Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes
Abstract
:1. Introduction
2. Bioaerosols
3. The Frontiers Project
3.1. Project Members
3.2. Bioaerosol Sampling
3.2.1. Short Distance Air Sampling and Local Emission Sources Determination
3.2.2. Long-Distance ARG Transport
3.2.3. Integrative Sampling Methods
3.3. ARG Detection and Quantification
3.4. Identification of Antimicrobial Resistant Bacteria
3.5. Modeling
3.6. Data Management
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschniski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, P.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systemic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Finlay, B.B.; Conly, J.; Coyte, P.C.; Dillon, J.-A.R.; Douglas, G.; Goddard, E.; Greco, L.; Nicolle, L.E.; Patrick, D.; Prescott, J.F. When Antibiotics Fail: The Expert Panel on the Potential Socio-Economic Impacts of Antimicrobial Resistance in Canada. 2019. Available online: https://cca-reports.ca/reports/the-potential-socio-economic-impacts-of-antimicrobial-resistance-in-canada/ (accessed on 4 March 2022).
- Bonaccorsi, G.; Pierri, F.; Cinelli, M.; Flori, A.; Galeazzi, A.; Porcelli, F.; Schmidt, A.L.; Valensise, C.M.; Scala, A.; Quattrociocchi, W.; et al. Economic and Social Consequences of Human Mobility Restrictions under COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 15530–15535. [Google Scholar] [CrossRef] [PubMed]
- Edoka, I.; Fraser, H.; Jamieson, L.; Meyer-Rath, G.; Mdewa, W. Inpatient Care Costs of COVID-19 in South Africa’s Public Healthcare System. Int. J. Health Policy Manag. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.C.; Shaw, H.; Rhodes, V.; Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front. Microbiol. 2016, 7, 1728. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.J.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of Methicillin Resistance Predates the Clinical Use of Antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic Resistance Is the Quintessential One Health Issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef]
- Huijbers, P.M.C.; Blaak, H.; de Jong, M.C.M.; Graat, E.A.M.; Vandenbroucke-Grauls, C.M.J.E.; de Roda Husman, A.M.E. Role of the environment in the transmission of antimicrobial resistance to humans: A review. Environ. Sci. Technol. 2015, 49, 11993–12004. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Government of Canada. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2018: Integrated Findings 2020; Public Health Agency of Canada: Guelph, ON, Canada, 2020. [Google Scholar]
- Ginn, O.; Lowry, S.; Brown, J. A Systematic Review of Enteric Pathogens and Antibiotic Resistance Genes in Outdoor Urban Aerosols. Environ. Res. 2022, 212, 113097. [Google Scholar] [CrossRef]
- Gwenzi, W.; Shamsizadeh, Z.; Gholipour, S.; Nikaeen, M. The Air-Borne Antibiotic Resistome: Occurrence, Health Risks, and Future Directions. Sci. Total Environ. 2022, 804, 150154. [Google Scholar] [CrossRef]
- Ling, A.L.; Pace, N.R.; Hernandez, M.T.; LaPara, T.M. Tetracycline Resistance and Class 1 Integron Genes Associated with Indoor and Outdoor Aerosols. Environ. Sci. Technol. 2013, 47, 4046–4052. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; He, L.-Y.; Wu, D.-L.; Gao, F.-Z.; Zhang, M.; Zou, H.-Y.; Yao, M.-S.; Ying, G.-G. Spread of Airborne Antibiotic Resistance from Animal Farms to the Environment: Dispersal Pattern and Exposure Risk. Environ. Int. 2022, 158, 106927. [Google Scholar] [CrossRef] [PubMed]
- Milton, D.K.A. Rosetta Stone for Understanding Infectious Drops and Aerosols. J. Pediatr. Infect. Dis. Soc. 2020, 9, 413–415. [Google Scholar] [CrossRef]
- Pasteur, L. Mémoire sur les corpuscules organisés qui existent dans l’atmosphère, examen de la doctrine des générations spontanées. Ann. Sci. Nat. Zoo. 1861, 16, 5–98. [Google Scholar]
- Wéry, N.; Galès, A.; Brunet, Y. Bioaerosols Sources. In Microbiology of Aerosols; Delort, A.-M., Amato, P., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2018; pp. 117–136. [Google Scholar]
- Fiegel, J.; Clarke, R.; Edwards, D.A. Airborne Infectious Disease and the Suppression of Pulmonary Bioaerosols. Drug Discov. 2006, 11, 51–57. [Google Scholar] [CrossRef]
- Mack, S.M.; Madl, A.K.; Pinkerton, K.E. Respiratory Health Effects of Exposure to Ambient Particulate Matter and Bioaerosols. In Comprehensive Physiology; Terjung, R., Ed.; Wiley: Hoboken, NJ, USA, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Dysvik, A.; La Rosa, S.L.; De Rouck, G.; Rukke, E.-O.; Westereng, B.; Wicklund, T. Microbial Dynamics in Traditional and Modern Sour Beer Production. Appl. Environ. Microbiol. 2020, 86, e00566-20. [Google Scholar] [CrossRef]
- Šantl-Temkiv, T.; Sikoparija, B.; Maki, T.; Carotenuto, F.; Amato, P.; Yao, M.; Morris, C.E.; Schnell, R.; Jaenicke, R.; Pöhlker, C.; et al. Bioaerosol Field Measurements: Challenges and Perspectives in Outdoor Studies. Aerosol Sci. Technol. 2020, 54, 520–546. [Google Scholar] [CrossRef]
- Šantl-Temkiv, T.; Amato, P.; Casamayor, E.O.; Lee, P.K.H.; Pointing, S.B. Microbial Ecology of the Atmosphere. FEMS Microbiol. Rev. 2022, fuac009. [Google Scholar] [CrossRef] [PubMed]
- Barberán, A.; Ladau, J.; Leff, J.W.; Pollard, K.S.; Menninger, H.L.; Dunn, R.R.; Fierer, N. Continental-Scale Distributions of Dust-Associated Bacteria and Fungi. Proc. Natl. Acad. Sci. USA 2015, 112, 5756–5761. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Nowoisky, J.; Pickersgill, D.A.; Després, V.R.; Pöschl, U. High Diversity of Fungi in Air Particulate Matter. Proc. Natl. Acad. Sci. USA 2009, 106, 12814–12819. [Google Scholar] [CrossRef] [Green Version]
- de Leeuw, G.; Andreas, E.L.; Anguelova, M.D.; Fairall, C.W.; Lewis, E.R.; O’Dowd, C.; Schulz, M.; Schwartz, S.E. Production Flux of Sea Spray Aerosol. Rev. Geophys. 2011, 49, RG2001. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Li, Y.; Bai, W.; Hou, J.; Ma, T.; Zeng, X.; Zhang, L.; An, T. The Source and Transport of Bioaerosols in the Air: A Review. Front. Environ. Sci. Eng. 2021, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.W. Atmospheric Movement of Microorganisms in Clouds of Desert Dust and Implications for Human Health. Clin. Microbiol. Rev. 2007, 20, 459–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nhu Nguyen, T.M.; Ilef, D.; Jarraud, S.; Rouil, L.; Campese, C.; Che, D.; Haeghebaert, S.; Ganiayre, F.; Marcel, F.; Etienne, J.; et al. Community-Wide Outbreak of Legionnaires Disease Linked to Industrial Cooling Towers—How Far Can Contaminated Aerosols Spread? J. Infect. Dis. 2006, 193, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifait, L.; Marchand, G.; Veillette, M.; M’Bareche, H.; Dubuis, M.-E.; Pépin, C.; Cloutier, Y.; Bernard, Y.; Duchaine, C. Workers’ Exposure to Bioaerosols from Three Different Types of Composting Facilities. J. Occup. Environ. Hyg. 2017, 14, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Degois, J.; Simon, X.; Clerc, F.; Bontemps, C.; Leblond, P.; Duquenne, P. One-Year Follow-up of Microbial Diversity in Bioaerosols Emitted in a Waste Sorting Plant in France. Waste Manag. 2021, 120, 257–268. [Google Scholar] [CrossRef]
- Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. The Structure and Diversity of Human, Animal and Environmental Resistomes. Microbiome 2016, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhao, F.; Zhang, X.-X.; Li, K.; Li, C.; Ye, L.; Li, M. Metagenomic Profiling of ARGs in Airborne Particulate Matters during a Severe Smog Event. Sci. Total Environ. 2018, 615, 1332–1340. [Google Scholar] [CrossRef]
- Xie, J.; Jin, L.; He, T.; Chen, B.; Luo, X.; Feng, B.; Huang, W.; Li, J.; Fu, P.; Li, X. Bacteria and Antibiotic Resistance Genes (ARGs) in PM 2.5 from China: Implications for Human Exposure. Environ. Sci. Technol. 2019, 53, 963–972. [Google Scholar] [CrossRef]
- Li, J.; Cao, J.; Zhu, Y.; Chen, Q.; Shen, F.; Wu, Y.; Xu, S.; Fan, H.; Da, G.; Huang, R.; et al. Global Survey of Antibiotic Resistance Genes in Air. Environ. Sci. Technol. 2018, 52, 10975–10984. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gu, A.Z.; Cen, T.; Li, X.; Li, D.; Chen, J. Petrol and Diesel Exhaust Particles Accelerate the Horizontal Transfer of Plasmid-Mediated Antimicrobial Resistance Genes. Environ. Int. 2018, 114, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Gaviria-Figueroa, A.; Preisner, E.C.; Hoque, S.; Feigley, C.E.; Norman, R.S. Emission and Dispersal of Antibiotic Resistance Genes through Bioaerosols Generated during the Treatment of Municipal Sewage. Sci. Total Environ. 2019, 686, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Pilote, J.; Létourneau, V.; Girard, M.; Duchaine, C. Quantification of Airborne Dust, Endotoxins, Human Pathogens and Antibiotic and Metal Resistance Genes in Eastern Canadian Swine Confinement Buildings. Aerobiologia 2019, 35, 283–296. [Google Scholar] [CrossRef]
- Song, L.; Wang, C.; Jiang, G.; Ma, J.; Li, Y.; Chen, H.; Guo, J. Bioaerosol Is an Important Transmission Route of Antibiotic Resistance Genes in Pig Farms. Environ. Int. 2021, 154, 106559. [Google Scholar] [CrossRef] [PubMed]
- Jahne, M.A.; Rogers, S.W.; Holsen, T.M.; Grimberg, S.J. Quantitative Microbial Risk Assessment of Bioaerosols from a Manure Application Site. Aerobiologia 2015, 31, 73–87. [Google Scholar] [CrossRef]
- Laurens, C.; Jean-Pierre, H.; Licznar-Fajardo, P.; Hantova, S.; Godreuil, S.; Martinez, O.; Jumas-Bilak, E. Transmission of IMI-2 Carbapenemase-Producing Enterobacteriaceae from River Water to Human. J. Glob. Antimicrob. Resist. 2018, 15, 88–92. [Google Scholar] [CrossRef]
- M’bareche, H.; Brisebois, E.; Veillette, M.; Duchaine, C. Bioaerosol Sampling and Detection Methods Based on Molecular Approaches: No Pain No Gain. Sci. Total Environ. 2017, 599–600, 2095–2104. [Google Scholar] [CrossRef]
- Létourneau, V.; Nehmé, B.; Mériaux, A.; Massé, D.; Cormier, Y.; Duchaine, C. Human Pathogens and Tetracycline-Resistant Bacteria in Bioaerosols of Swine Confinement Buildings and in Nasal Flora of Hog Producers. Int. J. Hyg. Environ. Health 2010, 213, 444–449. [Google Scholar] [CrossRef]
