Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Microbiological Analysis
2.3. Antimicrobial Resistance Phenotype
2.4. Screening for Resistance and Virulence Genes
2.5. Whole Genome Sequencing (WGS)
3. Results
3.1. Bacterial Isolates
3.2. Antimicrobial Susceptibility
3.3. Screening for Resistance and Virulence Genes
3.4. Analysis of WGS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Sabouni, F.; Mahmoudi, S.; Bahador, A.; Pourakbari, B.; Sadeghi, R.H.; Ashtiani, M.T.H.; Nikmanesh, B.; Mamishi, S. Virulence Factors of Staphylococcus aureus Isolates in an Iranian Referral Children’s Hospital. Osong Public Health Res. Perspect. 2014, 5, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Djoudi, F.; Benallaoua, S.; Aleo, A.; Touati, A.; Challal, M.; Bonura, C.; Mammina, C. Descriptive Epidemiology of Nasal Carriage of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus Among Patients Admitted to Two Healthcare Facilities in Algeria. Microb. Drug Resist. 2015, 21, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Kates, A.E.; Thapaliya, D.; Smith, T.C.; Chorazy, M.L. Prevalence and molecular characterization of Staphylococcus aureus from human stool samples. Antimicrob. Resist. Infect. Control 2018, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botelho-Nevers, E.; Gagnaire, J.; Verhoeven, P.O.; Cazorla, C.; Grattard, F.; Pozzetto, B.; Berthelot, P.; Lucht, F. Decolonization of Staphylococcus aureus carriage. Med. Mal. Infect. 2017, 47, 305–310. [Google Scholar] [CrossRef]
- Loftus, R.W.; Dexter, F.; Robinson, A.D.M. High-risk Staphylococcus aureus transmission in the operating room: A call for widespread improvements in perioperative hand hygiene and patient decolonization practices. Am. J. Infect. Control 2018, 46, 1134–1141. [Google Scholar] [CrossRef]
- Clarridge, J.E.; Harrington, A.T.; Roberts, M.C.; Soge, O.O.; Maquelin, K. Impact of Strain Typing Methods on Assessment of Relationship between Paired Nares and Wound Isolates of Methicillin-Resistant Staphylococcus aureus. J. Clin. Microbiol. 2013, 51, 224–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, S.A.; Gray, T.J.; Gottlieb, T. Healthcare-acquired infections: Prevention strategies. Intern. Med. J. 2017, 47, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Eells, S.J.; David, M.Z.; Taylor, A.; Ortiz, N.; Kumar, N.; Sieth, J.; Boyle-Vavra, S.; Daum, R.S.; Miller, L.G. Persistent environmental contamination with USA300 methicillin-resistant Staphylococcus aureus and other pathogenic strain types in households with S. aureus skin infections. Infect. Control Hosp. Epidemiol. 2014, 35, 1373–1382. [Google Scholar] [CrossRef]
- Kateete, D.; Asiimwe, B.B.; Mayanja, R.; Mujuni, B.; Bwanga, F.; Najjuka, C.F.; Källander, K.; Rutebemberwa, E. Nasopharyngeal Carriage, Spa Types and Drug Susceptibility Profiles of Staphylococcus aureus from Healthy Children under 5 Years in Eastern Uganda. BMC Infect Dis. 2019, 19, 1023. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.C.M.; Isaacs, D.; Berkley, J.A. Antimicrobial resistance among children in sub-Saharan Africa. Lancet Infect. Dis. 2018, 18, e33–e44. [Google Scholar] [CrossRef] [Green Version]
- Thapaliya, D.; Taha, M.; Dalman, M.R.; Kadariya, J.; Smith, T.C. Environmental contamination with Staphylococcus aureus at a large, Midwestern university campus. Sci. Total Environ. 2017, 599–600, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Agabou, A.; Ouchenane, Z.; Ngba Essebe, C.; Khemissi, S.; Chehboub, M.T.E.; Chehboub, I.B.; Sotto, A.; Dunyach-Remy, C.; Lavigne, J.-P. Emergence of Nasal Carriage of ST80 and ST152 PVL+ Staphylococcus aureus Isolates from Livestock in Algeria. Toxins 2017, 9, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seng, P.; Rolain, J.-M.; Fournier, P.E.; La Scola, B.; Drancourt, M.; Raoult, D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010, 5, 1733–1754. [Google Scholar] [CrossRef]
- Khan, A.A.; Farooq, J.; Abid, M.; Zahra, R. Assessment of inducible clindamycin resistance and Hyper Variable Region (HVR) of mecA gene in clinical staphylococci. Pak. J. Med. Sci. 2020, 36, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Japoni, A.; Jamalidoust, M.; Farshad, S.; Ziyaeyan, M.; Alborzi, A.; Japoni, S.; Rafaatpour, N. Characterization of SCCmec types and antibacterial susceptibility patterns of methicillin-resistant Staphylococcus aureus in Southern Iran. Jpn. J. Infect. Dis. 2011, 64, 28–33. [Google Scholar] [CrossRef] [PubMed]
- USA300 and USA500 Clonal Lineages of Staphylococcus aureus Do Not Produce a Capsular Polysaccharide Due to Conserved Mutations in the cap5 Locus. Available online: https://journals.asm.org/doi/full/10.1128/mBio.02585-14 (accessed on 26 January 2022).
