Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents
Abstract
:1. Introduction
2. Surface-Active Compounds
2.1. Biosurfactants
2.2. Bioemulsifier (BE)
2.3. Microorganisms Producing SACS
3. Biological Properties
3.1. Antimicrobial Activities
3.2. Antiviral Activity
3.3. Anti-Inflammatory Activity
3.4. Anticancer Activity
3.5. Antibiofilm Activity
3.6. Wound Healing
3.7. Other Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | angiotensin-converting enzyme 2 |
BE | bioemulsifier |
BS | biosurfactant |
CD4 | differentiation cluster 4 |
CD25 | differentiation cluster 25 |
CD31 | differentiation cluster 31 |
COX-2 | cyclooxygenase-2 |
FOXP3 | Forkhead box protein P3 |
HIF-1α | hypoxia-inducible factor-1α |
HT-29 | human colorectal adenocarcinoma |
IL-2 | interleukin 2 |
IL-10 | interleukin 10 |
IL1-1β | interleukin 10-1β |
IL-8 | interleukin 8 |
IgE | immunoglobulin E |
iNOS | inducible nitric oxide synthase |
LP78 | lipopeptide 78 |
MBHA | (4-Methylbenzhydrylamine) |
MAPK | mitogen-activated protein kinase |
MELs | mannosylerythritol lipids |
MIC | minimum inhibitory concentration |
MICs | minimum inhibitory concentrations |
MRSA | methicillin-resistant S. aureus |
NF | κB factor nuclear-κB |
NF | κBp65- nuclear factor kappa- β p65 |
NLPB | nanolipopeptide biosurfactant |
NO | nitric oxide |
P-Akt | P-mitogen-activated |
P-GSK3β | protein kinase syntoxic glycogen-3 beta |
PPARγ | peroxisome proliferator-activated receptor γ |
QS | quorum sensing |
RL | rhamnolipid |
SACs | surface-active compounds |
TGF-β | transforming growth factor |
TLR3 | Toll-like receptor 3 |
TNF-α | tumor necrosis factor α |
USSA | ultrashort synthetic surface active |
α-SMA | influencing α-smooth muscle actin |
References
- Franzetti, A.; Tamburini, E.; Banat, I.M. Applications of Biological Surface-Active Compounds in Remediation Technologies. Adv. Exp. Med. Biol. 2010, 672, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Phulpoto, I.A.; Yu, Z.; Hu, B.; Wang, Y.; Ndayisenga, F.; Li, J.; Liang, H.; Qazi, M.A. Production and Characterization of Surfactin-like Biosurfactant Produced by Novel Strain Bacillus nealsonii S2MT and It’s Potential for Oil Contaminated Soil Remediation. Microb. Cell Fact. 2020, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Uzoigwe, C.; Burgess, J.G.; Ennis, C.J.; Rahman, P.K.S.M. Bioemulsifiers Are Not Biosurfactants and Require Different Screening Approaches. Front. Microbiol. 2015, 6, 245. [Google Scholar] [CrossRef] [PubMed]
- Durval, I.J.B.; Mendonça, A.H.R.; Rocha, I.V.; Luna, J.M.; Rufino, R.D.; Converti, A.; Sarubbo, L.A. Production, Characterization, Evaluation and Toxicity Assessment of a Bacillus cereus UCP 1615 Biosurfactant for Marine Oil Spills Bioremediation. Mar. Pollut. Bull. 2020, 157, 111357. [Google Scholar] [CrossRef]
- Ceresa, C.; Tessarolo, F.; Maniglio, D.; Tambone, E.; Carmagnola, I.; Fedeli, E.; Caola, I.; Nollo, G.; Chiono, V.; Allegrone, G.; et al. Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Staphylococcus spp. Biofilms. Molecules 2019, 24, 3843. [Google Scholar] [CrossRef]
- Md Badrul Hisham, N.H.; Ibrahim, M.F.; Ramli, N.; Abd-Aziz, S. Production of Biosurfactant Produced from Used Cooking Oil by Bacillus Sp. HIP3 for Heavy Metals Removal. Molecules 2019, 24, 2617. [Google Scholar] [CrossRef]
- Yamasaki, R.; Kawano, A.; Yoshioka, Y.; Ariyoshi, W. Rhamnolipids and Surfactin Inhibit the Growth or Formation of Oral Bacterial Biofilm. BMC Microbiol. 2020, 20, 358. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, B.; Yang, F.; Dai, M.; Sehar, S.; Peng, C.; Ali, I.; Naz, I. Optimization of Biosurfactant Production from Pseudomonas sp. CQ2 and Its Application for Remediation of Heavy Metal Contaminated Soil. Chemosphere 2021, 265, 129090. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus Biofilm: An Emerging Battleground in Microbial Communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Gaur, V.K.; Regar, R.K.; Dhiman, N.; Gautam, K.; Srivastava, J.K.; Patnaik, S.; Kamthan, M.; Manickam, N. Biosynthesis and Characterization of Sophorolipid Biosurfactant by Candida spp.: Application as Food Emulsifier and Antibacterial Agent. Bioresour. Technol. 2019, 285, 121314. [Google Scholar] [CrossRef]
- Kumari, A.; Kumari, S.; Prasad, G.S.; Pinnaka, A.K. Production of Sophorolipid Biosurfactant by Insect Derived Novel Yeast Metschnikowia churdharensis f.A., Sp. Nov., and Its Antifungal Activity against Plant and Human Pathogens. Front. Microbiol. 2021, 12, 678668. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, R.; Buonocore, C.; Zannella, C.; Chianese, A.; Palma Esposito, F.; Tedesco, P.; De Filippis, A.; Galdiero, M.; Franci, G.; de Pascale, D. Antiviral Activity of the Rhamnolipids Mixture from the Antarctic Bacterium Pseudomonas gessardii M15 against Herpes simplex Viruses and Coronaviruses. Pharmaceutics 2021, 13, 2121. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Jung, H.; Kim, H.-M.; Jeong, H.-J. Surfactin Exerts an Anti-Cancer Effect through Inducing Allergic Reactions in Melanoma Skin Cancer. Int. Immunopharmacol. 2021, 99, 107934. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, C.; Fracchia, L.; Fedeli, E.; Porta, C.; Banat, I.M. Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics 2021, 13, 466. [Google Scholar] [CrossRef]