- Just, N.A.; Létourneau, V.; Kirychuk, S.P.; Signh, B.; Duchaine, C. Potentially Pathogenic Bacteria and Antimicrobial Resistance in Bioaerosols from Cage-Housed and Floor-Housed Poultry Operations. Ann. Occup. Hyg. 2012, 56, 440–449. [Google Scholar] [CrossRef]
- Boy, M.; Thomson, E.S.; Acosta Navarro, J.-C.; Arnalds, O.; Batchvarova, E.; Bäck, J.; Berninger, F.; Bilde, M.; Brasseur, Z.; Dagsson-Waldhauserova, P.; et al. Interactions between the Atmosphere, Cryosphere, and Ecosystems at Northern High Latitudes. Atmos. Chem. Phys. 2019, 19, 2015–2061. [Google Scholar] [CrossRef] [Green Version]
- Šantl-Temkiv, T.; Amato, P.; Gosewinkel, U.; Thyrhaug, R.; Charton, A.; Chicot, B.; Finster, K.; Bratbak, G.; Löndahl, J. High-Flow-Rate Impinger for the Study of Concentration, Viability, Metabolic Activity, and Ice-Nucleation Activity of Airborne Bacteria. Environ. Sci. Technol. 2017, 51, 11224–11234. [Google Scholar] [CrossRef] [PubMed]
- Amato, P.; Besaury, L.; Joly, M.; Penaud, B.; Deguillaume, L.; Delort, A.-M. Metatranscriptomic Exploration of Microbial Functioning in Clouds. Sci. Rep. 2019, 9, 4383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galès, A.; Latrille, E.; Wéry, N.; Steyer, J.-P.; Godon, J.-J. Needles of Pinus Halepensis as Biomonitors of Bioaerosol Emissions. PLoS ONE 2014, 9, e112182. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.; Kinkel, L. Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. In Phyllosphere Microbiology; Lindow, S., Hecht-Poinar, E., Elliott, V., Eds.; APS Press: St. Paul, MN, USA, 2002; pp. 365–375. [Google Scholar]
- Lindow, S.E.; Leveau, J.H.J. Phyllosphere Microbiology. Curr. Opin. Biotechnol. 2002, 13, 238–243. [Google Scholar] [CrossRef]
- Smets, W.; Wuyts, K.; Oerlemans, E.; Wuyts, S.; Denys, S.; Samson, R.; Lebeer, S. Impact of Urban Land Use on the Bacterial Phyllosphere of Ivy (Hedera sp.). Atmos. Environ. 2016, 147, 376–383. [Google Scholar] [CrossRef]
- Xiang, Q.; Zhu, D.; Giles, M.; Neilson, R.; Yang, X.-R.; Qiao, M.; Chen, Q.-L. Agricultural Activities Affect the Pattern of the Resistome within the Phyllosphere Microbiome in Peri-Urban Environments. J. Hazard. Mate. 2020, 382, 121068. [Google Scholar] [CrossRef]
- George, P.B.L.; Leclerc, S.; Turgeon, N.; Veillette, M.; Duchaine, C. Conifer needles as passive monitors of bioareosolised antibiotic resistance genes. Antibiotics 2022, 11, 907. [Google Scholar] [CrossRef]
- Stedtfeld, R.D.; Guo, X.; Stedtfeld, T.M.; Sheng, H.; Williams, M.R.; Hauschild, K.; Gunturu, S.; Tift, L.; Wang, F.; Howe, A.; et al. Primer Set 2.0 for Highly Parallel QPCR Array Targeting Antibiotic Resistance Genes and Mobile Genetic Elements. FEMS Microbiol. Ecol. 2018, 94, fiy130. [Google Scholar] [CrossRef]
- Nijuis, R.H.T.; Veldman, K.T.; Schelfaut, J.; Van Essen-Zandbergen, A.; Wessels, E.; Claas, E.C.J.; Gooskens, J. Detection of the Plasmid-Mediated Colistin-Resistance Gene Mcr-1 in Clinical Isolates and Stool Specimens Obtained from Hospitalized Patients Using a Newly Developed Real-Time PCR Assay. J. Antimicrob. Chemother. 2016, 71, 2344–2346. [Google Scholar] [CrossRef] [Green Version]
