COVID-19 Secondary Infections in ICU Patients and Prevention Control Measures: A Preliminary Prospective Multicenter Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Study Design and Participants
4.2. Study Procedures
4.3. Endpoints
4.4. Statistical Analysis
4.4.1. Subjects and Measurements
4.4.2. Univariate Statistical Analysis
4.4.3. Incidences per 1000 Days of Exposure
4.4.4. Multivariate Logistic Regression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berlin, D.A.; Gulick, M.D.; Martínez, F.J. Severe COVID-19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Benítez, I.D.; Carmona, P.; Santisteve, S.; Monge, A.; Moncusí-Moix, A.; Gort-Paniello, C.; Pinilla, L.; Carratalá, A.; Zuil, M.; et al. Pulmonary function and radiologic features in survivors of critical COVID-19: A 3-month prospective cohort. Chest 2021, 160, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Signorini, L.; Moioli, G.; Calza, S.; Van Hauwermeiren, E.; Lorenzotti, S.; Del Fabro, G.; Renisi, G.; Lanza, P.; Saccani, B.; Zambolin, G.; et al. Epidemiological and clinical characterization of superinfections in critically ill coronavirus disease 2019 patients. Crit. Care Explor. 2021, 3, e0430. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- The REMAP-CAP investigators. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early remdesivir to prevent progression to severe COVID-19 in outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Toniati, P.; Piva, S.; Cattalini, M.; Garrafa, E.; Regola, F.; Castelli, F.; Franceschini, F.; Airò, P.; Bazzani, C.; Beindorf, E.-A.; et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun. Rev. 2020, 19, 102568. [Google Scholar] [CrossRef]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate COVID-19. N. Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef]
- Verweij, P.E.; Brüggemann, R.J.M.; Azoulay, E.; Bassetti, M.; Blot, S.; Buil, J.B.; Calandra, T.; Chiller, T.; Clancy, C.J.; Cornely, O.A.; et al. Taskforce report on the diagnosis and clinical management of COVID-19 associated pulmonary aspergilosis. Intensive Care Med. 2021, 47, 819–834. [Google Scholar] [CrossRef]
- Segrelles-Calvo, G.; de S Araújo, G.R.; Llopis-Pastor, E.; Carrillo, J.; Hernández-Hernández, M.; Rey, L.; Melean, N.R.; Escribano, I.; Antón, E.; Zamarro, C.; et al. Candida spp. co-infection in COVID-19 patients with severe pneumonia: Prevalence study and associated risk factors. Respir. Med. 2021, 188, 106619. [Google Scholar] [CrossRef]
- Pintado, V.; Ruiz-Garbajosa, P.; Escudero-Sanchez, R.; Gioia, F.; Herrera, S.; Vizcarra, P.; Fortún, J.; Cobo, J.; Martín-Dávila, P.; Morosini, M.I.; et al. Carbapenemase-producing Enterobacterales infections in COVID-19 patients. Infect. Dis. (Lond.) 2022, 54, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Makris, D.; Artigas, A.; Bouchereau, M.; Lambiotte, F.; Metzelard, M.; Cuchet, P.; Geronimi, C.B.; et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: A European multicenter cohort study. Intensive Care Med. 2021, 47, 188–198. [Google Scholar] [CrossRef]
- Roso-Llorach, A.; Serra-Picamal, X.; Cos, F.X.; Pallejà-Millán, M.; Mateu, L.; Rosell, A.; Almirante, B.; Ferrer, J.; Gasa, M.; Gudiol, C.; et al. Evolving mortality and clinical outcomes of hospitalized subjects during successive COVID-19 waves in Catalonia, Spain. Glob. Epidemiol. 2022, 4, 100071. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Kollef, M.H.; Timsit, J.-F. Bacterial and fungal superinfections in critically ill patients with COVID-19. Intensive Care Med. 2020, 46, 2071–2074. [Google Scholar] [CrossRef]
- Pasero, D.; Cossu, A.P.; Terragni, P. Multi-drug resistance bacterial infections in critically ill patients admitted with COVID-19. Microorganisms 2021, 9, 1773. [Google Scholar] [CrossRef]
