Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites
Abstract
:1. Introduction
2. Material and Methods
2.1. Whole-Genome Sequencing Analysis
2.2. PubMed and Google Scholar Research Approach
3. Antimicrobial Resistance in the P. fluorescens Complex
3.1. Intrinsic Resistance
3.2. Antimicrobial Resistance in Pristine Sites
3.3. Antimicrobial Resistance in Human-Impacted Sites
3.3.1. Metal-Polluted Sites
3.3.2. Other Reservoirs of Human Importance
3.4. Horizontal Gene Transfer (HGT) of Antimicrobial Resistance
3.5. Research of Resistance Genes in Genome Public Databases
Isolation Site | Isolates Identified and Characterized as Belonging to the Pseudomonas fluorescens Complex (Group) | Phenotype/Genotype (Number of Isolates) | Ref. |
---|---|---|---|
Soil/Schirmacher Oasis, Antarctica | P. fluorescens (P. fluorescens) | Resistance to P, AM, CB, E, VAN, TMP, and BAC, and to the antifungal NY. Susceptibility to C varied (undefined number of isolates) A | [47] |
Cyanobacterial mat/McMurdo region, Antarctica | