Genomic Analysis of Antibiotics Resistance in Pathogens
Funding
Conflicts of Interest
References
- The Nobel Prize in Physiology or Medicine 1945. Available online: https://www.nobelprize.org/prizes/medicine/1945/fleming/lecture/ (accessed on 12 July 2022).
- Darmancier, H.; Domingues, C.P.F.; Rebelo, J.S.; Amaro, A.; Dionísio, F.; Pothier, J.; Serra, O.; Nogueira, T. Are Virulence and Antibiotic Resistance Genes Linked? A Comprehensive Analysis of Bacterial Chromosomes and Plasmids. Antibiotics 2022, 11, 706. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.F.; Ngeow, Y.F. Genetic Determinants of Tigecycline Resistance in Mycobacteroides Abscessus. Antibiotics 2022, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.; Ramalho, J.F.; Bruschy-Fonseca, A.; Lito, L.; Duarte, A.; Melo-Cristino, J.; Caneiras, C. First Description of Ceftazidime/Avibactam Resistance in a ST13 KPC-70-Producing Klebsiella Pneumoniae Strain from Portugal. Antibiotics 2022, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Altayb, H.N.; Elbadawi, H.S.; Baothman, O.; Kazmi, I.; Alzahrani, F.A.; Nadeem, M.S.; Hosawi, S.; Chaieb, K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella Pneumoniae Strain Lacking the Hypermucoviscous Regulators (RmpA/RmpA2). Antibiotics 2022, 11, 596. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Díaz, E.A.; Vázquez-Garcidueñas, M.S.; Negrete-Paz, A.M.; Vázquez-Marrufo, G. Comparative Genomic Analysis Discloses Differential Distribution of Antibiotic Resistance Determinants between Worldwide Strains of the Emergent ST213 Genotype of Salmonella Typhimurium. Antibiotics 2022, 11, 925. [Google Scholar] [CrossRef]
- Vázquez, X.; Fernández, J.; Rodríguez-Lozano, J.; Calvo, J.; Rodicio, R.; Rodicio, M.R. Genomic Analysis of Two MDR Isolates of Salmonella Enterica Serovar Infantis from a Spanish Hospital Bearing the BlaCTX-M-65 Gene with or without FosA3 in PESI-like Plasmids. Antibiotics 2022, 11, 786. [Google Scholar] [CrossRef] [PubMed]
- Souder, K.; Beatty, E.J.; McGovern, S.C.; Whaby, M.; Young, E.; Pancake, J.; Weekley, D.; Rice, J.; Primerano, D.A.; Denvir, J.; et al. Role of DipA and PilD in Francisella Tularensis Susceptibility to Resazurin. Antibiotics 2021, 10, 992. [Google Scholar] [CrossRef]
- Thadtapong, N.; Chaturongakul, S.; Soodvilai, S.; Dubbs, P. Colistin and Carbapenem-Resistant Acinetobacter Baumannii Aci46 in Thailand: Genome Analysis and Antibiotic Resistance Profiling. Antibiotics 2021, 10, 1054. [Google Scholar] [CrossRef]
- Rodrigues, D.L.N.; Morais-Rodrigues, F.; Hurtado, R.; dos Santos, R.G.; Costa, D.C.; Barh, D.; Ghosh, P.; Alzahrani, K.J.; Soares, S.C.; Ramos, R.; et al. Pan-Resistome Insights into the Multidrug Resistance of Acinetobacter Baumannii. Antibiotics 2021, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.Y.; Aly, U.F.; Abd El-Baky, R.M.; Waly, N.G.F.M. Effect of Titanium Dioxide Nanoparticles on the Expression of Efflux Pump and Quorum-Sensing Genes in MDR Pseudomonas Aeruginosa Isolates. Antibiotics 2021, 10, 625. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Abdellati, S.; De Baetselier, I.; Laumen, J.G.E.; Van Dijck, C.; de Block, T.; Kenyon, C.; Manoharan-Basil, S.S. Alternative Pathways to Ciprofloxacin Resistance in Neisseria Gonorrhoeae: An In Vitro Study of the WHO-P and WHO-F Reference Strains. Antibiotics 2022, 11, 499. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Nasir, S.; Ishaq, Z.; Anwer, F.; Raza, T.; Rahman, M.; Alshammari, A.; Alharbi, M.; Bae, T.; Rahman, A.; et al. Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus Aureus from Pakistan. Antibiotics 2022, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Masoud, S.M.; Abd El-Baky, R.M.; Aly, S.A.; Ibrahem, R.A. Co-Existence of Certain ESBLs, MBLs and Plasmid Mediated Quinolone Resistance Genes among MDR E. Coli Isolated from Different Clinical Specimens in Egypt. Antibiotics 2021, 10, 835. [Google Scholar] [CrossRef] [PubMed]
- NIAID Emerging Infectious Diseases/Pathogens|NIH: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens (accessed on 12 July 2022).
- Ecker, D.J.; Sampath, R.; Willett, P.; Wyatt, J.R.; Samant, V.; Massire, C.; Hall, T.A.; Hari, K.; McNeil, J.A.; Büchen-Osmond, C.; et al. The Microbial Rosetta Stone Database: A Compilation of Global and Emerging Infectious Microorganisms and Bioterrorist Threat Agents. BMC Microbiol. 2005, 5, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, T. Genomic Analysis of Antibiotics Resistance in Pathogens. Antibiotics 2022, 11, 1013. https://doi.org/10.3390/antibiotics11081013
Nogueira T. Genomic Analysis of Antibiotics Resistance in Pathogens. Antibiotics. 2022; 11(8):1013. https://doi.org/10.3390/antibiotics11081013
Chicago/Turabian StyleNogueira, Teresa. 2022. "Genomic Analysis of Antibiotics Resistance in Pathogens" Antibiotics 11, no. 8: 1013. https://doi.org/10.3390/antibiotics11081013
APA StyleNogueira, T. (2022). Genomic Analysis of Antibiotics Resistance in Pathogens. Antibiotics, 11(8), 1013. https://doi.org/10.3390/antibiotics11081013