- Bogossian, E.G.; Taccone, F.S.; Izzi, A.; Yin, N.; Garufi, A.; Hublet, S.; Njimi, H.; Ego, A.; Gorham, J.; Byl, B.; et al. The acquisition of multidrug-resistant bacteria in patients admitted to COVID-19 intensive care units: A monocentric retrospective case control study. Microorganisms 2020, 8, 1821. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.; Moreno, L.; Yagüe, G.; Andreu, E.; Jara, R.; Segovia, M. Colonization by multidrug-resistant microorganisms in ICU patients during the COVID-19 pandemic. Med. Intensiva (Engl. Ed.) 2021, 45, 313–315. [Google Scholar] [CrossRef]
- Obata, R.; Maeda, T.; Rizk, D.; Kuno, T. Increased secondary infection in COVID-19 patients treated with steroids in New York City. Jpn. J. Infect. Dis. 2021, 74, 307–315. [Google Scholar] [CrossRef]
- Ritter, L.A.; Britton, N.; Heil, E.L.; Teeter, W.A.; Murthi, S.B.; Chow, J.H.; Ricotta, E.; Chertow, D.S.; Grazioli, A.; Levine, A.R. The impact of corticosteroids on secondary infection and mortality in critically ill COVID-19 patients. J. Intensive Care Med. 2021, 36, 1201–1208. [Google Scholar] [CrossRef]
- Grasselli, G.; Cattaneo, E.; Florio, G. Secondary infections in critically ill patients with COVID-19. Crit. Care 2021, 25, 317. [Google Scholar] [CrossRef]
- deJonge, E.; Schultz, M.J.; Spanjaard, L.; Bossuyt, P.M.M.; Vroom, M.B.; Dankert, J.; Kesecioglu, J. Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: A randomised controlled trial. Lancet 2003, 362, 1011–1016. [Google Scholar] [CrossRef]
- Smet, A.M.; Kluytmans, J.A.; Cooper, B.S.; Mascini, E.M.; Benus, R.F.J.; van der Werf, T.S.; van der Hoeven, J.G.; Pickkers, P.; Bogaers-Hofman, D.; van der Meer, N.J.M.; et al. Decontamination of the digestive tract and oropharynx in ICU patients. N. Engl. J. Med. 2009, 360, 20–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oostdijk, E.A.N.; Kesecioglu, J.; Schultz, M.J.; Visser, C.E.; de Jonge, E.; van Essen, E.H.R.; Bernards, A.T.; Purmer, I.; Brimicombe, R.; Bergmans, D.; et al. Notice of retraction and replacement: Oostdijk et al. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: A randomized clinical trial. JAMA 2017, 317, 1583–1584. [Google Scholar] [CrossRef] [Green Version]
- Luque-Paz, D.; Tattevin, P.; Jaubert, P.; Reizine, F.; Kouatchet, A.; Camus, C. Selective digestive decontamination to reduce the high rate of ventilator-associated pneumonia in critical COVID-19. Anaesth. Crit. Care Pain Med. 2022, 41, 100987. [Google Scholar] [CrossRef]
- Plantinga, N.L.; de Smet, A.M.G.A.; Oostdijk, E.A.N.; de Jonge, E.; Camus, C.; Krueger, W.A.; Bergmans, D.; Reitsma, J.B.; Bonten, M.J.M. Selective digestive and oropharyngeal decontamination in medical and surgical ICU patients: Individual patient data meta-analysis. Clin. Microbiol. Infect. 2018, 24, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, L.; van Saene, H.K.; Milanese, M.; Gregori, D.; Gullo, A. Selective decontamination of the digestive tract reduces bacterial bloodstream infection and mortality in critically ill patients. Systematic review of randomized, controlled trials. J. Hosp. Infect. 2007, 65, 187–203. [Google Scholar] [CrossRef]
- Liberati, A.; D’Amico, R.; Pifferi, S.; Torri, V.; Brazzi, L.; Parmelli, E. Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care. Cochrane Database Syst. Rev. 2009, 4, CD000022. [Google Scholar] [CrossRef] [Green Version]
- Oostdijk, E.A.N.; de Smet, A.M.G.; Kesecioglu, J.; Bonten, M.J.M. Decontamination of cephalosporinresistant Enterobacteriaceae during selective digestive tract decontamination in intensive care units. J. Antimicrob. Chemother. 2012, 67, 2250–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonten, M.J. Selective decontamination is safe and efficacious for critically ill patients. Crit. Care. Med. 2020, 48, 736–738. [Google Scholar] [CrossRef]