- Howden, B.P.; Seemann, T.; Harrison, P.F.; McEvoy, C.R.; Stanton, J.-A.L.; Rand, C.J.; Mason, C.W.; Jensen, S.O.; Firth, N.; Davies, J.K.; et al. Complete Genome Sequence of Staphylococcus aureus Strain JKD6008, an ST239 Clone of Methicillin-Resistant Staphylococcus aureus with Intermediate-Level Vancomycin Resistance. J. Bacteriol. 2010, 192, 5848–5849. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, H.; Esfahani, B.N.; Mobasherizadeh, S.; Jazi, A.S.; Halaji, M.; Sadeghi, P.; Emaneini, M.; Havaei, S.A. Phenotypic and genotypic characterization of macrolide resistance among Staphylococcus aureus isolates in Isfahan, Iran. Iran. J. Microbiol. 2017, 9, 264–270. [Google Scholar] [PubMed]
- Khodabandeh, M.; Mohammadi, M.; Abdolsalehi, M.R.; Alvandimanesh, A.; Gholami, M.; Bibalan, M.H.; Pournajaf, A.; Kafshgari, R.; Rajabnia, R. Analysis of Resistance to Macrolide–Lincosamide–Streptogramin B Among mecA-Positive Staphylococcus Aureus Isolates. Osong Public Health Res. Perspect. 2019, 10, 25–31. [Google Scholar] [CrossRef]
- Qu, Y.; Zhao, H.; Nobrega, D.B.; Cobo, E.R.; Han, B.; Zhao, Z.; Li, S.; Li, M.; Barkema, H.W.; Gao, J. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. J. Dairy Sci. 2019, 102, 1571–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babraham Bioinformatics—FastQC A Quality Control tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 29 May 2022).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. ABRicate: Mass Screening of Contigs for Antimicrobial and Virulence Genes. Github. Available online: https://github.com/tseemann/abricate (accessed on 12 July 2022).
- Classification of Staphylococcal Cassette Chromosome mec (SCCmec): Guidelines for Reporting Novel SCCmec Elements. Antimicrob. Agents Chemother. 2009, 53, 4961–4967. [CrossRef] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Bartels, M.D.; Petersen, A.; Worning, P.; Nielsen, J.B.; Larner-Svensson, H.; Johansen, H.K.; Andersen, L.P.; Jarløv, J.O.; Boye, K.; Larsen, A.R.; et al. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2014, 52, 4305–4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouidri, M.A. Screening of nasal carriage of methicillin-resistant Staphylococcus aureus during admission of patients to Frantz Fanon Hospital, Blida, Algeria. New Microbes New Infect. 2018, 23, 52–60. [Google Scholar] [CrossRef]
- Eibach, D.; Nagel, M.; Hogan, B.; Azuure, C.; Krumkamp, R.; Dekker, D.; Gajdiss, M.; Brunke, M.; Sarpong, N.; Owusu-Dabo, E.; et al. Nasal Carriage of Staphylococcus aureus among Children in the Ashanti Region of Ghana. PLoS ONE 2017, 12, e0170320. [Google Scholar] [CrossRef]
- Munckhof, W.J.; Nimmo, G.R.; Schooneveldt, J.M.; Schlebusch, S.; Stephens, A.J.; Williams, G.; Huygens, F.; Giffard, P. Nasal carriage of Staphylococcus aureus, including community-associated methicillin-resistant strains, in Queensland adults. Clin. Microbiol. Infect. 2009, 15, 149–155. [Google Scholar] [CrossRef]
- Tashakori, M.; Mohseni Moghadam, F.; Ziasheikholeslami, N.; Jafarpour, P.; Behsoun, M.; Hadavi, M.; Gomreei, M. Staphylococcus aureus nasal carriage and patterns of antibiotic resistance in bacterial isolates from patients and staff in a dialysis center of southeast Iran. Iran. J. Microbiol. 2014, 6, 79–83. [Google Scholar]