- Mujumdar, S.; Joshi, P.; Karve, N. Production, Characterization, and Applications of Bioemulsifiers (BE) and Biosurfactants (BS) Produced by Acinetobacter Spp.: A Review. J. Basic Microbiol. 2019, 59, 277–287. [Google Scholar] [CrossRef]
- Cazals, F.; Huguenot, D.; Crampon, M.; Colombano, S.; Betelu, S.; Galopin, N.; Perrault, A.; Simonnot, M.-O.; Ignatiadis, I.; Rossano, S. Production of Biosurfactant Using the Endemic Bacterial Community of a PAHs Contaminated Soil, and Its Potential Use for PAHs Remobilization. Sci. Total Environ. 2020, 709, 136143. [Google Scholar] [CrossRef]
- Loeto, D.; Jongman, M.; Lekote, L.; Muzila, M.; Mokomane, M.; Motlhanka, K.; Ndlovu, T.; Zhou, N. Biosurfactant Production by Halophilic Yeasts Isolated from Extreme Environments in Botswana. FEMS Microbiol. Lett. 2021, 368, 146. [Google Scholar] [CrossRef]
- Silva, M.E.T.; Duvoisin, S., Jr.; Oliveira, R.L.; Banhos, E.F.; Souza, A.Q.L.; Albuquerque, P.M. Biosurfactant Production of Piper hispidum Endophytic Fungi. J. Appl. Microbiol. 2021, 130, 561–569. [Google Scholar] [CrossRef]
- Nayarisseri, A.; Singh, P.; Singh, S.K. Screening, Isolation and Characterization of Biosurfactant-Producing Bacillus tequilensis Strain ANSKLAB04 from Brackish River Water. Int. J. Environ. Sci. Technol. 2019, 16, 7103–7112. [Google Scholar] [CrossRef]
- Desai, J.D.; Banat, I.M. Microbial Production of Surfactants and Their Commercial Potential. Fuel Energy Abstr. 1997, 38, 221. [Google Scholar] [CrossRef]
- Chen, W.-C.; Juang, R.-S.; Wei, Y.-H. Applications of a Lipopeptide Biosurfactant, Surfactin, Produced by Microorganisms. Biochem. Eng. J. 2015, 103, 158–169. [Google Scholar] [CrossRef]
- Otzen, D.E. Biosurfactants and Surfactants Interacting with Membranes and Proteins: Same but Different? Biochim. Biophys. Acta 2017, 1859, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.E.; Tian, F.; Malm, S.W.; Olivares, C.; Palos Pacheco, R.; Simonich, M.T.; Hunjan, A.S.; Tanguay, R.L.; Klimecki, W.T.; Polt, R.; et al. Biodegradability and Toxicity of Monorhamnolipid Biosurfactant Diastereomers. J. Hazard. Mater. 2019, 364, 600–607. [Google Scholar] [CrossRef]
- Qazi, M.A.; Wang, Q.; Dai, Z. Sophorolipids Bioproduction in the Yeast Starmerella bombicola: Current Trends and Perspectives. Bioresour. Technol. 2022, 346, 126593. [Google Scholar] [CrossRef]
- Ceresa, C.; Hutton, S.; Lajarin-Cuesta, M.; Heaton, R.; Hargreaves, I.; Fracchia, L.; De Rienzo, M.A.D. Production of Mannosylerythritol Lipids (MELs) to Be Used as Antimicrobial Agents against S. aureus ATCC 6538. Curr. Microbiol. 2020, 77, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wu, J.; Wang, W.; Chen, Q. Production and Characterization of a New Glycolipid, Mannosylerythritol Lipid, from Waste Cooking Oil Biotransformation by Pseudozyma aphidis ZJUDM34. Food Sci. Nutr. 2019, 7, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Luong, T.M.; Ponamoreva, O.N.; Nechaeva, I.A.; Petrikov, K.V.; Delegan, Y.A.; Surin, A.K.; Linklater, D.; Filonov, A.E. Characterization of Biosurfactants Produced by the Oil-Degrading Bacterium Rhodococcus erythropolis S67 at Low Temperature. World J. Microbiol. Biotechnol. 2018, 34, 20. [Google Scholar] [CrossRef]
- Kubicki, S.; Bollinger, A.; Katzke, N.; Jaeger, K.-E.; Loeschcke, A.; Thies, S. Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar. Drugs 2019, 17, 408. [Google Scholar] [CrossRef]
- Hu, F.; Liu, Y.; Li, S. Rational Strain Improvement for Surfactin Production: Enhancing the Yield and Generating Novel Structures. Microb. Cell Fact. 2019, 18, 42. [Google Scholar] [CrossRef]
- Habe, H.; Taira, T.; Sato, Y.; Imura, T.; Ano, T. Evaluation of Yield and Surface Tension-Lowering Activity of Iturin a Produced by Bacillus subtilis RB14. J. Oleo Sci. 2019, 68, 1157–1162. [Google Scholar] [CrossRef]
- Sarwar, A.; Brader, G.; Corretto, E.; Aleti, G.; Abaidullah, M.; Sessitsch, A.; Hafeez, F.Y. Qualitative Analysis of Biosurfactants from Bacillus Species Exhibiting Antifungal Activity. PLoS ONE 2018, 13, e0198107. [Google Scholar] [CrossRef]
- Denoirjean, T.; Doury, G.; Poli, P.; Coutte, F.; Ameline, A. Effects of Bacillus Lipopeptides on the Survival and Behavior of the Rosy Apple Aphid Dysaphis Plantaginea. Ecotoxicol. Environ. Saf. 2021, 226, 112840. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Patil, Y.; Rale, V. Biosurfactant Production: Emerging Trends and Promising Strategies. J. Appl. Microbiol. 2019, 126, 2–13. [Google Scholar] [CrossRef]
- Zambry, N.S.; Rusly, N.S.; Awang, M.S.; Md Noh, N.A.; Yahya, A.R.M. Production of Lipopeptide Biosurfactant in Batch and Fed-Batch Streptomyces sp. PBD-410L Cultures Growing on Palm Oil. Bioprocess Biosyst. Eng. 2021, 44, 1577–1592. [Google Scholar] [CrossRef] [PubMed]
- Pardhi, D.S.; Panchal, R.R.; Raval, V.H.; Rajput, K.N. Statistical Optimization of Medium Components for Biosurfactant Production by Pseudomonas guguanensis D30. Prep. Biochem. Biotechnol. 2022, 52, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.A.; Rodríguez, D.M.; Ferreira, I.N.d.S.; de Almeida, S.M.; Takaki, G.M.d.C.; de Lima, M.A.B. Novel Production of Biodispersant by Serratia marcescens UCP 1549 in Solid-State Fermentation and Application for Oil Spill Bioremediation. Environ. Technol. 2021, 43, 1–12. [Google Scholar] [CrossRef]