- Brun-Buisson, C.; Legrand, P.; Rauss, A.; Richard, C.; Montravers, F.; Besbes, M.; Meakins, J.L.; Soussy, C.J.; Lemaire, F. Intestinal decontamination for control of nosocomial multiresistant gram-negative bacilli. Study of an outbreak in an intensive care unit. Ann. Intern. Med. 1989, 10, 873–881. [Google Scholar] [CrossRef]
- Lübbert, C.; Faucheux, S.; Becker-Rux, D.; Laudi, S.; Dürrbeck, A.; Busch, T.; Gastmeier, P.; Eckmanns, T.; Rodloff, A.C.; Kaisers, U.X. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: A single-centre experience. Int. J. Antimicrob. Agents 2013, 42, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Halaby, T.; Al Naiemi, N.; Kluytmans, J.; van der Palen, J.; Vandenbroucke-Grauls, C.M.J.E. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob. Agents Chemother. 2013, 57, 3224–3229. [Google Scholar] [CrossRef] [Green Version]
- Buitinck, S.; Jansen, R.; Rijkenberg, S.; Wester, J.P.J.; Bosman, R.J.; van der Meer, N.J.M.; van der Voort, P.H.J. The ecological effects of selective decontamination of the digestive tract (SDD) on antimicrobial resistance: A 21-year longitudinal single-centre study. Crit. Care 2021, 23, 208. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ramírez, C.; Hípola-Escalada, S.; Cabrera-Santana, M.; Hernández-Viera, M.-A.; Caipe-Balcázar, L.; Saavedra, P.; Artiles-Campelo, F.; Sangil-Monroy, N.; Lübbe-Vázquez, C.F.; Ruiz-Santana, S. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance. Crit. Care 2018, 22, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Meer, S.B.; Figaroa, G.; van der Voort, P.H.J.; Nijsten, M.W.; Pillay, J. Ventilator associated pneumonia in critically-ill patients with COVID-19 in a setting of selective decontamination of the digestive tract. Crit. Care 2021, 25, 445. [Google Scholar] [CrossRef]
- Saavedra, P.; Santana, A.; Bello, L.; Pacheco, J.-M.; Sanjuán, E. A Bayesian spatio-temporal analysis of mortality rates in Spain: Application to the COVID-19 2020 outbreak. Popul. Health Metr. 2021, 19, 27. [Google Scholar] [CrossRef]
- Working Group for the Surveillance and Control of COVID-19 in Spain. The first wave of the COVID-19 pandemic in Spain: Characterization of cases and risk factors for severe outcomes, at 27 April 2020. Eurosurveillance 2020, 25, 2001431. [Google Scholar] [CrossRef]
- Magnani, C.; Azzolina, D.; Gallo, E.; Ferrante, D.; Gregori, D. How large was the mortality increase directly and indirectly caused by the COVID-19 epidemic? An analysis on all-causes mortality data in Italy. Int. J. Environ. Res. Public Health 2020, 17, 3452. [Google Scholar] [CrossRef] [PubMed]
- Troyano-Hernáez, P.; Reinosa, R.; Holguín, A. Evolution of SARS-CoV-2 in Spain during the first two years of the pandemic: Circulating variants, amino acid conservation, and genetic variability in structural, non-structural, and accessory proteins. Int. J. Mol. Sci. 2022, 23, 6394. [Google Scholar] [CrossRef]
- Oostdijk, E.A.; de Wit, G.A.; Bakker, M.; de Smet, A.M.G.A.; Bonten, M.J.M.; Dutch SOD-SDD trialists group. Selective decontamination of the digestive tract and selective oropharyngeal decontamination in intensive care unit patients: A cost-effectiveness analysis. BMJ Open 2013, 3, e002529. [Google Scholar] [CrossRef] [Green Version]
- You, J.H.S.; Li, H.K.; Ip, M. Surveillance-guided selective digestive decontamination of carbapenem-resistant Enterobacteriaceae in the intensive care unit: A cost-effectiveness analysis. Am. J. Infect. Control. 2018, 46, 291–296. [Google Scholar] [CrossRef]
- Nseir, S.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Ma-kris, D.; Geronimi, C.B.; et al. Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: A planned ancillary analysis of the coVAPid cohort. Crit. Care 2021, 25, 177. [Google Scholar] [CrossRef]