- De Boeck, H.; Vandendriessche, S.; Hallin, M.; Batoko, B.; Alworonga, J.-P.; Mapendo, B.; Van Geet, C.; Dauly, N.; Denis, O.; Jacobs, J. Staphylococcus aureus nasal carriage among healthcare workers in Kisangani, the Democratic Republic of the Congo. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1567–1572. [Google Scholar] [CrossRef]
- Price, J.R.; Cole, K.; Bexley, A.; Kostiou, V.; Eyre, D.W.; Golubchik, T.; Wilson, D.J.; Crook, D.W.; Walker, A.S.; Peto, T.E.A.; et al. Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: A longitudinal cohort study based on whole-genome sequencing. Lancet Infect. Dis. 2017, 17, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Cesur, S.; Çokça, F. Nasal Carriage of Methicillin-Resistant Staphylococcus aureus among Hospital Staff and Outpatients. Infect. Control Hosp. Epidemiol. 2004, 25, 169–171. [Google Scholar] [CrossRef]
- Saadi, S.; Allem, R.; Sebaihia, M.; Merouane, A.; Bakkali, M. Bacterial contamination of neglected hospital surfaces and equipment in an Algerian hospital: An important source of potential infection. Int. J. Environ. Health Res. 2022, 32, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Johani, K.; Gosbell, I.B.; Jacombs, A.S.W.; Almatroudi, A.; Whiteley, G.S.; Deva, A.K.; Jensen, S.; Vickery, K. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: Combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J. Hosp. Infect. 2015, 91, 35–44. [Google Scholar] [CrossRef]
- Veloso, J.O.; Lamaro-Cardoso, J.; Neves, L.S.; Borges, L.F.A.; Pires, C.H.; Lamaro, L.; Guerreiro, T.C.; Ferreira, E.M.A.; André, M.C.P. Methicillin-resistant and vancomycin-intermediate Staphylococcus aureus colonizing patients and intensive care unit environment: Virulence profile and genetic variability. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2019, 127, 717–726. [Google Scholar] [CrossRef]
- Javidnia, S.; Talebi, M.; Saifi, M.; Katouli, M.; Lari, A.R.; Pourshafie, M.R. Clonal dissemination of methicillin-resistant Staphylococcus aureus in patients and the hospital environment. Int. J. Infect. Dis. 2013, 17, e691–e695. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Singh-Moodley, A.; Strasheim, W.; Mogokotleng, R.; Ismail, H.; Perovic, O. Unconventional SCCmec types and low prevalence of the Panton-Valentine Leukocidin exotoxin in South African blood culture Staphylococcus aureus surveillance isolates, 2013-2016. PLoS ONE 2019, 14, e0225726. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Tian, D.; Sun, Z.; Guo, L.; Dong, C.; Tang, N.; Mkrtchyan, H.V.Y. Molecular characterization of methicillin-resistant and -susceptible Staphylococcus aureus recovered from hospital personnel. J. Med. Microbiol. 2020, 69, 1332–1338. [Google Scholar] [CrossRef]
- Mkrtchyan, H.V.; Xu, Z.; Yacoub, M.; Ter-Stepanyan, M.M.; Karapetyan, H.D.; Kearns, A.M.; Cutler, R.R.; Pichon, B.; Hambardzumyan, A.D. Detection of diverse genotypes of Methicillin-resistant Staphylococcus aureus from hospital personnel and the environment in Armenia. Antimicrob. Resist. Infect. Control 2017, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Mairi, A.; Touati, A.; Pantel, A.; Zenati, K.; Martinez, A.Y.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.-P. Distribution of Toxinogenic Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus from Different Ecological Niches in Algeria. Toxins 2019, 11, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fluit, A.C.; Carpaij, N.; Majoor, E.A.M.; Weinstein, R.A.; Aroutcheva, A.; Rice, T.W.; Bonten, M.J.M.; Willems, R.J.L. Comparison of an ST80 MRSA strain from the USA with European ST80 strains. J. Antimicrob. Chemother. 