- Elkhawaga, M.A. Optimization and Characterization of Biosurfactant from Streptomyces griseoplanus NRRL-ISP5009 (MS1). J. Appl. Microbiol. 2018, 124, 691–707. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E.M.N. Biosurfactant-Enhanced Bioremediation of Aged Polycyclic Aromatic Hydrocarbons (PAHs) in Creosote Contaminated Soil. Chemosphere 2016, 144, 635–644. [Google Scholar] [CrossRef]
- Elakkiya, V.T.; SureshKumar, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Govindarajan, M. Swift Production of Rhamnolipid Biosurfactant, Biopolymer and Synthesis of Biosurfactant-Wrapped Silver Nanoparticles and Its Enhanced Oil Recovery. Saudi J. Biol. Sci. 2020, 27, 1892–1899. [Google Scholar] [CrossRef]
- Nurfarahin, A.H.; Mohamed, M.S.; Phang, L.Y. Culture Medium Development for Microbial-Derived Surfactants Production-an Overview. Molecules 2018, 23, 1049. [Google Scholar] [CrossRef]
- Liu, J.-F.; Mbadinga, S.M.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation. Int. J. Mol. Sci. 2015, 16, 4814–4837. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, D.G.; Soares Da Silva, R.d.C.F.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Banat, I.M.; Sarubbo, L.A. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances. Front. Microbiol. 2016, 7, 1718. [Google Scholar] [CrossRef] [PubMed]
- Ostendorf, T.A.; Silva, I.A.; Converti, A.; Sarubbo, L.A. Production and Formulation of a New Low-Cost Biosurfactant to Remediate Oil-Contaminated Seawater. J. Biotechnol. 2019, 295, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.A.; Veras, B.O.; Ribeiro, B.G.; Aguiar, J.S.; Campos Guerra, J.M.; Luna, J.M.; Sarubbo, L.A. Production of Cupcake-like Dessert Containing Microbial Biosurfactant as an Emulsifier. PeerJ 2020, 8, e9064. [Google Scholar] [CrossRef]
- Ohadi, M.; Shahravan, A.; Dehghannoudeh, N.; Eslaminejad, T.; Banat, I.M.; Dehghannoudeh, G. Potential Use of Microbial Surfactant in Microemulsion Drug Delivery System: A Systematic Review. Drug Des. Dev. Ther. 2020, 14, 541–550. [Google Scholar] [CrossRef]
- Abdelli, F.; Jardak, M.; Elloumi, J.; Stien, D.; Cherif, S.; Mnif, S.; Aifa, S. Antibacterial, Anti-Adherent and Cytotoxic Activities of Surfactin(s) from a Lipolytic Strain Bacillus safensis F4. Biodegradation 2019, 30, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, M.; Dhanarajan, G.; Chopra, J.; Kumar, R.; Hazra, C.; Sen, R. Production, Partial Purification and Characterization of a Proteoglycan Bioemulsifier from an Oleaginous Yeast. Bioprocess Biosyst. Eng. 2020, 43, 1747–1759. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. High- and Low-Molecular-Mass Microbial Surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar] [CrossRef]
- Ortega-de la Rosa, N.D.; Vázquez-Vázquez, J.L.; Huerta-Ochoa, S.; Gimeno, M.; Gutiérrez-Rojas, M. Stable Bioemulsifiers Are Produced by Acinetobacter bouvetii UAM25 Growing in Different Carbon Sources. Bioprocess Biosyst. Eng. 2018, 41, 859–869. [Google Scholar] [CrossRef]
- Patil, J.R.; Chopade, B.A. Studies on Bioemulsifier Production by Acinetobacter Strains Isolated from Healthy Human Skin. J. Appl. Microbiol. 2001, 91, 290–298. [Google Scholar] [CrossRef]
- Fan, Y.; Tao, W.; Huang, H.; Li, S. Characterization of a Novel Bioemulsifier from Pseudomonas stutzeri. World J. Microbiol. Biotechnol. 2017, 33, 161. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.I.; Olaniran, A.O. Production and Characterization of Bioemulsifiers from Acinetobacter strains Isolated from Lipid-Rich Wastewater. 3 Biotech 2019, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Marques, N.S.A.A.; Silva, I.G.S.d.; Cavalcanti, D.L.; Maia, P.C.S.V.; Santos, V.P.; Andrade, R.F.S.; Campos-Takaki, G.M. Eco-Friendly Bioemulsifier Production by Mucor Circinelloides UCP0001 Isolated from Mangrove Sediments Using Renewable Substrates for Environmental Applications. Biomolecules 2020, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Gudiña, E.J.; Pereira, J.F.B.; Costa, R.; Evtuguin, D.V.; Coutinho, J.A.P.; Teixeira, J.A.; Rodrigues, L.R. Novel Bioemulsifier Produced by a Paenibacillus Strain Isolated from Crude Oil. Microb. Cell Fact. 2015, 14, 14. [Google Scholar] [CrossRef]
- Tao, W.; Lin, J.; Wang, W.; Huang, H.; Li, S. Designer Bioemulsifiers Based on Combinations of Different Polysaccharides with the Novel Emulsifying Esterase AXE from Bacillus Subtilis CICC 20034. Microb. Cell Fact. 2019, 18, 173. [Google Scholar] [CrossRef] [PubMed]
- Dastgheib, S.M.M.; Amoozegar, M.A.; Elahi, E.; Asad, S.; Banat, I.M. Bioemulsifier Production by a Halothermophilic Bacillus Strain with Potential Applications in Microbially Enhanced Oil Recovery. Biotechnol. Lett. 2008, 30, 263–270. [Google Scholar] [CrossRef]
- Goldman, S.; Shabtai, Y.; Rubinovitz, C.; Rosenberg, E.; Gutnick, D.L. Emulsan in Acinetobacter calcoaceticus RAG-1: Distribution of Cell-Free and Cell-Associated Cross-Reacting Material. Appl. Environ. Microbiol. 1982, 44, 165–170. [Google Scholar] [CrossRef]
- Toren, A.; Navon-Venezia, S.; Ron, E.Z.; Rosenberg, E. Emulsifying Activities of Purified Alasan Proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol. 2001, 67, 1102–1106. [Google Scholar] [CrossRef]
- Ohadi, M.; Dehghannoudeh, G.; Forootanfar, H.; Shakibaie, M.; Rajaee, M. Investigation of the Structural, Physicochemical Properties, and Aggregation Behavior of Lipopeptide Biosurfactant Produced by Acinetobacter junii B6. Int. J. Biol. Macromol. 2018, 112, 712–719. [Google Scholar] [CrossRef]