- Blonz, G.; Kouatchet, A.; Chudeau, N.; Pontis, E.; Lorber, J.; Lemeur, A.; Planche, L.; Lascarrou, J.-B.; Colin, G. Epidemiology and microbiology of ventilator-associated pneumonia in COVID-19 patients: A multicenter retrospective study in 188 patients in an un-inundated French region. Crit. Care 2021, 25, 72. [Google Scholar] [CrossRef]
- Gupta, S.; Wang, W.; Hayek, S.S.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenc, E.J.; Radbel, J.; et al. Association between early treatment with tocilizumab and mortality among critically ill patients with COVID-19. JAMA Intern. Med. 2021, 181, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Battaglini, D.; Ball, L.; Brunetti, I.; Bruzzone, B.; Codda, G.; Crea, F.; de Maria, A.; Dentone, C.; di Biagio, A.; et al. Bloodstream infections in critically ill patients with COVID-19. Eur. J. Clin. Investig. 2020, 50, e13319. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Jiménez, P.; Saavedra, P.; Macías, D.; Loza, A.; León, C.; López, M.; Pallejá, E.; Hernández-Socorro, C.R.; Ruiz-Santana, S. Five-year outcome of peripherally inserted central catheters in adults: A separated infectious and thrombotic complications analysis. Infect. Control. Hosp. Epidemiol. 2021, 42, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Buetti, N.; Ruckly, S.; de Montmollin, E.; Reignier, J.; Terzi, N.; Cohen, Y.; Siami, S.; Dupuis, C.; Timsit, J.-F. COVID-19 increased the risk of ICU-acquired bloodstream infections: A case-cohort study from the multicentric OUT-COMEREA network. Intensive Care Med. 2021, 47, 180–187. [Google Scholar] [CrossRef]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-acquired infections in critically ill patients with COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef]
- Peñuelas, O.; del Campo-Albendea, L.; de Aledo, A.L.G.; Añón, J.M.; Rodríguez-Solís, C.; Mancebo, J.; Vera, P.; Ballesteros, D.; Jiménez, J.; Maseda, E.; et al. Long-term survival of mechanically ventilated patients with severe COVID-19: An observational cohort study. Ann. Intensive Care 2021, 11, 143. [Google Scholar] [CrossRef]
- Auld, S.C.; Caridi-Scheible, M.; Blum, J.M.; Robichaux, C.; Kraft, C.; Jacob, J.T.; Jabaley, C.S.; Carpenter, D.; Kaplow, R.; Hernandez-Romieu, A.C.; et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit. Care Med. 2020, 48, e799–e804. [Google Scholar] [CrossRef]
- Álvarez-Lerma, F.; Palomar-Martínez, M.; Sánchez-García, M.; Martínez-Alonso, M.; Álvarez-Rodríguez, J.; Lorente, L.; Arias-Rivera, S.; García, R.; Gordo, F.; Añón, J.M.; et al. Prevention of ventilator-associated pneumonia: The multimodal approach of the Spanish ICU "Pneumonia Zero" program. Crit. Care Med. 2018, 46, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Spanu, T.; Sanguinetti, M.; Ciccaglione, D.; D’Inzeo, T.; Romano, L.; Leone, F.; Fadda, G. Use of the VITEK 2 system for rapid identification of clinical iso-lates of Staphylococci from bloodstream infections. J. Clin. Microbiol. 2003, 41, 4259–4263. [Google Scholar] [CrossRef] [Green Version]
- EUCAST: European Committee on Antimicrobial Susceptibility Testing; European Society of Clinical Microbiology and Infectious Diseases. Clinical Breakpoints–Breakpoints and Guidance. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 26 June 2022).
- Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias (SEMICYUC). Grupo de Trabajo de Enfermedades Infecciosas y Sepsis de SEMICYUC. Estudio Nacional de Vigilancia de la Infección Nosocomial (EN-VIN-HELICS): Manual de Definiciones y Términos. Available online: https://hws.vhebron.net/envin-helics/Help/Manual_2020.pdf (accessed on 26 June 2022).
- Dean, C.H.; Lawless, J.F. Test for detecting overdispersion in Poisson regression models. J. Am. Stat. Assoc. 1989, 84, 467–472. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Jovanovic, B.; Leneshow, S. Best subsets logistic regression. Biometrics 1989, 45, 1265–1270. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 26 June 2022).