2015, 70, 664–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toleman, M.S.; Watkins, E.R.; Williams, T.; Blane, B.; Sadler, B.; Harrison, E.M.; Coll, F.; Parkhill, J.; Nazareth, B.; Brown, N.M.; et al. Investigation of a Cluster of Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Transmission in a Community Setting. Clin. Infect. Dis. 2017, 65, 2069–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasigade, J.-P.; Leclère, A.; Alla, F.; Tessier, A.; Bes, M.; Lechiche, C.; Vernet-Garnier, V.; Laouénan, C.; Vandenesch, F.; Leport, C.; et al. Staphylococcus aureus CC30 Lineage and Absence of sed,j,r-Harboring Plasmid Predict Embolism in Infective Endocarditis. Front. Cell. Infect. Microbiol. 2018, 8, 187. [Google Scholar] [CrossRef]
- Di Gregorio, S.; Haim, M.S.; Vielma Vallenilla, J.; Cohen, V.; Rago, L.; Gulone, L.; Aanensen, D.M.; Argimón, S.; Mollerach, M. Genomic Epidemiology of CC30 Methicillin-Resistant Staphylococcus aureus Strains from Argentina Reveals Four Major Clades with Distinctive Genetic Features. mSphere 2021, 6, e01297-20. [Google Scholar] [CrossRef]
- Haim, M.S.; Zaheer, R.; Bharat, A.; Di Gregorio, S.; Di Conza, J.; Galanternik, L.; Lubovich, S.; Golding, G.R.; Graham, M.R.; Van Domselaar, G.; et al. Comparative genomics of ST5 and ST30 methicillin-resistant Staphylococcus aureus sequential isolates recovered from paediatric patients with cystic fibrosis. Microb. Genom. 2021, 7, mgen000510. [Google Scholar] [CrossRef]
- Lv, G.; Jiang, R.; Zhang, H.; Wang, L.; Li, L.; Gao, W.; Zhang, H.; Pei, Y.; Wei, X.; Dong, H.; et al. Molecular Characteristics of Staphylococcus aureus From Food Samples and Food Poisoning Outbreaks in Shijiazhuang, China. Front. Microbiol. 2021, 12, 652276. [Google Scholar] [CrossRef]
- Goolam Mahomed, T.; Kock, M.M.; Masekela, R.; Hoosien, E.; Ehlers, M.M. Genetic relatedness of Staphylococcus aureus isolates obtained from cystic fibrosis patients at a tertiary academic hospital in Pretoria, South Africa. Sci. Rep. 2018, 8, 12222. [Google Scholar] [CrossRef]
- Kashif, A.; McClure, J.-A.; Lakhundi, S.; Pham, M.; Chen, S.; Conly, J.M.; Zhang, K. Staphylococcus aureus ST398 Virulence Is Associated With Factors Carried on Prophage ϕSa3. Front. Microbiol. 2019, 10, 2219. [Google Scholar] [CrossRef] [Green Version]
- Carrel, M.; Goto, M.; Schweizer, M.L.; David, M.Z.; Livorsi, D.; Perencevich, E.N. Diffusion of clindamycin-resistant and erythromycin-resistant methicillin-susceptible Staphylococcus aureus (MSSA), potential ST398, in United States Veterans Health Administration Hospitals, 2003–2014. Antimicrob. Resist. Infect. Control 2017, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottega, A.; Rodrigues, M.D.A.; Carvalho, F.A.; Wagner, T.F.; Leal, I.A.S.; Santos, S.O.D.; Rampelotto, R.F.; Hörner, R. Evaluation of constitutive and inducible resistance to clindamycin in clinical samples of Staphylococcus aureus from a tertiary hospital. Rev. Soc. Bras. Med. Trop. 2014, 47, 589–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumurya, A.S. Detection of Inducible Clindamycin Resistance among Staphylococcal Isolates from Different Clinical Specimens in Northwestern Nigeria. Int. J. Prev. Med. Res. 2015, 1, 35–39. [Google Scholar]
- Aouati, H.; Hadjadj, L.; Aouati, F.; Agabou, A.; Ben Khedher, M.; Bousseboua, H.; Bentchouala, C.; Rolain, J.-M.; Diene, S.M. Emergence of Methicillin-Resistant Staphylococcus aureus ST239/241 SCCmec-III Mercury in Eastern Algeria. Pathogens 2021, 10, 1503. [Google Scholar] [CrossRef]