- Dong, H.; Xia, W.; Dong, H.; She, Y.; Zhu, P.; Liang, K.; Zhang, Z.; Liang, C.; Song, Z.; Sun, S.; et al. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and Its Potential in Enhanced Oil Recovery. Front. Microbiol. 2016, 7, 1710. [Google Scholar] [CrossRef]
- Rosenberg, E.; Rubinovitz, C.; Gottlieb, A.; Rosenhak, S.; Ron, E.Z. Production of Biodispersan by Acinetobacter calcoaceticus A2. Appl. Environ. Microbiol. 1988, 54, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Klausmann, P.; Hennemann, K.; Hoffmann, M.; Treinen, C.; Aschern, M.; Lilge, L.; Morabbi Heravi, K.; Henkel, M.; Hausmann, R. Bacillus subtilis High Cell Density Fermentation Using a Sporulation-Deficient Strain for the Production of Surfactin. Appl. Microbiol. Biotechnol. 2021, 105, 4141–4151. [Google Scholar] [CrossRef] [PubMed]
- Díaz De Rienzo, M.A.; Kamalanathan, I.D.; Martin, P.J. Comparative Study of the Production of Rhamnolipid Biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 Using Foam Fractionation. Process Biochem. 2016, 51, 820–827. [Google Scholar] [CrossRef]
- Kim, Y.T.; Kim, S.E.; Lee, W.J.; Fumei, Z.; Cho, M.S.; Moon, J.S.; Oh, H.-W.; Park, H.-Y.; Kim, S.U. Isolation and Characterization of a High Iturin Yielding Bacillus Velezensis UV Mutant with Improved Antifungal Activity. PLoS ONE 2020, 15, e0234177. [Google Scholar] [CrossRef]
- Ganji, Z.; Beheshti-Maal, K.; Massah, A.; Emami-Karvani, Z. A Novel Sophorolipid-Producing Candida keroseneae GBME-IAUF-2 as a Potential Agent in Microbial Enhanced Oil Recovery (MEOR). FEMS Microbiol. Lett. 2020, 367, fnaa144. [Google Scholar] [CrossRef]
- Rufino, R.D.; Luna, J.M.; Sarubbo, L.A.; Rodrigues, L.R.M.; Teixeira, J.A.C.; Campos-Takaki, G.M. Antimicrobial and Anti-Adhesive Potential of a Biosurfactant Rufisan Produced by Candida lipolytica UCP 0988. Colloids Surf. B Biointerfaces 2011, 84, 1–5. [Google Scholar] [CrossRef]
- Nelson, J.; El-Gendy, A.O.; Mansy, M.S.; Ramadan, M.A.; Aziz, R.K. The Biosurfactants Iturin, Lichenysin and Surfactin, from Vaginally Isolated Lactobacilli, Prevent Biofilm Formation by Pathogenic Candida. FEMS Microbiol. Lett. 2020, 367, fnaa126. [Google Scholar] [CrossRef]
- Zhao, F.; Han, S.; Zhang, Y. Comparative Studies on the Structural Composition, Surface/Interface Activity and Application Potential of Rhamnolipids Produced by Pseudomonas aeruginosa Using Hydrophobic or Hydrophilic Substrates. Bioresour. Technol. 2020, 295, 122269. [Google Scholar] [CrossRef] [PubMed]
- Bonnichsen, L.; Bygvraa Svenningsen, N.; Rybtke, M.; de Bruijn, I.; Raaijmakers, J.M.; Tolker-Nielsen, T.; Nybroe, O. Lipopeptide Biosurfactant Viscosin Enhances Dispersal of Pseudomonas fluorescens SBW25 Biofilms. Microbiology 2015, 161, 2289–2297. [Google Scholar] [CrossRef]
- Phulpoto, I.A.; Wang, Y.; Qazi, M.A.; Hu, B.; Ndayisenga, F.; Yu, Z. Bioprospecting of Rhamnolipids Production and Optimization by an Oil-Degrading Pseudomonas sp. S2WE Isolated from Freshwater Lake. Bioresour. Technol. 2021, 323, 124601. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, T.; Liu, J. A Novel Serratia Sp. ZS6 Isolate Derived from Petroleum Sludge Secretes Biosurfactant and Lipase in Medium with Olive Oil as Sole Carbon Source. AMB Express 2018, 8, 165. [Google Scholar] [CrossRef] [PubMed]
- Amaral, P.F.F.; da Silva, J.M.; Lehocky, M.; Barros-Timmons, A.M.V.; Coelho, M.A.Z.; Marrucho, I.M.; Coutinho, J.A.P. Production and Characterization of a Bioemulsifier from Yarrowia lipolytica. Process Biochem. 2006, 41, 1894–1898. [Google Scholar] [CrossRef]
- de Souza Monteiro, A.; Domingues, V.S.; Souza, M.V.; Lula, I.; Gonçalves, D.B.; de Siqueira, E.P.; Dos Santos, V.L. Bioconversion of Biodiesel Refinery Waste in the Bioemulsifier by Trichosporon Mycotoxinivorans CLA2. Biotechnol. Biofuels 2012, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Anestopoulos, I.; Kiousi, D.E.; Klavaris, A.; Galanis, A.; Salek, K.; Euston, S.R.; Pappa, A.; Panayiotidis, M.I. Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance. Pharmaceutics 2020, 12, 688. [Google Scholar] [CrossRef]
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal Transfer of Antibiotic Resistance Genes in Clinical Environments. Can. J. Microbiol. 2019, 65, 34–44. [Google Scholar] [CrossRef]
- Melnyk, A.H.; Wong, A.; Kassen, R. The Fitness Costs of Antibiotic Resistance Mutations. Evol. Appl. 2015, 8, 273–283. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Colombo, A.L.; Júnior, J.N.d.A.; Guinea, J. Emerging Multidrug-Resistant Candida Species. Curr. Opin. Infect. Dis. 2017, 30, 528–538. [Google Scholar] [CrossRef]
- Kean, R.; Ramage, G. Combined Antifungal Resistance and Biofilm Tolerance: The Global Threat of Candida Auris. mSphere 2019, 4, e00458-19. [Google Scholar] [CrossRef]
- Kumar, A.; Nair, R.; Kumar, M.; Banerjee, A.; Chakrabarti, A.; Rudramurthy, S.M.; Bagga, R.; Gaur, N.A.; Mondal, A.K.; Prasad, R. Assessment of Antifungal Resistance and Associated Molecular Mechanism in Candida albicans Isolates from Different Cohorts of Patients in North Indian State of Haryana. Folia Microbiol. 2020, 65, 747–754. [Google Scholar] [CrossRef]
