Real-World Data on Antibiotic Group Treatment in European Livestock: Drivers, Conditions, and Alternatives
Abstract
:1. Introduction
2. Results
Metaphylactic Treatment Conditions
Percentage of Metaphylactic or Group Treatments
3. Discussion
3.1. Use of Metaphylaxis per Species and Practice Size
3.2. Initiation Reasoning of Metaphylaxis
3.3. Conditions of Metaphylactic Use per Species
3.4. Indications
3.5. Pathogens Most Commonly Targeted by Metaphylactic Treatment and Treatment Consequences
3.6. Limitations of the Study
4. Materials and Methods
4.1. Metaphylaxis Survey
4.2. Data Handling and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EMA. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020; European Medicines Agency. 2021. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2019-2020-trends-2010-2020-eleventh_en.pdf (accessed on 20 April 2022).
- EPRUMA. Best-Practice Framework for the Use of Antibiotics in Food-Producing Animals-REACHING FOR THE NEXT LEVEL; European Platform for the Responsible Using of Medicines in Animals. Available online: https://epruma.eu/home/best-practice-guides/ (accessed on 4 July 2022).
- EMA. Reflection Paper on the Prophylactic Use of Antimicrobials in Animals in the Context of Article 107(3) of Regulation (EU) 2019/6; European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-prophylactic-use-antimicrobials-animals-context-article-1073-regulation-eu-2019/6_en.pdf (accessed on 20 April 2022).
- EMA. Question and Answer on the CVMP Guideline on the SPC for Antimicrobial Products; European Medicines Agency, Committee for Medicinal Products for Veterinary Use (CVMP). Available online: https://www.ema.europa.eu/en/documents/other/question-answer-cvmp-guideline-summary-product-characteristics-antimicrobial-products_en.pdf (accessed on 20 April 2022).
- EC. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC; European Commission. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&rid=1 (accessed on 20 April 2022).
- Joosten, P.; Sarrazin, S.; Van Gompel, L.; Luiken, R.E.C.; Mevius, D.J.; Wagenaar, J.A.; Heederik, D.J.J.; Dewulf, J. EFFORT consortium Quantitative and Qualitative Analysis of Antimicrobial Usage at Farm and Flock Level on 181 Broiler Farms in Nine European Countries. J. Antimicrob. Chemother. 2019, 74, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Pardon, B.; Catry, B.; Dewulf, J.; Persoons, D.; Hostens, M.; De Bleecker, K.; Deprez, P. Prospective Study on Quantitative and Qualitative Antimicrobial and Anti-Inflammatory Drug Use in White Veal Calves. J. Antimicrob. Chemother. 2012, 67, 1027–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasabova, S.; Hartmann, M.; Freise, F.; Hommerich, K.; Fischer, S.; Wilms-Schulze-Kump, A.; Rohn, K.; Käsbohrer, A.; Kreienbrock, L. Antibiotic Usage Pattern in Broiler Chicken Flocks in Germany. Front. Vet. Sci. 2021, 8, 673809. [Google Scholar] [CrossRef] [PubMed]
- AMCRA. Advies “Maatregelen Voor Een Verantwoord Antibioticumgebruik Bij Groepsbehandeling”; Belgian Knowledge Centre on Antibiotic Use and Resistance in Animals; AMCRA: Brussels, Belgium, 2021. [Google Scholar]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between Veterinary Antimicrobial Use and Antimicrobial Resistance in Food-Producing Animals: A Report on Seven Countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial Resistance: A Global Emerging Threat to Public Health Systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef]
- Checkley, S.L.; Campbell, J.R.; Chirino-Trejo, M.; Janzen, E.D.; Waldner, C.L. Associations between Antimicrobial Use and the Prevalence of Antimicrobial Resistance in Fecal Escherichia coli from Feedlot Cattle in Western Canada. Can. Vet. J. 2010, 51, 853–861. [Google Scholar] [PubMed]