Variables | Overall N = 265 | Non-SDD N = 157 | SDD N = 108 | p-Value |
---|---|---|---|---|
Age (years) | 63.6 ± 11.9 | 64.2 ± 11.6 | 62.6 ± 12.2 | 0.272 |
Sex (male) | 162 (61.1) | 95 (60.5) | 67 (62.0) | 0.802 |
Body mass index (kg/m2) | 29 (26; 33) | 28 (26; 33) | 29 (26; 33) | 0.910 |
Apache II score on admission | 14 (11; 18.5) | 14 (10; 18) | 15 (11; 19.7) | 0.155 |
Follow-up days | 33 (21; 54) | 32 (20; 53) | 35 (22; 58) | 0.394 |
ICU days | 21 (12; 35) | 20 (11; 35) | 23 (14; 33) | 0.247 |
Death ICU | 75 (28.3) | 48 (30.6) | 27 (25.0) | 0.322 |
Death, hospital | 80 (30.2) | 52 (33.1) | 28 (25.9) | 0.210 |
Deep venous thrombosis | 6 (2.3) | 3 (1.9) | 3 (2.8) | 0.690 |
PaO2/FIO2 | 133 (97; 200) | 138 (98; 200) | 129 (97; 191) | 0.501 |
At ICU admission: | ||||
Albumin (mg/dL) | 2.90 (2.57; 3.20) | 2.89 (2.52; 3.19) | 3.00 (2.60; 3.20) | 0.176 |
Urea (mg/dL) | 45 (33; 62) | 46 (33; 62) | 44 (32; 63) | 0.973 |
Creatinine (mg/dL) | 0.89 (0.70; 1.18) | 0.83 (0.70; 1.19) | 0.91 (0.74; 1.11) | 0.139 |
Ferritin (ng/mL) | 941 (498; 1794) | 875 (448; 1653) | 1036 (610; 2095) | 0.028 |
Procalcitonin (ng/mL) | 0.30 (0.10; 0.76) | 0.29 (0.09; 0.72) | 0.30 (0.13; 0.78) | 0.291 |
D-dimer (ng/mL) | 1331 (702; 2872) | 1510 (770; 3930) | 1000 (592; 1930) | 0.004 |
Leucocytes × 103 | 8.48 (6.10; 12.08) | 8.80 (6.36; 11.79) | 8.18 (5.88; 12.41) | 0.428 |
D-dimer, 2nd determination | 1660 (937; 4429) | 1993 (1028; 4729) | 1306 (828; 3474) | 0.028 |
D-dimer, last determination | 1800 (991; 4750) | 2257 (1088; 5036) | 1480 (907; 3824) | 0.029 |
Antibiotics (others) | 229 (91.6) | 128 (90.1) | 101 (93.5) | 0.340 |
Remdesivir | 43 (21.9) | 31 (20.1) | 12 (28.6) | 0.241 |
Anticoagulation | 168 (71.5) | 64 (50.4) | 104 (96.3) | <0.001 |
LMWH | 142 (67.6) | 53 (49.1) | 89 (87.2) | <0.001 |
Prone position | 132 (50.2) | 93 (59.2) | 39 (36.8) | <0.001 |
Mechanical ventilation | 0.907 | |||
≤15 days | 141 (53.2) | 84 (53.5) | 57 (52.8) | |
>15 days | 124 (46.8) | 73 (46.5) | 51 (47.2) | |
Central venous catheter | <0.001 | |||
None | 50 (18.9) | 4 (2.5) | 46 (42.6) | |
≤18 days | 112 (42.3) | 83 (52.9) | 29 (26.9) | |
>18 days | 103 (38.9) | 70 (44.6) | 33 (30.6) | |
Corticosteroids | <0.001 | |||
None | 37 (14.0) | 34 (21.7) | 3 (2.8) | |
<9 days | 87 (32.8) | 44 (28.0) | 43 (39.8) | |
≥9 days | 141 (53.2) | 79 (50.3) | 62 (57.4) |
Infection Exposure Data | Non-SDD N = 157 | SDD N = 108 | p-Value | Rate Ratio (95% CI) |
---|---|---|---|---|
Mechanical ventilation days | 6354 | 6878 | <0.001 | 0.204 (0.112; 0.371) |
VAP | 59 | 13 | ||
Events per 1000 days | 9.3 | 1.9 | ||
Central venous catheter days | 6375 | 8062 | 0.728 | 1.107 (0.624; 1.965) |
Catheter bacteremia | 20 | 28 | ||
Events per 1000 days | 3.1 | 3.5 | ||
ICU days | 9205 | 8724 | 0.087 | 0.406 (0.145; 1.138) |
Secondary bacteremia | 13 | 5 | ||
Events per 1000 days | 1.41 | 0.57 | ||
ICU days | 9205 | 8724 | 0.006 | 0.251 (0.095; 0.666) |
Multi-resistant germs | 21 | 5 | ||
Events per 1000 days | 2.28 | 0.57 |
SDD | ||||