- Anestopoulos, I.; Kiousi, D.-E.; Klavaris, A.; Maijo, M.; Serpico, A.; Suarez, A.; Sanchez, G.; Salek, K.; Chasapi, S.A.; Zompra, A.A.; et al. Marine-Derived Surface Active Agents: Health-Promoting Properties and Blue Biotechnology-Based Applications. Biomolecules 2020, 10, 885. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, F.; Chen, H.; Li, M.; Qiao, F.; Liu, Z.; Hou, Y.; Wu, C.; Fan, Y.; Liu, L.; et al. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Appl. Mater. Interfaces 2016, 8, 4242–4249. [Google Scholar] [CrossRef] [PubMed]
- Labena, A.; Hegazy, M.A.; Sami, R.M.; Hozzein, W.N. Multiple Applications of a Novel Cationic Gemini Surfactant: Anti-Microbial, Anti-Biofilm, Biocide, Salinity Corrosion Inhibitor, and Biofilm Dispersion (Part II). Molecules 2020, 25, 1348. [Google Scholar] [CrossRef] [PubMed]
- Sana, S.; Datta, S.; Biswas, D.; Sengupta, D. Assessment of Synergistic Antibacterial Activity of Combined Biosurfactants Revealed by Bacterial Cell Envelop Damage. Biochim. Biophys. Acta Biomembr. 2018, 1860, 579–585. [Google Scholar] [CrossRef]
- Naughton, P.J.; Marchant, R.; Naughton, V.; Banat, I.M. Microbial Biosurfactants: Current Trends and Applications in Agricultural and Biomedical Industries. J. Appl. Microbiol. 2019, 127, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Haba, E.; Bouhdid, S.; Torrego-Solana, N.; Marqués, A.M.; Espuny, M.J.; García-Celma, M.J.; Manresa, A. Rhamnolipids as Emulsifying Agents for Essential Oil Formulations: Antimicrobial Effect against Candida albicans and Methicillin-Resistant Staphylococcus aureus. Int. J. Pharm. 2014, 476, 134–141. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Price, N.P.J.; Ray, K.J.; Kuo, T.-M. Production of Sophorolipid Biosurfactants by Multiple Species of the Starmerella (Candida) bombicola Yeast Clade: Sophorolipids from Yeasts. FEMS Microbiol. Lett. 2010, 311, 140–146. [Google Scholar] [CrossRef]
- Callaghan, B.; Lydon, H.; Roelants, S.L.K.W.; Van Bogaert, I.N.A.; Marchant, R.; Banat, I.M.; Mitchell, C.A. Lactonic Sophorolipids Increase Tumor Burden in Apcmin+/− Mice. PLoS ONE 2016, 11, e0156845. [Google Scholar] [CrossRef]
- Van Bogaert, I.N.A.; Zhang, J.; Soetaert, W. Microbial Synthesis of Sophorolipids. Process Biochem. 2011, 46, 821–833. [Google Scholar] [CrossRef]
- Sen, S.; Borah, S.N.; Bora, A.; Deka, S. Production, Characterization, and Antifungal Activity of a Biosurfactant Produced by Rhodotorula Babjevae YS3. Microb. Cell Fact. 2017, 16, 95. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Liu, B.; Zhu, Y.; Xiao, R.; Yang, W.; Ge, C.; Chen, Z. Biocontrol of Tomato Bacterial Wilt by the New Strain Bacillus velezensis FJAT-46737 and Its Lipopeptides. BMC Microbiol. 2020, 20, 160. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, G.; Zhou, S.; Sha, Z.; Sun, C. Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus Sp. CS30. Mar. Drugs 2019, 17, 199. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.J.; Viana, J.D.S.; Lopes, F.C.; Pereira, J.Q.; Dos Santos, D.M.; Oliveira, J.S.; Velho, R.V.; Crispim, S.M.; Nicoli, J.R.; Brandelli, A.; et al. Bacillus Spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides. Front. Microbiol. 2017, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, W.; Zhu, X.; Zhao, H.; Lu, Y.; Zhang, C.; Lu, Z. Surfactin Effectively Inhibits Staphylococcus aureus Adhesion and Biofilm Formation on Surfaces. Appl. Microbiol. Biotechnol. 2019, 103, 4565–4574. [Google Scholar] [CrossRef]
- Ohadi, M.; Forootanfar, H.; Dehghannoudeh, G.; Eslaminejad, T.; Ameri, A.; Shakibaie, M.; Adeli-Sardou, M. Antimicrobial, Anti-Biofilm, and Anti-Proliferative Activities of Lipopeptide Biosurfactant Produced by Acinetobacter junii B6. Microb. Pathog. 2020, 138, 103806. [Google Scholar] [CrossRef] [PubMed]
- Mouafo, T.H.; Mbawala, A.; Ndjouenkeu, R. Effect of Different Carbon Sources on Biosurfactants’ Production by Three Strains of Lactobacillus spp. Biomed Res. Int. 2018, 2018, 5034783. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, S.; Dietrich, R.; Märtlbauer, E.; Zhu, K. A Biosurfactant-Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angew. Chem. Int. Ed. Engl. 2017, 56, 1486–1490. [Google Scholar] [CrossRef]
- Vollenbroich, D.; Ozel, M.; Vater, J.; Kamp, R.M.; Pauli, G. Mechanism of Inactivation of Enveloped Viruses by the Biosurfactant Surfactin from Bacillus subtilis. Biologicals 1997, 25, 289–297. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, S.; Wang, Y.; Li, Y.; Wang, X.; Yang, Q. Surfactin Inhibits Membrane Fusion during Invasion of Epithelial Cells by Enveloped Viruses. J. Virol. 2018, 92, e00809-18. [Google Scholar] [CrossRef]
- Wu, W.; Wang, J.; Lin, D.; Chen, L.; Xie, X.; Shen, X.; Yang, Q.; Wu, Q.; Yang, J.; He, J.; et al. Super Short Membrane-Active Lipopeptides Inhibiting the Entry of Influenza A Virus. Biochim. Biophys. Acta 2015, 1848, 2344–2350. [Google Scholar] [CrossRef]
- Chowdhury, T.; Baindara, P.; Mandal, S.M. LPD-12: A Promising Lipopeptide to Control COVID-19. Int. J. Antimicrob. Agents 2021, 57, 106218. [Google Scholar] [CrossRef] [PubMed]