- Rhouma, M.; Thériault, W.; Rabhi, N.; Duchaine, C.; Quessy, S.; Fravalo, P. First Identification of Mcr-1/Mcr-2 Genes in the Fecal Microbiota of Canadian Commercial Pigs during the Growing and Finishing Period. Vet. Med Res. Rep. 2019, 10, 65–67. [Google Scholar] [CrossRef] [Green Version]
- Bach, H.-J.; Tomanova, J.; Schloter, M.; Munch, J.C. Enumeration of Total Bacteria and Bacteria with Genes for Proteolytic Activity in Pure Cultures and in Environmental Samples by Quantitative PCR Mediated Amplification. J. Microbiol. Methods 2002, 49, 235–245. [Google Scholar] [CrossRef]
- Roschanski, N.; Fischer, J.; Guerra, B.; Roesler, U. Development of a real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-Type AmpCs in Enterobacteriaceae. PLoS ONE 2014, 9, e100956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zuo, J.; Yu, X.; Shi, X.; Chen, L.; Li, Z. Quantification of Multi-Antibiotic Resistant Opportunistic Pathogenic Bacteria in Bioaerosols in and around a Pharmaceutical Wastewater Treatment Plant. J. Environ. Sci. (China) 2018, 72, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.-C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.-M.; Fournier, P.-E.; Raoult, D. Culturing the Human Microbiota and Culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Raymond, F.; Boissinot, M.; Ouameur, A.A.; Déraspe, M.; Plante, P.-L.; Kpanou, S.R.; Bérubé, È.; Huletsky, A.; Roy, P.H.; Ouellette, M.; et al. Culture-Enriched Human Gut Microbiomes Reveal Core and Accessory Resistance Genes. Microbiome 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Boisvert, S.; Laviolette, F.; Corbeil, J. Ray: Simultaneous Assembly of Reads from a Mix of High-Throughput Sequencing Technologies. J. Comput. Biol. 2010, 17, 1519–1533. [Google Scholar] [CrossRef]
- Boisvert, S.; Raymond, F.; Godzaridis, É.; Laviolette, F.; Corbeil, J. Ray Meta: Scalable de Novo Metagenome Assembly and Profiling. Genome Biol. 2012, 13, R122. [Google Scholar] [CrossRef] [Green Version]
- Déraspe, M.; Raymond, F.; Boisvert, S.; Culley, A.; Roy, P.H.; Laviolette, F.; Corbeil, J. Phenetic Comparison of Prokaryotic Genomes Using K-Mers. Mol. Biol. Evol. 2017, 34, 2716–2729. [Google Scholar] [CrossRef] [Green Version]
- Drouin, A.; Giguère, S.; Déraspe, M.; Marchand, M.; Tyers, M.; Loo, V.G.; Bourgault, A.-M.; Laviolette, F.; Corbeil, J. Predictive Computational Phenotyping and Biomarker Discovery Using Reference-Free Genome Comparisons. BMC Genom. 2016, 17, 754. [Google Scholar] [CrossRef] [Green Version]
- Van Leuken, J.P.G.; Swart, A.N.; Havelaar, A.H.; Van Pul, A.; Van der Hoek, W.; Heederik, D. Atmospheric Dispersion Modelling of Bioaerosols That Are Pathogenic to Humans and Livestock—A Review to Inform Risk Assessment Studies. Microb. Risk Anal. 2016, 1, 19–39. [Google Scholar] [CrossRef]
- Cimorelli, A.J.; Perry, S.G.; Venkatram, A.; Weil, J.C.; Paine, R.J.; Wilson, R.B.; Lee, R.F.; Peters, W.D.; Brode, R.W.; Paumier, J.O.; et al. AERMOD: Model Formulation and Evaluation Results; National Exposure Research Laboratory, Office of Research and Development: Research Triangle Park, NC, USA, 2021. [Google Scholar]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Bossier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.P.; Carson, C.; Smith, B.A.; Chapman, B.; Marrotte, J.; McCann, M.; Primeau, C.; Sharma, P.; Parmley, E.J. Factors Potentially Linked with the Occurrence of Antimicrobial Resistance in Selected Bacteria from Cattle, Chickens and Pigs: A Scoping Review of Publications for Use in Modelling of Antimicrobial Resistance (IAM.AMR Project). Zoonoses Public Health 2018, 65, 957–971. [Google Scholar] [CrossRef] [PubMed]