- Titouche, Y.; Houali, K.; Ruiz-Ripa, L.; Vingadassalon, N.; Nia, Y.; Fatihi, A.; Cauquil, A.; Bouchez, P.; Bouhier, L.; Torres, C.; et al. Enterotoxin genes and antimicrobial resistance in Staphylococcus aureus isolated from food products in Algeria. J. Appl. Microbiol. 2020, 129, 1043–1052. [Google Scholar] [CrossRef]
- Achek, R.; El-Adawy, H.; Hotzel, H.; Hendam, A.; Tomaso, H.; Ehricht, R.; Neubauer, H.; Nabi, I.; Hamdi, T.M.; Monecke, S. Molecular Characterization of Staphylococcus aureus Isolated from Human and Food Samples in Northern Algeria. Pathogens 2021, 10, 1276. [Google Scholar] [CrossRef]
- Goudarzi, M.; Kobayashi, N.; Dadashi, M.; Pantůček, R.; Nasiri, M.J.; Fazeli, M.; Pouriran, R.; Goudarzi, H.; Miri, M.; Amirpour, A.; et al. Prevalence, Genetic Diversity, and Temporary Shifts of Inducible Clindamycin Resistance Staphylococcus aureus Clones in Tehran, Iran: A Molecular–Epidemiological Analysis From 2013 to 2018. Front. Microbiol. 2020, 11, 663. [Google Scholar] [CrossRef]
- Stevens, D.L.; Ma, Y.; Salmi, D.B.; McIndoo, E.; Wallace, R.J.; Bryant, A.E. Impact of Antibiotics on Expression of Virulence-Associated Exotoxin Genes in Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus. J. Infect. Dis. 2007, 195, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Hodille, E.; Badiou, C.; Bouveyron, C.; Bes, M.; Tristan, A.; Vandenesch, F.; Lina, G.; Dumitrescu, O. Clindamycin suppresses virulence expression in inducible clindamycin-resistant Staphylococcus aureus strains. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 38. [Google Scholar] [CrossRef] [Green Version]
- Niemann, S.; Bertling, A.; Brodde, M.F.; Fender, A.C.; Van de Vyver, H.; Hussain, M.; Holzinger, D.; Reinhardt, D.; Peters, G.; Heilmann, C.; et al. Panton-Valentine Leukocidin associated with S. aureus osteomyelitis activates platelets via neutrophil secretion products. Sci. Rep. 2018, 8, 2185. [Google Scholar] [CrossRef] [Green Version]
- Mairi, A.; Touati, A.; Lavigne, J.-P. Methicillin-Resistant Staphylococcus aureus ST80 Clone: A Systematic Review. Toxins 2020, 12, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Xu, S.; Yang, H.; He, C.; Xu, X.; Hu, F.; Shu, W.; Gong, F.; Zhang, C.; Liu, Q. Molecular Typing and Variations in Amount of tst Gene Expression of TSST-1-Producing Clinical Staphylococcus aureus Isolates. Front. Microbiol. 2019, 10, 1388. [Google Scholar] [CrossRef] [PubMed]
- Argudín, M.Á.; Mendoza, M.C.; Rodicio, M.R. Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2010, 2, 1751–1773. [Google Scholar] [CrossRef] [PubMed]
- Ciupescu, L.-M.; Auvray, F.; Nicorescu, I.M.; Meheut, T.; Ciupescu, V.; Lardeux, A.-L.; Tanasuica, R.; Hennekinne, J.-A. Characterization of Staphylococcus aureus strains and evidence for the involvement of non-classical enterotoxin genes in food poisoning outbreaks. FEMS Microbiol. Lett. 2018, 365, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rooijakkers, S.H.M.; Ruyken, M.; Roos, A.; Daha, M.R.; Presanis, J.S.; Sim, R.B.; van Wamel, W.J.B.; van Kessel, K.P.M.; van Strijp, J.A.G. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 2005, 6, 920–927. [Google Scholar] [CrossRef]
- van Wamel, W.J.B.; Rooijakkers, S.H.M.; Ruyken, M.; van Kessel, K.P.M.; van Strijp, J.A.G. The Innate Immune Modulators Staphylococcal Complement Inhibitor and Chemotaxis Inhibitory Protein of Staphylococcus aureus Are Located on β-Hemolysin-Converting Bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef] [Green Version]
