.; Nouvenne, A.; Ticinesi, A. Reorganization of a large academic hospital to face COVID-19 outbreak: The model of Parma, Emilia-Romagna region, Italy. Eur. J. Clin. Investig. 2020, 50, e13250. [Google Scholar] [CrossRef]
- Ticinesi, A.; Nouvenne, A.; Cerundolo, N.; Parise, A.; Prati, B.; Guerra, A.; Meschi, T. Trends of COVID-19 Admissions in an Italian Hub during the Pandemic Peak: Large Retrospective Study Focused on Older Subjects. J. Clin. Med. 2021, 10, 1115. [Google Scholar] [CrossRef] [PubMed]
- Colombi, D.; Villani, G.D.; Maffi, G.; Risoli, C.; Bodini, F.C.; Petrini, M.; Morelli, N.; Anselmi, P.; Milanese, G.; Silva, M.; et al. Qualitative and quantitative chest CT parameters as predictors of specific mortality in COVID-19 patients. Eur. Radiol. 2020, 27, 701–710. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Living Guidance for Clinical Management of COVID-19. Version 23 November 2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf (accessed on 7 July 2022).
- De Terwangne, C.; Laouni, J.; Jouffe, L.; Lechien, J.R.; Bouillon, V.; Place, S.; Capulzini, L.; Machayekhi, S.; Ceccarelli, A.; Saussez, S.; et al. EPIBASE TEAM. Predictive Accuracy of COVID-19 World Health Organization (WHO) Severity Classification and Comparison with a Bayesian-Method-Based Severity Score (EPI-SCORE). Pathogens 2020, 9, 880. [Google Scholar] [CrossRef]
- AIFA Agenzia Italiana del Farmaco. Trattamenti Utilizzabili nei Pazienti COVID-19 Nel Setting Ospedaliero. Versione 9/12/2020. Available online: www.aifa.gov.it (accessed on 16 June 2022). (In Italian)
- AIFA Agenzia Italiana del Farmaco. Remdesivir Nella Terapia dei Pazienti Adulti con COVID-19. Versione 24/11/2020. Available online: www.aifa.gov.it (accessed on 16 June 2022). (In Italian)
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. ACTT-1 Study Group Members. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Paranjape, N.; Husain, M.; Priestley, J.; Koonjah, Y.; Watts, C.; Havlik, J. Early Use of Remdesivir in Patients Hospitalized with COVID-19 Improves Clinical Outcomes: A Retrospective Observational Study. Infect. Dis. Clin. Pract. 2021, 29, e282–e286. [Google Scholar] [CrossRef] [PubMed]
- Alsayed, A.A.H.; Sharif-Askari, F.S.; Sharif-Askari, N.S.; Hussain, A.A.S.; Hamid, Q.; Halwani, R. Early administration of remdesivir to COVID-19 patients associates with higher recovery rate and lower need for ICU admission: A retrospective cohort study. PLoS ONE 2021, 16, e0258643. [Google Scholar]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. GS-US-540-9012 (PINETREE) Investigators. Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Du, X.; Zuo, X.; Meng, F.; Han, C.; Ouyang, W.; Han, Y.; Gu, Y.; Zhao, X.; Xu, F.; Qin, F.X. Direct inhibitory effect on viral entry of influenza A and SARS-CoV-2 viruses by azithromycin. Cell. Prolif. 2021, 54, e12953. [Google Scholar] [CrossRef]
- Fiolet, T.; Guihur, A.; Rebeaud, M.E.; Mulot, M.; Peiffer-Smadja, M.; Mahamat-Saleh, Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 19–27. [Google Scholar] [CrossRef]
- Prediletto, I.; D’Antoni, L.; Carbonara, P.; Daniele, F.; Dongilli, R.; Flore, R.; Pacilli, A.M.G.; Pisani, L.; Tomsa, C.; Vega, M.L.; et al. Standardizing PaO2 for PaCO2 in P/F ratio predicts in-hospital mortality in acute respiratory failure due to COVID-19: A pilot prospective study. Eur. J. Intern. Med. 2021, 92, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Geriatric Medicine Research Collaborative; COVID Collaborative; Welch, C. Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: Results of an international multi-centre study. Age Ageing 2021, 50, 617–630. [Google Scholar] [PubMed]
- Dumitrascu, F.; Branje, K.E.; Hladkowicz, E.S.; Lalu, M.; McIsaac, D.I. Association of frailty with outcomes in individuals with COVID-19: A living review and meta-analysis. J. Am. Geriatr. Soc. 2021, 69, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Nouvenne, A.; Prati, B.; Guida, L.; Parise, A.; Cerundolo, N.; Bonaguri, C.; Aloe, R.; Guerra, A.; Meschi, T. The Clinical Significance of Procalcitonin Elevation in Patients over 75 Years Old Admitted for COVID-19 Pneumonia. Mediat. Inflamm. 2021, 2021, 5593806. [Google Scholar] [CrossRef]
- Ticinesi, A.; Nouvenne, A.; Parise, A.; Prati, B.; Meschi, T. Defining SARS-CoV-2 breakthrough infection needing hospitalization in mass vaccination era: From disease-centered to patient-centered care. Acta Biomed. 2022, 93, e2022182. [Google Scholar]
No Remdesivir (N = 221) | Treated with Remdesivir (N = 173) | p | |
---|---|---|---|
Demography and personal history | |||
Age, years | 71 (61–80) | 60 (52–71) | <0.001 |
Female sex, % | 42 | 39 | 0.641 |
Chronic comorbidities, number | 3 (1–4) | 1 (0–3) | <0.001 |
Chronic medications, number | 2 (1–5) | 1 (0–3) | <0.001 |
Hypertension, % | 59 | 45 | 0.005 |
Ischemic heart disease, % | 15 | 5 | 0.001 |
Diabetes, % | 21 | 13 | 0.040 |
Obesity, % | 13 | 17 | 0.194 |
Dyslipidemia, % | 21 | 17 | 0.309 |
Atrial Fibrillation, % | 16 | 6 | 0.001 |
Chest CT presentation | |||
Ground glass abnormalities on CT, % | 90 | 99 | <0.001 |
Consolidations on CT, % | 69 | 71 | 0.782 |
Visual score of pneumonia extension, % | 25 (15–45) | 20 (15–35) | 0.074 |
Clinical presentation upon admission | |||
PaO2/FiO2, mmHg | 276 (202–328) | 312 (264–352) | <0.001 |
Duration of symptoms, days | 6 (2–10) | 7 (4–9) | 0.150 |
Fever, % | 76 | 81 | 0.286 |
Cough, % | 44 | 53 | 0.082 |
Dyspnea,% | 58 | 43 | 0.003 |
Diarrhoea, % | 17 | 16 | 0.790 |
WHO COVID-19 Scale mild, % | 10 | 1 | <0.001 |
WHO COVID-19 Scale moderate, % | 24 | 32 | 0.082 |
WHO COVID-19 Scale severe, % | 27 | 42 | 0.002 |
WHO COVID-19 Scale critical, % | 38 | 24 | 0.003 |
Blood tests | |||
Hemoglobin, g/dL | 13.8 (12.2–15.0) | 14.0 (12.9–15.0) | 0.055 |
Platelet count, 1000/mm3 | 195 (146–266) | 187 (149–223) | 0.125 |
White Blood Cell count, n/mm3 | 6980 (5113–8885) | 5500 (4060–7850) | <0.001 |
Neutrophil count, n/mm3 | 5403 (3610–7392) | 4400 (2781–6243) | <0.001 |
Creatinine, mg/dL | 0.9 (0.7–1.2) | 0.8 (0.7–1.0) | 0.004 |
C-Reactive Protein, mg/L | 62 (29–107) | 46 (23–81) | 0.005 |
Procalcitonin, ng/mL | 0.11 (0.06–0.39) | 0.07 (0.04–0.14) | <0.001 |
Interleukin-6, pg/mL | 86 (29–182) | 79 (34–145) | 0.908 |
D-dimer, ng/mL | 940 (532–1635) | 608 (420–906) | <0.001 |
Other treatments administered | |||
Enoxaparin, % | 95 | 97 | 0.401 |
Corticosteroids,% | 90 | 99 | <0.001 |
Antibiotics, % | 88 | 87 | 0.750 |
Azithromycin, % | 29 | 47 | <0.001 |
No Remdesivir N = 221 (1) | Treated with Remdesivir, No Azithromycin N = 92 (2) | Treated with Remdesivir and Azithromycin N = 81 (3) | p | ||
---|---|---|---|---|---|
Demography and personal history | |||||
Age, years | 71 (61–80) | 59 (52–70) | 60 (51–72) | <0.001 | (1) vs. (2) vs. (3) |
Female sex, % | 42 | 36 | 43 | 0.555 | |
Chronic comorbidities, number | 3 (1–4) | 1 (1–3) | 1 (0–3) | <0.001 | (1) vs. (2) vs. (3) |
Chronic medications, number | 2 (1–5) | 1 (0–3) | 1 (0–2) | <0.001 | (1) vs. (2) vs. (3) |
Hypertension, % | 59 | 49 | 41 | 0.012 | (1) vs. (3) |
Ischemic heart disease, % | 15 | 7 | 4 | 0.009 | (1) vs. (2) vs. (3) |
Diabetes, % | 21 | 15 | 11 | 0.100 | |
Obesity, % | 13 | 20 | 15 | 0.297 | |
Dyslipidemia, % | 21 | 15 | 19 | 0.515 | |
Atrial fibrillation, % | 16 | 8 | 4 | 0.008 | (1) vs. (2) vs. (3) |
Chest CT presentation | |||||
Ground glass abnormalities on CT, % | 90 | 99 | 99 | 0.011 | (1) vs. (2) vs. (3) |
Consolidations on CT, % | 69 | 70 | 72 | 0.922 | |
Visual score of pneumonia extension, % | 25 (15–45) | 20 (15–35) | 20 (15–30) | 0.153 | |
Clinical presentation upon admission | |||||
PaO2/FiO2, mmHg | 276 (202–328) | 319 (273–354) | 305 (262–348) | <0.001 | (1) vs. (2) vs. (3) |
Duration of symptoms, days | 6 (2–10) | 7 (4–9) | 6 (4–9) | 0.352 | |
Fever, % | 76 | 80 | 81 | 0.559 | |
Cough, % | 44 | 55 | 51 | 0.181 | |
Dyspnea,% | 58 | 52 | 32 | <0.001 | (3) vs. (1) vs. (2) |
Anosmia, % | 7 | 8 | 14 | 0.171 | |
Diarrhoea, % | 17 | 18 | 14 | 0.668 | |
WHO COVID-19 Scale mild, % | 10 | 1 | 1 | 0.011 | (1) vs. (2) vs. (3) |
WHO COVID-19 Scale moderate, % | 24 | 30 | 35 | 0.185 | |
WHO COVID-19 Scale severe, % | 27 | 46 | 38 | 0.005 | (2) vs. (1) |
WHO COVID-19 Scale critical, % | 38 | 23 | 26 | 0.011 | (1) vs. (2) vs. (3) |
Blood tests | |||||
Hemoglobin, g/dL | 13.8 (12.2–15.0) | 14.0 (12.9–14.9) | 14.0 (12.9–15.0) | 0.155 | |
Platelet count, 1000/mm3 | 195 (146–266) | 189 (152–224) | 185 (148–222) | 0.302 | |
White Blood Cell count, n/mm3 | 6980 (5113–8885) | 5930 (4380–8620) | 5415 (3758–7318) | <0.001 | (1) vs. (2) vs. (3) |
Neutrophil count, n/mm3 | 5403 (3610–7392) | 4574 (3223–6368) | 3915 (2526–5822) | <0.001 | (1) vs. (2) vs. (3) |
Creatinine, mg/dL | 0.9 (0.7–1.2) | 0.9 (0.7–1.0) | 0.8 (0.7–1.0) | 0.009 | (1) vs. (3) |
C-reactive protein, mg/L | 62 (29–107) | 47 (23–81) | 45 (24–86) | 0.018 | |
Procalcitonin, ng/mL | 0.11 (0.06–0.39) | 0.06 (0.04–0.13) | 0.08 (0.05–0.14) | <0.001 | (1) vs. (2) vs. (3) |
Interleukin-6, pg/mL | 86 (29–182) | 81 (32–155) | 73 (41–140) | 0.931 | |
D-dimer, ng/mL | 940 (532–1635) | 577 (381–909) | 628 (441–895) | <0.001 | (1) vs. (2) vs. (3) |
Other treatments administered | |||||
Enoxaparin, % | 95 | 98 | 96 | 0.623 | |
Corticosteroids,% | 90 | 99 | 99 | 0.011 | (1) vs. (2) vs. (3) |
Antibiotics, % | 88 | 75 | 100 | <0.001 | (1) vs. (2) vs. (3); (2) vs. (3) |
No Remdesivir (N = 221) | Treated with Remdesivir (N = 173) | p (Unadjusted) | p Adjusted for Age, Sex | p Adjusted (Model 1) | p Adjusted (Model 2) | p Adjusted (Model 3) | p Adjusted (Model 4) | |
---|---|---|---|---|---|---|---|---|
Hospital death, % | 29 | 9 | <0.001 | 0.005 | 0.016 | 0.054 | 0.409 | 0.555 |
NIV, % | 34 | 18 | <0.001 | <0.001 | 0.001 | 0.054 | 0.095 | 0.290 |
ICU admission, % | 17 | 5 | <0.001 | <0.001 | <0.001 | 0.004 | 0.011 | 0.026 |
Invasive ventilation, % | 7 | 2 | 0.027 | 0.019 | 0.022 | 0.071 | 0.176 | 0.191 |
Length of stay, days | 14 (10–24) | 12 (8–19) | 0.027 | 0.197 | 0.336 | 0.795 | 0.294 | 0.417 |
No Remdesivir (N = 221) | Remdesivir Plus Azithromycin (N = 81) | p (Unadjusted) | p Adjusted for Age, Sex | p Adjusted (Model 1) | p Adjusted (Model 2) | p Adjusted (Model 3) | p Adjusted (Model 4) | |
---|---|---|---|---|---|---|---|---|
Hospital death, % | 29 | 9 | <0.001 | 0.026 | 0.070 | 0.223 | 0.232 | 0.445 |
NIV, % | 34 | 15 | 0.001 | 0.001 | 0.002 | 0.031 | 0.028 | 0.117 |
ICU admission, % | 17 | 1 | <0.001 | 0.003 | 0.003 | 0.009 | 0.006 | 0.009 |
Length of stay, days | 14 (10–24) | 12 (9–19) | 0.043 | 0.606 | 0.645 | 0.869 | 0.902 | 0.948 |
Odds Ratio | 95% Confidence Interval | p | |
---|---|---|---|
Age, years | 0.961 | 0.933–0.989 | 0.007 |
Female sex (vs. male) | 0.426 | 0.182–0.977 | 0.049 |
PaO2/FiO2, mmHg | 0.982 | 0.977–0.987 | <0.001 |
Treatments | 0.034 | ||
Association between remdesivir and azithromycin (vs. no remdesivir) | 0.060 | 0.007–0.508 | 0.010 |
Association between remdesivir and azithromycin (vs. remdesivir alone) | 0.081 | 0.008–0.789 | 0.031 |
Remdesivir (vs. no remdesivir) | 0.743 | 0.273–2.023 | 0.560 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ticinesi, A.; Tuttolomondo, D.; Nouvenne, A.; Parise, A.; Cerundolo, N.; Prati, B.; Zanichelli, I.; Guerra, A.; Gaibazzi, N.; Meschi, T. Co-Administration of Remdesivir and Azithromycin May Protect against Intensive Care Unit Admission in COVID-19 Pneumonia Requiring Hospitalization: A Real-Life Observational Study. Antibiotics 2022, 11, 941. https://doi.org/10.3390/antibiotics11070941
Ticinesi A, Tuttolomondo D, Nouvenne A, Parise A, Cerundolo N, Prati B, Zanichelli I, Guerra A, Gaibazzi N, Meschi T. Co-Administration of Remdesivir and Azithromycin May Protect against Intensive Care Unit Admission in COVID-19 Pneumonia Requiring Hospitalization: A Real-Life Observational Study. Antibiotics. 2022; 11(7):941. https://doi.org/10.3390/antibiotics11070941
Chicago/Turabian StyleTicinesi, Andrea, Domenico Tuttolomondo, Antonio Nouvenne, Alberto Parise, Nicoletta Cerundolo, Beatrice Prati, Ilaria Zanichelli, Angela Guerra, Nicola Gaibazzi, and Tiziana Meschi. 2022. "Co-Administration of Remdesivir and Azithromycin May Protect against Intensive Care Unit Admission in COVID-19 Pneumonia Requiring Hospitalization: A Real-Life Observational Study" Antibiotics 11, no. 7: 941. https://doi.org/10.3390/antibiotics11070941
APA StyleTicinesi, A., Tuttolomondo, D., Nouvenne, A., Parise, A., Cerundolo, N., Prati, B., Zanichelli, I., Guerra, A., Gaibazzi, N., & Meschi, T. (2022). Co-Administration of Remdesivir and Azithromycin May Protect against Intensive Care Unit Admission in COVID-19 Pneumonia Requiring Hospitalization: A Real-Life Observational Study. Antibiotics, 11(7), 941. https://doi.org/10.3390/antibiotics11070941