- Mazurek, J.; Bok, E.; Stosik, M.; Baldy-Chudzik, K. Antimicrobial Resistance in Commensal Escherichia coli from Pigs during Metaphylactic Trimethoprim and Sulfamethoxazole Treatment and in the Post-Exposure Period. Int. J. Envrion. Res. Public Health 2015, 12, 2150–2163. [Google Scholar] [CrossRef]
- Callaway, T.R.; Lillehoj, H.; Chuanchuen, R.; Gay, C.G. Alternatives to Antibiotics: A Symposium on the Challenges and Solutions for Animal Health and Production. Antibiotics 2021, 10, 471. [Google Scholar] [CrossRef]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic Stewardship in Food-Producing Animals: Challenges, Progress, and Opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Postma, M.; Backhans, A.; Collineau, L.; Loesken, S.; Sjölund, M.; Belloc, C.; Emanuelson, U.; grosse Beilage, E.; Nielsen, E.O.; Stärk, K.D.C.; et al. Evaluation of the Relationship between the Biosecurity Status, Production Parameters, Herd Characteristics and Antimicrobial Usage in Farrow-to-Finish Pig Production in Four EU Countries. Porc. Health Manag. 2016, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postma, M.; Vanderhaeghen, W.; Sarrazin, S.; Maes, D.; Dewulf, J. Reducing Antimicrobial Usage in Pig Production without Jeopardizing Production Parameters. Zoonoses Public Health 2017, 64, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, G.Y.; Jang, J.C.; Kim, J.E.; Kim, Y.Y. Evaluation of Anti-SE Bacteriophage as Feed Additives to Prevent Salmonella Enteritidis (SE) in Broiler. Asian Australas. J. Anim. Sci. 2013, 26, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Domingo-Calap, P.; Delgado-Martínez, J. Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, D.R.; de Cássia Orlandi Sardi, J.; de Souza Pitangui, N.; Roque, S.M.; da Silva, A.C.B.; Rosalen, P.L. Probiotics as an Alternative Antimicrobial Therapy: Current Reality and Future Directions. J. Funct. Foods 2020, 73, 104080. [Google Scholar] [CrossRef]
- Gaggìa, F.; Mattarelli, P.; Biavati, B. Probiotics and Prebiotics in Animal Feeding for Safe Food Production. Int. J. Food Microbiol. 2010, 141, S15–S28. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L. Host-Pathogen Interactions: Basic Concepts of Microbial Commensalism, Colonization, Infection, and Disease. Infect. Immun. 2000, 68, 6511–6518. [Google Scholar] [CrossRef] [Green Version]
- Friedman, D.B.; Kanwat, C.P.; Headrick, M.L.; Patterson, N.J.; Neely, J.C.; Smith, L.U. Importance of Prudent Antibiotic Use on Dairy Farms in South Carolina: A Pilot Project on Farmers’ Knowledge, Attitudes and Practices. Zoonoses Public Health 2007, 54, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.; Marier, E.A.; Tranter, R.B.; Wu, G.; Watson, E.; Teale, C.J. Factors Affecting Dairy Farmers’ Attitudes towards Antimicrobial Medicine Usage in Cattle in England and Wales. Prev. Vet. Med. 2015, 121, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Golding, S.E.; Ogden, J.; Higgins, H.M. Shared Goals, Different Barriers: A Qualitative Study of UK Veterinarians’ and Farmers’ Beliefs about Antimicrobial Resistance and Stewardship. Front. Vet. Sci. 2019, 6, 132. [Google Scholar] [CrossRef] [Green Version]
- Dernburg, A.R.; Fabre, J.; Philippe, S.; Sulpice, P.; Calavas, D. A Study of the Knowledge, Attitudes, and Behaviors of French Dairy Farmers Toward the Farm Register. J. Dairy Sci. 2007, 90, 1767–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaarst, M.; Paarup-Laursen, B.; Houe, H.; Fossing, C.; Andersen, H.J. Farmers’ Choice of Medical Treatment of Mastitis in Danish Dairy Herds Based on Qualitative Research Interviews. J. Dairy Sci. 2002, 85, 992–1001. [Google Scholar] [CrossRef]