Number of Samples | S. aureus | MSSA | MRSA | |
---|---|---|---|---|
Patients (%) | 110 (20%) | 29 (27%) | 26 (23.6%) | 3 (2.7%) |
HWs (%) | 40 (7.3%) | 12 (30%) | 10 (25 %) | 2 (5%) |
Environment (%) | 400 (72%) | 51 (13%) | 46 (11.5%) | 5 (1.25%) |
Total | 550 | 92 | 82 | 10 |
Genes | Environment Origin (n = 12) | Patient Origin (n = 7) | Health Worker Origin (n = 3) | |||
---|---|---|---|---|---|---|
MSSA (n = 7) | MRSA (n = 5) | MSSA (n = 4) | MRSA (n = 3) | MSSA (n = 1) | MRSA (n = 2) | |
Toxins | ||||||
sea seb seh tst lukf-pv luks-pv | 2 (29%) 0 (0%) 0 (0%) 1 (14%) 0 (0%) 0 (0%) | 1 (20%) 1 (20%) 1 (20%) 2 (40%) 3 (60%) 1 (20%) | 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (25%) 0 (0%) | 2 (66%) 0 (0%) 1 (33%) 0 (0%) 3 (100%) 1 (33%) | 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (100%) 0 (0%) | 0 (0%) 1 (50%) 0 (0%) 0 (0%) 1 (50%) 0 (0%) |
Haemolysins | ||||||
hla hlb hld hlgA hlgB hlgC | 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) | 5 (100%) 5 (100%) 5 (100%) 5 (100%) 5 (100%) 5 (100%) | 4 (100%) 4 (100%) 4 (100%) 4 (100%) 4 (100%) 4 (100%) | 3 (100%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) | 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) | 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) |
MSCRAMMs (Adhesins) | ||||||
cna ebp clfA clfB fnbA fnbB | 2 (29%) 3 (43%) 7 (100%) 7 (100%) 5 (71%) 5 (71%) | 4 (80%) 3 (60%) 5 (100%) 5 (100%) 5 (100%) 5 (100%) | 0 (0%) 1 (25%) 4 (100%) 2 (50%) 4 (100%) 4 (100%) | 2 (66%) 3 (100%) 2 (66%) 3 (100%) 3 (100%) 3 (100%) | 0 (0%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) | 0 (0%) 1 (50%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) |
Capsule components | ||||||
cap8 icaA icaB icaC icaD icaR | 1 (14%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) | 3 (60%) 5 (100%) 5 (100%) 5 (100%) 5 (100%) 5 (100%) | 1 (25%) 4 (100%) 4 (100%) 4 (100%) 4 (100%) 4 (100%) | 3 (100%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) | 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) | 0 (0%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) |
Other factors | ||||||
scn chp sak | 7 (100%) 5 (71%) 1 (14%) | 5 (100%) 2 (40%) 5 (100%) | 4 (100%) 4 (100%) 0 (0%) | 3 (100%) 0 (0%) 3 (100%) | 1 (100%) 1 (100%) 0 (0%) | 2 (100%) 1 (50%) 2 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laceb, Z.M.; Diene, S.M.; Lalaoui, R.; Kihal, M.; Chergui, F.H.; Rolain, J.-M.; Hadjadj, L. Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria. Antibiotics 2022, 11, 971. https://doi.org/10.3390/antibiotics11070971
Laceb ZM, Diene SM, Lalaoui R, Kihal M, Chergui FH, Rolain J-M, Hadjadj L. Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria. Antibiotics. 2022; 11(7):971. https://doi.org/10.3390/antibiotics11070971
Chicago/Turabian StyleLaceb, Zahoua Mentfakh, Seydina M. Diene, Rym Lalaoui, Mabrouk Kihal, Fella Hamaidi Chergui, Jean-Marc Rolain, and Linda Hadjadj. 2022. "Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria" Antibiotics 11, no. 7: 971. https://doi.org/10.3390/antibiotics11070971
APA StyleLaceb, Z. M., Diene, S. M., Lalaoui, R., Kihal, M., Chergui, F. H., Rolain, J. -M., & Hadjadj, L. (2022). Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria. Antibiotics, 11(7), 971. https://doi.org/10.3390/antibiotics11070971