- Outlaw, V.K.; Bovier, F.T.; Mears, M.C.; Cajimat, M.N.; Zhu, Y.; Lin, M.J.; Addetia, A.; Lieberman, N.A.P.; Peddu, V.; Xie, X.; et al. Inhibition of Coronavirus Entry in vitro and ex vivo by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain. MBio 2020, 11, e01935-20. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, M.D.; Venkatesan, D.; Iyer, M.; Subbarayan, S.; Govindasami, V.; Roy, A.; Narayanasamy, A.; Kamalakannan, S.; Gopalakrishnan, A.V.; Thangarasu, R.; et al. Biosurfactants and Anti-Inflammatory Activity: A Potential New Approach towards COVID-19. Curr. Opin. Environ. Sci. Health 2020, 17, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Doncel, G.F.; Seyoum, T.; Eaton, K.M.; Zalenskaya, I.; Hagver, R.; Azim, A.; Gross, R. Sophorolipids, Microbial Glycolipids with Anti-Human Immunodeficiency Virus and Sperm-Immobilizing Activities. Antimicrob. Agents Chemother. 2005, 49, 4093–4100. [Google Scholar] [CrossRef] [PubMed]
- Borsanyiova, M.; Patil, A.; Mukherji, R.; Prabhune, A.; Bopegamage, S. Biological Activity of Sophorolipids and Their Possible Use as Antiviral Agents. Folia Microbiol. 2016, 61, 85–89. [Google Scholar] [CrossRef]
- Remichkova, M.; Galabova, D.; Roeva, I.; Karpenko, E.; Shulga, A.; Galabov, A.S. Anti-Herpesvirus Activities of Pseudomonas sp. S-17 Rhamnolipid and Its Complex with Alginate. Z. Naturforsch. C 2008, 63, 75–81. [Google Scholar] [CrossRef]
- Lozach, P.-Y. Cell Biology of Viral Infections. Cells 2020, 9, 2431. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The Crucial Roles of Inflammatory Mediators in Inflammation: A Review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Shi, F.; Li, X.; Hu, Z.; Chu, J. Protective Effect of Surfactin on Copper Sulfate-Induced Inflammation, Oxidative Stress, and Hepatic Injury in Zebrafish. Microbiol. Immunol. 2021, 65, 410–421. [Google Scholar] [CrossRef]
- Gan, P.; Jin, D.; Zhao, X.; Gao, Z.; Wang, S.; Du, P.; Qi, G. Bacillus-Produced Surfactin Attenuates Chronic Inflammation in Atherosclerotic Lesions of ApoE(−/−) Mice. Int. Immunopharmacol. 2016, 35, 226–234. [Google Scholar] [CrossRef]
- Xu, W.; Liu, H.; Wang, X.; Yang, Q. Surfactin Induces Maturation of Dendritic Cells in Vitro. Biosci. Rep. 2016, 36, e00387. [Google Scholar] [CrossRef] [PubMed]
- Maeng, Y.; Kim, K.T.; Zhou, X.; Jin, L.; Kim, K.S.; Kim, Y.H.; Lee, S.; Park, J.H.; Chen, X.; Kong, M.; et al. A Novel Microbial Technique for Producing High-Quality Sophorolipids from Horse Oil Suitable for Cosmetic Applications. Microb. Biotechnol. 2018, 11, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Hagler, M.; Smith-Norowitz, T.A.; Chice, S.; Wallner, S.R.; Viterbo, D.; Mueller, C.M.; Gross, R.; Nowakowski, M.; Schulze, R.; Zenilman, M.E.; et al. Sophorolipids Decrease IgE Production in U266 Cells by Downregulation of BSAP (Pax5), TLR-2, STAT3 and IL-6. J. Allergy Clin. Immunol. 2007, 119, S263. [Google Scholar] [CrossRef]
- Hardin, R.; Pierre, J.; Schulze, R.; Mueller, C.M.; Fu, S.L.; Wallner, S.R.; Stanek, A.; Shah, V.; Gross, R.A.; Weedon, J.; et al. Sophorolipids Improve Sepsis Survival: Effects of Dosing and Derivatives. J. Surg. Res. 2007, 142, 314–319. [Google Scholar] [CrossRef]
- Mueller, C.M.; Lin, Y.-Y.; Viterbo, D.; Pierre, J.; Murray, S.A.; Shah, V.; Gross, R.; Schulze, R.; Zenilman, M.E.; Bluth, M.H. Sophorolipid Treatment Decreases Inflammatory Cytokine Expression in an in Vitro Model of Experimental Sepsis. FASEB J. 2006, 20, A204. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Ivshina, I.B.; Gein, S.V.; Baeva, T.A.; Chereshnev, V.A. In Vitro Immunomodulating Activity of Biosurfactant Glycolipid Complex from Rhodococcus ruber. Bull. Exp. Biol. Med. 2007, 144, 326–330. [Google Scholar] [CrossRef]
- Thakur, P.; Saini, N.K.; Thakur, V.K.; Gupta, V.K.; Saini, R.V.; Saini, A.K. Rhamnolipid the Glycolipid Biosurfactant: Emerging Trends and Promising Strategies in the Field of Biotechnology and Biomedicine. Microb. Cell Fact. 2021, 20, 1. [Google Scholar] [CrossRef]
- Rahimi, K.; Lotfabad, T.B.; Jabeen, F.; Mohammad Ganji, S. Cytotoxic Effects of Mono- and Di-Rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 Human Breast Cancer Cells. Colloids Surf. B Biointerfaces 2019, 181, 943–952. [Google Scholar] [CrossRef]
- Ribeiro, I.A.C.; Faustino, C.M.C.; Guerreiro, P.S.; Frade, R.F.M.; Bronze, M.R.; Castro, M.F.; Ribeiro, M.H.L. Development of Novel Sophorolipids with Improved Cytotoxic Activity toward MDA-MB-231 Breast Cancer Cells: Development of Novel Sophorolipids With Cytotoxic Activity. J. Mol. Recognit. 2015, 28, 155–165. [Google Scholar] [CrossRef]
- Chen, J.; Song, X.; Zhang, H.; Qu, Y. Production, Structure Elucidation and Anticancer Properties of Sophorolipid from Wickerhamiella Domercqiae. Enzyme Microb. Technol. 2006, 39, 501–506. [Google Scholar] [CrossRef]
- Dey, G.; Bharti, R.; Dhanarajan, G.; Das, S.; Dey, K.K.; Kumar, B.N.P.; Sen, R.; Mandal, M. Marine Lipopeptide Iturin a Inhibits Akt Mediated GSK3β and FoxO3a Signaling and Triggers Apoptosis in Breast Cancer. Sci. Rep. 2015, 5, 10316. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Bassler, B.L. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe 2019, 26, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [PubMed]
- Rivardo, F.; Martinotti, M.G.; Turner, R.J.; Ceri, H. Synergistic Effect of Lipopeptide Biosurfactant with Antibiotics against Escherichia coli CFT073 Biofilm. Int. J. Antimicrob. Agents 2011, 37, 324–331. [Google Scholar] [CrossRef]
- Ceresa, C.; Rinaldi, M.; Fracchia, L. Synergistic Activity of Antifungal Drugs and Lipopeptide AC7 against Candida albicans Biofilm on Silicone. AIMS Bioeng. 2017, 4, 318–334. [Google Scholar] [CrossRef]