---|---|---|---|---|
Total | No | Yes | ||
VAP | Pseudomonas aeruginosa | 4 | 2 | 2 |
Stenotrophomonas maltophilia | 4 | 4 | 0 | |
Escherichia coli | 3 | 3 | 0 | |
Klebsiella pneumoniae | 2 | 1 | 1 | |
Pseudomonas putida | 2 | 2 | 0 | |
Catheter bacteremia | Acinetobacter baunmannii | 1 | 0 | 1 |
Enterococcus faecalis | 1 | 1 | 0 | |
Klebsiella spp. | 1 | 1 | 0 | |
Pseudomonas aeruginosa | 1 | 0 | 1 | |
Coagulase-negative Staphylococcus | 1 | 1 | 0 | |
Secondary bacteremia | Pseudomonas aeruginosa | 2 | 2 | 0 |
Klebsiella pneumoniae | 2 | 2 | 0 | |
Escherichia coli | 1 | 1 | 0 | |
Pseudomonas putida | 1 | 1 | 0 | |
Total | Pseudomonas aeruginosa | 7 | 4 | 3 |
Escherichia coli | 4 | 4 | 0 | |
Klebsiella pneumoniae | 4 | 3 | 1 | |
Stenotrophomonas maltophilia | 4 | 4 | 0 | |
Pseudomonas putida | 3 | 3 | 0 | |
Acinetobacter baunmannii | 1 | 0 | 1 | |
Enterococcus faecalis | 1 | 1 | 0 | |
Klebsiella spp. | 1 | 1 | 0 | |
Coagulase-negative Staphylococcus | 1 | 1 | 0 |
Variables | p-Value * | AIC ** | Odds Ratio (95% CI) |
---|---|---|---|
Age (per year) | 0.003 | 291.5 | 1.043 (1.013; 1.073) |
Apache II score on admission (per unit) | 0.078 | 285.6 | 1.044 (1.995; 1.096) |
Ln-last D-Dimer (per log unit) † | 0.007 | 289.8 | 1.390 (1.090; 1.771) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Santana, S.; Mora-Quintero, M.-L.; Saavedra, P.; Montiel-González, R.; Sánchez-Ramírez, C.; Pérez-Acosta, G.; Martín-Velasco, M.; Rodríguez-Mata, C.; Lorenzo-García, J.-M.; Parrilla-Toribio, D.; et al. COVID-19 Secondary Infections in ICU Patients and Prevention Control Measures: A Preliminary Prospective Multicenter Study. Antibiotics 2022, 11, 1016. https://doi.org/10.3390/antibiotics11081016
Ruiz-Santana S, Mora-Quintero M-L, Saavedra P, Montiel-González R, Sánchez-Ramírez C, Pérez-Acosta G, Martín-Velasco M, Rodríguez-Mata C, Lorenzo-García J-M, Parrilla-Toribio D, et al. COVID-19 Secondary Infections in ICU Patients and Prevention Control Measures: A Preliminary Prospective Multicenter Study. Antibiotics. 2022; 11(8):1016. https://doi.org/10.3390/antibiotics11081016
Chicago/Turabian StyleRuiz-Santana, Sergio, María-Luisa Mora-Quintero, Pedro Saavedra, Raquel Montiel-González, Catalina Sánchez-Ramírez, Guillermo Pérez-Acosta, Mar Martín-Velasco, Cristóbal Rodríguez-Mata, José-Manuel Lorenzo-García, Dácil Parrilla-Toribio, and et al. 2022. "COVID-19 Secondary Infections in ICU Patients and Prevention Control Measures: A Preliminary Prospective Multicenter Study" Antibiotics 11, no. 8: 1016. https://doi.org/10.3390/antibiotics11081016
APA StyleRuiz-Santana, S., Mora-Quintero, M. -L., Saavedra, P., Montiel-González, R., Sánchez-Ramírez, C., Pérez-Acosta, G., Martín-Velasco, M., Rodríguez-Mata, C., Lorenzo-García, J. -M., Parrilla-Toribio, D., Carrillo-García, T., & Martín-González, J. -C. (2022). COVID-19 Secondary Infections in ICU Patients and Prevention Control Measures: A Preliminary Prospective Multicenter Study. Antibiotics, 11(8), 1016. https://doi.org/10.3390/antibiotics11081016