- Higham, L.E.; Deakin, A.; Tivey, E.; Porteus, V.; Ridgway, S.; Rayner, A.C. A Survey of Dairy Cow Farmers in the United Kingdom: Knowledge, Attitudes and Practices Surrounding Antimicrobial Use and Resistance. Vet. Rec. 2018, 183, 746. [Google Scholar] [CrossRef] [PubMed]
- Rayner, A.C.; Higham, L.E.; Gill, R.; Michalski, J.-P.; Deakin, A. A Survey of Free-Range Egg Farmers in the United Kingdom: Knowledge, Attitudes and Practices Surrounding Antimicrobial Use and Resistance. Vet. Anim. Sci. 2019, 8, 100072. [Google Scholar] [CrossRef]
- Hommerich, K.; Ruddat, I.; Hartmann, M.; Werner, N.; Käsbohrer, A.; Kreienbrock, L. Monitoring Antibiotic Usage in German Dairy and Beef Cattle Farms—A Longitudinal Analysis. Front. Vet. Sci. 2019, 6, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.; Muurinen, J.; Nykäsenoja, S.; Seppä-Lassila, L.; Sali, V.; Suomi, J.; Tuominen, P.; Joutsen, S.; Hämäläinen, M.; Olkkola, S.; et al. Antimicrobial Use, Biosecurity, Herd Characteristics, and Antimicrobial Resistance in Indicator Escherichia coli in Ten Finnish Pig Farms. Prev. Vet. Med. 2021, 193, 105408. [Google Scholar] [CrossRef]
- Gallin-Anliker, T.; Wiedemann, S.; Bähler, C.; Kaske, M. Usage Of Antimicrobials On Seven Farms Of Beef Producers In Switzerland. Schweiz. Arch. Fuer Tierheilkd. 2021, 163, 859–870. [Google Scholar] [CrossRef]
- Scali, F.; Santucci, G.; Maisano, A.M.; Giudici, F.; Guadagno, F.; Tonni, M.; Amicabile, A.; Formenti, N.; Giacomini, E.; Lazzaro, M. The Use of Antimicrobials in Italian Heavy Pig Fattening Farms. Antibiotics 2020, 9, 892. [Google Scholar] [CrossRef] [PubMed]
- De Briyne, N.; Atkinson, J.; Borriello, S.P.; Pokludová, L. Antibiotics Used Most Commonly to Treat Animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [Green Version]
- Direction générale de l’alimentation. Ecoantibio 2: Plan. National de Réduction Des. Risques d’antibiorésistance En Médecine Vétérinaire (2017–2022); Ministère de l’Agriculture et de l’Alimentation. Available online: https://agriculture.gouv.fr/le-plan-ecoantibio-2-2017-2022 (accessed on 6 June 2022).
- EC. A European One Health Action Plan against Antimicrobial Resistance (AMR); European Commission. Available online: https://ec.europa.eu/health/system/files/2020-01/amr_2017_action-plan_0.pdf (accessed on 15 April 2022).
- Baptiste, K.E.; Kyvsgaard, N.C. Do Antimicrobial Mass Medications Work? A Systematic Review and Meta-Analysis of Randomised Clinical Trials Investigating Antimicrobial Prophylaxis or Metaphylaxis against Naturally Occurring Bovine Respiratory Disease. Pathog. Dis. 2017, 75, ftx083. [Google Scholar] [CrossRef]
- Callan, R.J.; Garry, F.B. Biosecurity And Bovine Respiratory Disease. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 57–77. [Google Scholar] [CrossRef]
- Edwards, T.A. Control Methods for Bovine Respiratory Disease for Feedlot Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Smith, G. Antimicrobial Decision Making for Enteric Diseases of Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Jensen, V.F.; de Knegt, L.V.; Andersen, V.D.; Wingstrand, A. Temporal Relationship between Decrease in Antimicrobial Prescription for Danish Pigs and the “Yellow Card” Legal Intervention Directed at Reduction of Antimicrobial Use. Prev. Vet. Med. 2014, 117, 554–564. [Google Scholar] [CrossRef]
- Diana, A.; Santinello, M.; Penasa, M.; Scali, F.; Magni, E.; Alborali, G.L.; Bertocchi, L.; De Marchi, M. Use of Antimicrobials in Beef Cattle: An Observational Study in the North of Italy. Prev. Vet. Med. 2020, 181, 105032. [Google Scholar] [CrossRef]
- EC. Commission Staff Working Document Impact Assessment Accompanying the Document Proposal for a Regulation of the European Parliament and of the Council on Veterinary Medicinal Products; European Commission. 2014. Available online: https://data.consilium.europa.eu/doc/document/ST-13289-2014-ADD-2/en/pdf (accessed on 20 May 2022).