- Cordeiro, R.d.A.; Weslley Caracas Cedro, E.; Raquel Colares Andrade, A.; Serpa, R.; José de Jesus Evangelista, A.; Sales de Oliveira, J.; Santos Pereira, V.; Pereira Alencar, L.; Bruna Leite Mendes, P.; Cibelle Soares Farias, B.; et al. Inhibitory Effect of a Lipopeptide Biosurfactant Produced by Bacillus subtilis on Planktonic and Sessile Cells of Trichosporon spp. Biofouling 2018, 34, 309–319. [Google Scholar] [CrossRef]
- Da Silva, G.O.; Farias, B.C.S.; da Silva, R.B.; Teixeira, E.H.; Cordeiro, R.d.A.; Hissa, D.C.; Melo, V.M.M. Effects of Lipopeptide Biosurfactants on Clinical Strains of Malassezia furfur Growth and Biofilm Formation. Med. Mycol. 2021, 59, 1191–1201. [Google Scholar] [CrossRef]
- Allegrone, G.; Ceresa, C.; Rinaldi, M.; Fracchia, L. Diverse Effects of Natural and Synthetic Surfactants on the Inhibition of Staphylococcus aureus Biofilm. Pharmaceutics 2021, 13, 1172. [Google Scholar] [CrossRef]
- Shen, Y.; Li, P.; Chen, X.; Zou, Y.; Li, H.; Yuan, G.; Hu, H. Activity of Sodium Lauryl Sulfate, Rhamnolipids, and N-Acetylcysteine against Biofilms of Five Common Pathogens. Microb. Drug Resist. 2020, 26, 290–299. [Google Scholar] [CrossRef]
- Sidrim, J.J.; Ocadaque, C.J.; Amando, B.R.; de Guedes, G.M.; Costa, C.L.; Brilhante, R.S.; de Cordeiro, A.R.; Rocha, M.F.; Scm Castelo-Branco, D. Rhamnolipid Enhances Burkholderia pseudomallei Biofilm Susceptibility, Disassembly and Production of Virulence Factors. Future Microbiol. 2020, 15, 1109–1121. [Google Scholar] [CrossRef]
- Sen, S.; Borah, S.N.; Bora, A.; Deka, S. Rhamnolipid Exhibits Anti-Biofilm Activity against the Dermatophytic Fungi Trichophyton Rubrum and Trichophyton mentagrophytes. Biotechnol. Rep. 2020, 27, e00516. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, C.; Fracchia, L.; Williams, M.; Banat, I.M.; Díaz De Rienzo, M.A. The Effect of Sophorolipids against Microbial Biofilms on Medical-Grade Silicone. J. Biotechnol. 2020, 309, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Haddaji, N.; Ncib, K.; Bahia, W.; Ghorbel, M.; Leban, N.; Bouali, N.; Bechambi, O.; Mzoughi, R.; Mahdhi, A. Control of Multidrug-Resistant Pathogenic Staphylococci Associated with Vaginal Infection Using Biosurfactants Derived from Potential Probiotic Bacillus Strain. Fermentation 2022, 8, 19. [Google Scholar] [CrossRef]
- Wang, P.-H.; Huang, B.-S.; Horng, H.-C.; Yeh, C.-C.; Chen, Y.-J. Wound Healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef]
- Martin, P.; Nunan, R. Cellular and Molecular Mechanisms of Repair in Acute and Chronic Wound Healing. Br. J. Dermatol. 2015, 173, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Tatara, A.M.; Kontoyiannis, D.P.; Mikos, A.G. Drug Delivery and Tissue Engineering to Promote Wound Healing in the Immunocompromised Host: Current Challenges and Future Directions. Adv. Drug Deliv. Rev. 2018, 129, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Yip, W.L. Influence of Oxygen on Wound Healing: Oxygen and Wound Healing. Int. Wound J. 2015, 12, 620–624. [Google Scholar] [CrossRef]
- Lindholm, C.; Searle, R. Wound Management for the 21st Century: Combining Effectiveness and Efficiency: Wound Management for the 21st Century. Int. Wound J. 2016, 13 (Suppl. 2), 5–15. [Google Scholar] [CrossRef]
- Rahim, K.; Saleha, S.; Zhu, X.; Huo, L.; Basit, A.; Franco, O.L. Bacterial Contribution in Chronicity of Wounds. Microb. Ecol. 2017, 73, 710–721. [Google Scholar] [CrossRef]
- Pastar, I.; Nusbaum, A.G.; Gil, J.; Patel, S.B.; Chen, J.; Valdes, J.; Stojadinovic, O.; Plano, L.R.; Tomic-Canic, M.; Davis, S.C. Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection. PLoS ONE 2013, 8, e56846. [Google Scholar] [CrossRef]
- Banu, A.; Noorul Hassan, M.M.; Rajkumar, J.; Srinivasa, S. Spectrum of Bacteria Associated with Diabetic Foot Ulcer and Biofilm Formation: A Prospective Study. Aust. Med. J. 2015, 8, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Ohadi, M.; Forootanfar, H.; Rahimi, H.R.; Jafari, E.; Shakibaie, M.; Eslaminejad, T.; Dehghannoudeh, G. Antioxidant Potential and Wound Healing Activity of Biosurfactant Produced by Acinetobacter junii B6. Curr. Pharm. Biotechnol. 2017, 18, 900–908. [Google Scholar] [CrossRef]
- Zouari, R.; Moalla-Rekik, D.; Sahnoun, Z.; Rebai, T.; Ellouze-Chaabouni, S.; Ghribi-Aydi, D. Evaluation of Dermal Wound Healing and in vitro Antioxidant Efficiency of Bacillus Subtilis SPB1 Biosurfactant. Biomed. Pharmacother. 2016, 84, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, G.; Zhao, B.; Pang, B.; Wu, W.; Ai, C.; Zhao, X.; Wang, X.; Jiang, C.; Shao, D.; et al. Novel Biomedical Functions of Surfactin A from Bacillus subtilis in Wound Healing Promotion and Scar Inhibition. J. Agric. Food Chem. 2020, 68, 6987–6997. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, W.; Wu, Y.; Ma, X.; Zhou, W.; Lai, Y. Lipopeptide 78 from Staphylococcus epidermidis Activates β-Catenin to Inhibit Skin Inflammation. J. Immunol. 2019, 202, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Afsharipour, S.; Asadi, A.; Ohadi, M.; Ranjbar, M.; Forootanfar, H.; Jafari, E.; Dehghannoudeh, G. Preparation and Characterization of Nano-Lipopeptide Biosurfactant Hydrogel and Evaluation of Wound-Healing Properties. Bionanoscience 2021, 11, 1061–1069. [Google Scholar] [CrossRef]