Aims | Sampling Sites or Sample Type | Number of Samples | Analyses | Expected Outcome |
---|---|---|---|---|
1 | Vehicle cabin filters | 478 AC filters | qPCR total bacteria qPCR ARG panel DNA sequencing (subset) | Relative abundance of ARGs/bacteria Network analyses Mapping ARGs throughout Canada |
2 | Hospitals | 100 air samples | DNA sequencing Culture | Network analyses Genomic and ARG profiles ARG enrichment-culturomics |
Wastewater treatment plants | 100 air samples from beside aeration tanks (outdoor) or in the ventilation exit (indoor) | Meteorological data qPCR total bacteria qPCR ARG panel Culture DNA sequencing (subset) | Relative abundance of ARG/bacteria ARG transfer in animal model ARG enrichment-culturomics Network analyses | |
Fish farm | 24 indoor 24 outdoor 24 downwind 24 upwind | Meteorological data qPCR fish pathogen and mobile genetic elements in air, water, and sediments qPCR ARG panel | Relative abundance of ARG/bacteria Detection of mobile genetic elements | |
Aquatic Containment Level 2 facility (LARSEM) | 18 | qPCR fish pathogen and mobile genetic elements | Transmission of ARGs in controlled setup | |
Swine and poultry farms in depth analyses | 2 swine barns 2 poultry barns (Quebec) | Meteorological data DNA sequencing qPCR ARG panel qPCR total bacteria Building ventilation properties | Relative abundance of ARG/bacteria Network analyses Emission rates Transport models ARG transfer in animal model ARG enrichment-culturomics Provincial and climatic variations | |
2 swine barns 2 poultry barns (Saskatchewan) | ||||
Swine and poultry farms modest analyses | 15 swine barns 8 poultry barns 1 poultry abattoir 1 swine abattoir (Quebec) | Meteorological data qPCR ARG panel | Seasonal variations Variation in emission rates of ARGs | |
8 swine barns 8 poultry barns 1 poultry abattoir 1 swine abattoir (Saskatchewan) | qPCR total bacteria Building ventilation properties (estimation with CO2) | Transport models Province and climate variations | ||
Manure spreading | 108 Swine slurries 36 Chicken manures with bedding 36 Chicken manures without bedding | Moisture content Meteorological data qPCR ARG panel DNA sequencing (subset) Geolocation and perception survey | Relative abundance of ARG/bacteria Network analyses Variation in emission rates of ARG Impact of spreading material and method Geolocation and perception model Transport models | |
3 | In vitro ARG transfer study using samples from wastewater treatment plants and swine and poultry farms | |||
Animal model of ARG transfer using samples from aims wastewater treatment plants and swine and poultry farms | ||||
4 | Conifer needles | Sampling gradient from known source Source sampling | qPCR total bacteria qPCR ARG panel | Proof of concept Transport model validation |
4 | Northern Canada | Ellesmere Island, Nunavut (50 samples) Resolute Bay, Nunavut (50 samples) | qPCR total bacteria qPCR ARG panel DNA sequencing (subset) | Long distance transport of ARGs Characterize Arctic resistome Transport model validation |
4 | Clouds | Puy-de-Dôme, France (15 samples) | qPCR total bacteria qPCR ARG panel DNA sequencing (subset) | Long distance transport of ARGs Describe remote spreading of ARGs Transport model validation |
Transatlantic | Transatlantic air samples (30 samples) | |||
Precipitation | Opme meteo station (15 samples) | |||
4 | Dispersion model using data from aims 2 and 3 | |||
5 | Integrated assessment model using data collected throughout the research program |
Air Sampler | Type | Flow Rate (L/min) | Air Volume (m3) | Type of Analysis | Indoor/ Outdoor | Sites |
---|---|---|---|---|---|---|
SASS 3100 | Electret filter | 300 | 10 | Molecular biology | I/O | Hospitals Wastewater treatment plants Fish farms Livestock buildings Manure spreading |
SASS 4100 | Electret filter + Virtual impactor | 4000 | 100 | Molecular biology | O | Northern Canada Fish farms |
SASS 2300 | Liquid cyclone | 325 | 10 | Molecular biology and culture | O | Hospitals Wastewater treatment plants Livestock buildings Manure spreading |
Coriolis µ | Liquid cyclone | 300 | 6 | Molecular biology and culture | I/O | Hospitals Wastewater treatment plants Livestock buildings Manure spreading |
High Flow Rate Impinger | Liquid impaction | 530 | 100 | Molecular biology and culture | O | Puy-de-Dôme, France |
Gene | Gene Type | Primer Sequence | Ref. |
---|---|---|---|
16S rRNA * | rRNA gene—used here for biomass and reference | F: GGTAGTCYAYGCMSTAAACG R: GACARCCATGCASCACCTG P:TKCGCGTTGCDTCGAATTAAWCCAC-BHQ | [56] |
aac(6′)-II | Aminoglycoside resistance | F: CGACCCGACTCCGAACAA R: CGACCCGACTCCGAACAA | [53] |
aac(6′)-Ib | Aminoglycoside resistance | F: CGTCGCCGAGCAACTTG R: CGGTACCTTGCCTCTCAAACC | [53] |
aac(3)-iid_iii_iif_iia_iie | Aminoglycoside resistance | F: CGATGGTCGCGGTTGGTC R: TCGGCGTAGTGCAATGCG | [53] |
blaCMY2 | Beta-lactam resistance | F: AAAGCCTCATGGGTGCATAAA R: ATAGCTTTTGTTTGCCAGCATCA | [53] |
blaCTX-M-1,3,15 * | Beta-lactam resistance | F: CGTACCGAGCCGACGTTAA R: CAACCCAGGAAGCAGGCA P: CCARCGGGCZENGCAGYTGGTGAC | [57] |
blaGES | Beta-lactam resistance | F: GCAATGTGCTCAACGTTCAAG R: GTGCCTGAGTCAATTCTTTCAAAG | [53] |
blaOXA | Beta-lactam resistance | F: CGACCGAGTATGTACCTGCTTC R: TCAAGTCCAATACGACGAGCTA | [53] |
blaMOX/blaCMY | Beta-lactam resistance | F: CTATGTCAATGTGCCGAAGCA R: GGCTTGTCCTCTTTCGAATAGC | [53] |
blaSHV-11 | Beta-lactam resistance | F: TTGACCGCTGGGAAACGG R: TCCGGTCTTATCGGCGATAAAC | [53] |
blaTEM | Beta-lactam resistance | F: AGCATCTTACGGATGGCATGA R: TCCTCCGATCGTTGTCAGAAGT | [53] |
blaVEB | Beta-lactam resistance | F: CCCGATGCAAAGCGTTATG R: GAAAGATTCCCTTTATCTATCTCAGACAA | [53] |
blaVIM | Beta-lactam resistance | F: GCACTTCTCGCGGAGATTG R: CGACGGTGATGCGTACGTT | [53] |
erm(35) | Macrolide resistance | F: CCTTCAGTCAGAACCGGCAA R: GCTGATTTGACAGTTGGTGGTG | [53] |
ermB | Macrolide resistance | F: GAACACTAGGGTTGTTCTTGCA R: CTGGAACATCTGTGGTATGGC | [53] |
ermF | Macrolide resistance | F: CAGCTTTGGTTGAACATTTACGAA R: AAATTCCTAAAATCACAACCGACAA | [53] |
ermT | Macrolide resistance | F: GTTCACTAGCACTATTTTTAATGACAGAAGT R: GAAGGGTGTCTTTTTAATACAATTAACGA | [53] |
ermX | Macrolide resistance | F: GCTCAGTGGTCCCCATGGT R: ATCCCCCCGTCAACGTT | [53] |
imp-marko | Beta-lactam resistance | F: GGAATAGAGTGGCTTAATTC R: GGTTTAACAAAACAACCACC | [53] |
int1-a-marko | Mobile genetic element | F: CGAAGTCGAGGCATTTCTGTC R: GCCTTCCAGAAAACCGAGGA | [53] |