- EC COMMISSION NOTICE: Guidelines for the Prudent Use of Antimicrobials in Veterinary Medicine. Official Journal of the European Union; European Commission. 2015. Available online: https://ec.europa.eu/health/system/files/2016-11/2015_prudent_use_guidelines_en_0.pdf (accessed on 2 June 2022).
- Nicola, I.; Gallina, G.; Cagnotti, G.; Gianella, P.; Valentini, F.; D’Angelo, A.; Bellino, C. A Retrospective, Observational Study on Antimicrobial Drug Use in Beef Fattening Operations in Northwestern Italy and Evaluation of Risk Factors Associated with Increased Antimicrobial Usage. Animals 2021, 11, 1925. [Google Scholar] [CrossRef] [PubMed]
- Lava, M.; Schüpbach-Regula, G.; Steiner, A.; Meylan, M. Antimicrobial Drug Use and Risk Factors Associated with Treatment Incidence and Mortality in Swiss Veal Calves Reared under Improved Welfare Conditions. Prev. Vet. Med. 2016, 126, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Borck Høg, B.; Dalhoff Andersen, V.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7, 540. [Google Scholar] [CrossRef]
- Sjölund, M.; Postma, M.; Collineau, L.; Lösken, S.; Backhans, A.; Belloc, C.; Emanuelson, U.; Beilage, E.G.; Stärk, K.; Dewulf, J. Quantitative and Qualitative Antimicrobial Usage Patterns in Farrow-to-Finish Pig Herds in Belgium, France, Germany and Sweden. Prev. Vet. Med. 2016, 130, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.L.; Swayne, D.E.; Glisson, J.R.; McDougald, L.R.; Nolan, L.K.; Suarez, D.L. Diseases of Poultry; Wiley: Somerset, UK, 2013; ISBN 978-1-118-71973-2. [Google Scholar]
- Temtem, C.; Kruse, A.B.; Nielsen, L.R.; Pedersen, K.S.; Alban, L. Comparison of the Antimicrobial Consumption in Weaning Pigs in Danish Sow Herds with Different Vaccine Purchase Patterns during 2013. Porc. Health Manag. 2016, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- RFSA. Cartography of Therapeutic Gaps in FRANCE; Réseau Français pour la Santé Animale. 2021. Available online: https://www.reseau-francais-sante-animale.net/le-rfsa/cartographie-des-gaps-therapeutiques/ (accessed on 11 June 2022).
- Sammul, M.; Mõtus, K.; Kalmus, P. The Use of Colistin in Food-Producing Animals in Estonia—Vaccination as an Effective Alternative to Consumption of Critically Important Antimicrobials in Pigs. Antibiotics 2021, 10, 499. [Google Scholar] [CrossRef] [PubMed]
- Jabif, M.F.; Gumina, E.; Hall, J.W.; Hernandez-Velasco, X.; Layton, S. Evaluation of a Novel Mucosal Administered Subunit Vaccine on Colostrum IgA and Serum IgG in Sows and Control of Enterotoxigenic Escherichia coli in Neonatal and Weanling Piglets: Proof of Concept. Front. Vet. Sci. 2021, 8, 640228. [Google Scholar] [CrossRef]
- Vanrolleghem, W.; Tanghe, S.; Verstringe, S.; Bruggeman, G.; Papadopoulos, D.; Trevisi, P.; Zentek, J.; Sarrazin, S.; Dewulf, J. Potential Dietary Feed Additives with Antibacterial Effects and Their Impact on Performance of Weaned Piglets: A Meta-Analysis. Vet. J. 2019, 249, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Ives, S.E.; Richeson, J.T. Use of Antimicrobial Metaphylaxis for the Control of Bovine Respiratory Disease in High-Risk Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Grein, K.; Jungbäck, C.; Kubiak, V. Autogenous Vaccines: Quality of Production and Movement in a Common Market. Biologicals 2022, 76, 36–41. [Google Scholar] [CrossRef]