- Gupta, S.; Raghuwanshi, N.; Varshney, R.; Banat, I.M.; Srivastava, A.K.; Pruthi, P.A.; Pruthi, V. Accelerated in Vivo Wound Healing Evaluation of Microbial Glycolipid Containing Ointment as a Transdermal Substitute. Biomed. Pharmacother. 2017, 94, 1186–1196. [Google Scholar] [CrossRef]
- Shen, C.; Jiang, L.; Shao, H.; You, C.; Zhang, G.; Ding, S.; Bian, T.; Han, C.; Meng, Q. Targeted Killing of Myofibroblasts by Biosurfactant Di-Rhamnolipid Suggests a Therapy against Scar Formation. Sci. Rep. 2016, 6, 37553. [Google Scholar] [CrossRef]
- Kwak, M.-J.; Park, M.-Y.; Kim, J.; Lee, H.; Whang, K.-Y. Curative Effects of Sophorolipid on Physical Wounds: In Vitro and in Vivo Studies. Vet. Med. Sci. 2021, 7, 1400–1408. [Google Scholar] [CrossRef]
- Domalaon, R.; Findlay, B.; Ogunsina, M.; Arthur, G.; Schweizer, F. Ultrashort cationic lipopeptides and lipopeptoids: Evaluation and mechanistic insights against epithelial cancer cells. Peptides 2016, 84, 58–67. [Google Scholar] [CrossRef]
- Findlay, B.; Mookherjee, N.; Schweizer, F. Ultrashort Cationic Lipopeptides and Lipopeptoids Selectively Induce Cytokine Production in Macrophages. PLoS ONE 2013, 8, e54280. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.G.; Ryu, A.J.; Choi, Y.J.; Jeong, K.J.; Kim, H.S.; Lee, Y.J. Enhanced production of biosurfactants through genetic engineering of Pseudozyma sp. SY16. Korean J. Chem. Eng. 2022, 39, 997–1003. [Google Scholar] [CrossRef]
Microorganism | Biosurfactant/Bioemulsifier | Reference |
---|---|---|
Acinetobacter calcoaceticus RAG-1 | Emulsan | [57] |
Acinetobacter radioresistant KA53 | Alasan | [58] |
Acinetobacter junii B6 | Surfactin/fengycin | [59] |
Acinetobacter junii BD | Rhamnolipids | [60] |
Acinetobacter calcoaceticus A2 | Biodispersan | [61] |
Bacillus nealsonii strain S2MT | Surfactin | [2] |
Bacillus subtilis 3NA | Surfactin | [62] |
Bacillus thailandensis E264 | Rhamnolipids | [63] |
Bacillus velezensis | Iturin, surfactin, and fengycin | [64] |
Candida keroseneae GBME-IAUF-2 | Sophorolipids | [65] |
Candida lipolytica UCP 0988 | Rufisan | [66] |
Lactobacillus sp. | Surfactin, iturin, and lichenysin | [67] |
Pseudomonas aeruginosa SG | Rhamnolipids | [68] |
Pseudomonas fluorescens SBW25 | Viscosine | [69] |
Pseudomonas sp. S2WE | Rhamnolipids | [70] |
Serratia sp. ZS6 strain | Serrawettina | [71] |
Yarrowia lipolytica IMUFRJ50682 | Yansan | [72] |
Trichosporon mycotoxinivorans CLA2 | Lipid-polysaccharide complex | [73] |
Biosurfactant/ Bioemulsifier | Microorganism | Antiviral Activity | Virus | Reference |
---|---|---|---|---|
Surfactin | Bacillus subtilis | Rupturing the viral lipid membrane and part of the capsid | Semliki Forest virus | [98] |
Simplex virus | ||||
(HSV-1, HSV-2) | ||||
Suid herpesvirus (SHV-1) | ||||
Inhibited the proliferation | Simian immunodeficiency (SIV) | [99] | ||
Feline calicivirus (FCV) | ||||
Coronaviruses: | ||||
Epidemic porcine diarrhea (PEDV) | ||||
Transmissible gastroenteritis virus (TGEV) | ||||
Lipopeptides | - | Inhibited the membrane fusion between the virus and host cells. | Influenza A (H1N1) | [100] |
Human Coronavirus SARS-CoV-2 | [101,102,103] | |||
Sophorolipids | Candida bombicola | Virucidal property | Human Immunodeficiency Virus (HIV) | [104,105] |
Rhamnolipids | Pseudomonas spp. | Inhibits the cytopathic effect | Simplex virus: | [106] |
HSV-1, and HSV-2; | ||||
Pseudomonas gessardii M15 | Inhibited the proliferation | Simplex vírus: | [12] | |
HSV-1 and HSV-2, | ||||
Human coronavírus: | ||||
HCoV-229E and SARS-CoV-2 |
Biosurfactant/ Bioemulsifier | Microorganism | Anticancer Activity | Cancer | Reference |
---|---|---|---|---|
Rhamnolipids: monorhamnolipid and dirhamnolipid | P. aeruginosa MR01 | Inhibiting cell division at lower concentrations | Human breast cancer MCF-7 | [118] |
Sophorolipids | Wickerhamiella domercqiae Y2A | Increased the apoptosis | HepG2 liver cancer cells | [109] |
Cytotoxicity | Breast cancer MDA-MB-231 | [119] | ||
Inhibited cell proliferation | Liver Lung Leukemia | [120] | ||
Surfactin | Reduced tumor growth and weight; Apoptosis; Elevated levels of immune-boosting mediators | Melanoma skin cancer | [13] | |
Bacillus saphensis | Cytotoxic activity against cancer cell lines | Breast cancer Melanoma | [46] | |
Iturin | Bacillus megaterium | Inhibited the growth of cancer cells | Breast cancer | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, J.; Monteiro, J.; Silva, D.; Alencar, A.; Silva, K.; Coelho, L.; Pacheco, W.; Silva, D.; Silva, M.; Silva, L.; et al. Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics 2022, 11, 1106. https://doi.org/10.3390/antibiotics11081106
Araujo J, Monteiro J, Silva D, Alencar A, Silva K, Coelho L, Pacheco W, Silva D, Silva M, Silva L, et al. Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics. 2022; 11(8):1106. https://doi.org/10.3390/antibiotics11081106
Chicago/Turabian StyleAraujo, Jéssica, Joveliane Monteiro, Douglas Silva, Amanda Alencar, Kariny Silva, Lara Coelho, Wallace Pacheco, Darlan Silva, Maria Silva, Luís Silva, and et al. 2022. "Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents" Antibiotics 11, no. 8: 1106. https://doi.org/10.3390/antibiotics11081106
APA StyleAraujo, J., Monteiro, J., Silva, D., Alencar, A., Silva, K., Coelho, L., Pacheco, W., Silva, D., Silva, M., Silva, L., & Monteiro, A. (2022). Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics, 11(8), 1106. https://doi.org/10.3390/antibiotics11081106