is26 | Mobile genetic element | F: ATGGATGAAACCTACGTGAAGGTC R: CGGTACTTAATCTGTCGGTGTTCA | [53] |
mcr-1 * | Colistin resistance | F: CACATCGACGGCGTATTCTG R: CAACGAGCATACCGACATCG | [54] |
qepA | Quinolone resistance | F: GGGCATCGCGCTGTTC R: GCGCATCGGTGAAGCC P: CTACAGACCZENGACCAAGCCGA | [53] |
qnrB | Quinolone resistance | F: TCACCACCCGCACCTG R: GGATATCTAAATCGCCCAGTTCC | [53] |
sul1 | Sulfonamide resistance | F: GCCGATGAGATCAGACGTATTG R: CGCATAGCGCTGGGTTTC | [53] |
sul2 | Sulfonamide resistance | F: TCATCTGCCAAACTCGTCGTTA R: GTCAAAGAACGCCGCAATGT | [53] |
tet32 | Tetracycline resistance | F: CCATTACTTCGGACAACGGTAGA R: CAATCTCTGTGAGGGCATTTAACA | [53] |
tetA | Tetracycline resistance | F: CTCACCAGCCTGACCTCGAT R: CACGTTGTTATAGAAGCCGCATAG | [53] |
tetC | Tetracycline resistance | F: ACTGGTAAGGTAAACGCCATTGTC R: ATGCATAAACCAGCCATTGAGTAAG | [53] |
tetL | Tetracycline resistance | F: ATGGTTGTAGTTGCGCGCTATAT R: ATCGCTGGACCGACTCCTT | [53] |
tetM | Tetracycline resistance | F:GGAGCGATTACAGAATTAGGAAGC R: TCCATATGTCCTGGCGTGTC | [53] |
tetO | Tetracycline resistance | F: CAACATTAACGGAAAGTTTATTGTATACCA R: TTGACGCTCCAAATTCATTGTATC | [54] |
tetQ | Tetracycline resistance | F: CGCCTCAGAAGTAAGTTCATACACTAAG R:TCGTTCATGCGGATATTATCAGAAT | [54] |
tetS | Tetracycline resistance | F: TTAAGGACAAACTTTCTGACGACATC R: TGTCTCCCATTGTTCTGGTTCA | [54] |
tetW | Tetracycline resistance | F: ATGAACATTCCCACCGTTATCTTT R: ATATCGGCGGAGAGCTTATCC | [54] |
tetX | Tetracycline resistance | F: AAATTTGTTACCGACACGGAAGTT R: CATAGCTGAAAAAATCCAGGACAGTT | [54] |
tnpA | Mobile genetic element | F: AATTGATGCGGACGGCTTAA R:TCACCAAACTGTTTATGGAGTCGTT | [54] |
vanA | Vancomycin resistance | F: GGGCTGTGAGGTCGGTTG R: TTCAGTACAATGCGGCCGTTA | [54] |
vanB | Vancomycin resistance | F: TTGTCGGCGAAGTGGATCA R: AGCCTTTTTCCGGCTCGTT | [54] |
vanRA | Vancomycin resistance | F: CCCTTACTCCCACCGAGTTTT R: TTCGTCGCCCCATATCTCAT | [54] |
vanSA | Vancomycin resistance | F: CGCGTCATGCTTTCAAAATTC R: TCCGCAGAAAGCTCAATTTGTT | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, P.B.L.; Rossi, F.; St-Germain, M.-W.; Amato, P.; Badard, T.; Bergeron, M.G.; Boissinot, M.; Charette, S.J.; Coleman, B.L.; Corbeil, J.; et al. Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antibiotics 2022, 11, 974. https://doi.org/10.3390/antibiotics11070974
George PBL, Rossi F, St-Germain M-W, Amato P, Badard T, Bergeron MG, Boissinot M, Charette SJ, Coleman BL, Corbeil J, et al. Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antibiotics. 2022; 11(7):974. https://doi.org/10.3390/antibiotics11070974
Chicago/Turabian StyleGeorge, Paul B. L., Florent Rossi, Magali-Wen St-Germain, Pierre Amato, Thierry Badard, Michel G. Bergeron, Maurice Boissinot, Steve J. Charette, Brenda L. Coleman, Jacques Corbeil, and et al. 2022. "Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes" Antibiotics 11, no. 7: 974. https://doi.org/10.3390/antibiotics11070974
APA StyleGeorge, P. B. L., Rossi, F., St-Germain, M. -W., Amato, P., Badard, T., Bergeron, M. G., Boissinot, M., Charette, S. J., Coleman, B. L., Corbeil, J., Culley, A. I., Gaucher, M. -L., Girard, M., Godbout, S., Kirychuk, S. P., Marette, A., McGeer, A., O’Shaughnessy, P. T., Parmley, E. J., ... Duchaine, C. (2022). Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antibiotics, 11(7), 974. https://doi.org/10.3390/antibiotics11070974