- Leistner, L. Basic Aspects of Food Preservation by Hurdle Technology. Int. J. Food Microbiol. 2000, 55, 181–186. [Google Scholar] [CrossRef]
- Gelaude, P.; Schlepers, M.; Verlinden, M.; Laanen, M.; Dewulf, J. Biocheck.UGent: A Quantitative Tool to Measure Biosecurity at Broiler Farms and the Relationship with Technical Performances and Antimicrobial Use. Poult. Sci. 2014, 93, 2740–2751. [Google Scholar] [CrossRef]
- Rodrigues da Costa, M.; Gasa, J.; Calderón Díaz, J.A.; Postma, M.; Dewulf, J.; McCutcheon, G.; Manzanilla, E.G. Using the Biocheck.UGentTM Scoring Tool in Irish Farrow-to-Finish Pig Farms: Assessing Biosecurity and Its Relation to Productive Performance. Porc. Health Manag. 2019, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Caekebeke, N.; Ringenier, M.; Jonquiere, F.; Tobias, T.; Postma, M.; van den Hoogen, A.; Houben, M.; Velkers, F.; Sleeckx, N.; Stegeman, A.; et al. Coaching Belgian and Dutch Broiler Farmers Aimed at Antimicrobial Stewardship and Disease Prevention. Antibiotics 2021, 10, 590. [Google Scholar] [CrossRef]
- Raasch, S.; Collineau, L.; Postma, M.; Backhans, A.; Sjölund, M.; Belloc, C.; Emanuelson, U.; Stärk, K.; Dewulf, J. Effectiveness of Alternative Measures to Reduce Antimicrobial Usage in Pig Production in Four European Countries. Porc. Health Manag. 2020, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grakh, K.; Mittal, D.; Prakash, A.; Jindal, N. Characterization And Antimicrobial Susceptibility Of Biofilm-Producing Avian Pathogenic Escherichia coli From Broiler Chickens And Their Environment In India. Vet. Res. Commun. 2022, 46, 537–548. [Google Scholar] [CrossRef]
- Benameur, Q.; Gervasi, T.; Giarratana, F.; Vitale, M.; Anzà, D.; La Camera, E.; Nostro, A.; Cicero, N.; Marino, A. Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria. Antibiotics 2021, 10, 1157. [Google Scholar] [CrossRef] [PubMed]
- Speksnijder, D.C.; Jaarsma, A.D.C.; van der Gugten, A.C.; Verheij, T.J.M.; Wagenaar, J.A. Determinants Associated with Veterinary Antimicrobial Prescribing in Farm Animals in the Netherlands: A Qualitative Study. Zoonoses Public Health 2015, 62, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berckmans, D. General Introduction to Precision Livestock Farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Lehr, H.; Black, J.L.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision Livestock Farming: An International Review of Scientific and Commercial Aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Eysenbach, G. Improving the Quality of Web Surveys: The Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J. Med. Internet Res. 2004, 6, e34. [Google Scholar] [CrossRef]
Decision Making-Basis | Depending on the Severity of the Symptoms and the Suspected Agent/ Condition Involved | Known Disease Which Spreads Quickly | Diagnosis of Further Laboratory Testing/Microbiology/ In Vitro Sensitivity Testing | |
---|---|---|---|---|
Type of Practice | ||||
Mixed practice | 39.3% | 35.3% | 25.4% | |
(n = 161) | (n = 145) | (n = 104) | ||
Practice specialized in pigs | 38.7% | 37.4% | 23.9% | |
(n = 102) | (n = 99) | (n = 63) | ||
Practice specialized in cattle | 36.6% | 40.5% | 22.9% | |
(n = 96) | (n = 106) | (n = 60) | ||
Practice specialized in poultry, incl. chicken and turkeys | 36.7% | 28.2% | 35.1% | |
(n = 70) | (n = 54) | (n = 67) | ||
Other | Cuniculture | 31.2% | 31.3% | 37.5% |
(n = 5) | (n = 5) | (n = 6) | ||
Practice specialized in sheep and goats | 40% | 33.3% | 26.7% | |
(n = 6) | (n = 5) | (n = 4) | ||
Total | 38% | 35.8% | 26.2% | |
(n = 440) | (n = 414) | (n = 304) |
Practice Type | Mixed Practice | Cattle Practice | Pig Practice | Poultry Practice | Sheep/Goat Practice | Cuniculture Practice | Total | |
---|---|---|---|---|---|---|---|---|
Consequences | ||||||||
Increased mortality | 42.2% | 43.1% | 46.0% | 35.9% | 57.1% | 30.8% | 42.2% | |
(n = 129) | (n = 110) | (n = 104) | (n = 66) | (n = 8) | (n = 4) | (n = 421) | ||
Increased morbidity | 21.9% | 20.8% | 22.6% | 13.6% | 14.3% | 23.1% | 20.1% | |
(n = 67) | (n = 53) | (n = 51) | (n = 25) | (n = 2) | (n = 3) | (n = 201) | ||
Decreased production and economic loss | 14.0% | 12.9% | 14.2% | 11.4% | 14.3% | 23.1% | 13.4% | |
(n = 43) | (n = 33) | (n = 32) | (n = 21) | (n = 2) | (n = 3) | (n = 134) | ||
Lower welfare | 8.2% | 7.5% | 8.4% | 18.5% | 7.1% | 15.4% | 10.0% | |
(n = 25) | (n = 19) | (n = 19) | (n = 34) | (n = 1) | (n = 2) | (n = 100) | ||
Increased antibiotic treatment | 5.9% | 6.3% | 4.9% | 3.8% | 0.00% | 0.00% | 5.2% | |
(n = 18) | (n = 16) | (n = 11) | (n = 7) | (n = 0) | (n = 0) | (n = 52) | ||
Increased chronicity | 4.3% | 7.0% | 1.8% | 3.3% | 0.00% | 0.00% | 4.1% | |
(n = 13) | (n = 18) | (n = 4) | (n = 6) | (n = 0) | (n = 0) | (n = 41) | ||
Practical/Management issues | 1.0% | 0.8% | 1.3% | 10.3% | 0.00% | 7.7% | 2.8% | |
(n = 3) | (n = 2) | (n = 3) | (n = 19) | (n = 0) | (n = 1) | (n = 28) | ||
None | 2.3% | 1.6% | 0.5% | 1.1% | 7.1% | 0.00% | 1.5% | |
(n = 7) | (n = 4) | (n = 1) | (n = 2) | (n = 1) | (n = 0) | (n = 15) | ||
Public health risk | 0.3% | 0.00% | 0.4% | 2.2% | 0.00% | 0.00% | 0.6% | |
(n = 1) | (n = 0) | (n = 1) | (n = 4) | (n = 0) | (n = 0) | (n = 6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerab, J.; Jansen, W.; Blackwell, J.; van Hout, J.; Palzer, A.; Lister, S.; Chantziaras, I.; Dewulf, J.; De Briyne, N. Real-World Data on Antibiotic Group Treatment in European Livestock: Drivers, Conditions, and Alternatives. Antibiotics 2022, 11, 1046. https://doi.org/10.3390/antibiotics11081046
Jerab J, Jansen W, Blackwell J, van Hout J, Palzer A, Lister S, Chantziaras I, Dewulf J, De Briyne N. Real-World Data on Antibiotic Group Treatment in European Livestock: Drivers, Conditions, and Alternatives. Antibiotics. 2022; 11(8):1046. https://doi.org/10.3390/antibiotics11081046
Chicago/Turabian StyleJerab, Julia, Wiebke Jansen, John Blackwell, Jobke van Hout, Andreas Palzer, Stephen Lister, Ilias Chantziaras, Jeroen Dewulf, and Nancy De Briyne. 2022. "Real-World Data on Antibiotic Group Treatment in European Livestock: Drivers, Conditions, and Alternatives" Antibiotics 11, no. 8: 1046. https://doi.org/10.3390/antibiotics11081046
APA StyleJerab, J., Jansen, W., Blackwell, J., van Hout, J., Palzer, A., Lister, S., Chantziaras, I., Dewulf, J., & De Briyne, N. (2022). Real-World Data on Antibiotic Group Treatment in European Livestock: Drivers, Conditions, and Alternatives. Antibiotics, 11(8), 1046. https://doi.org/10.3390/antibiotics11081046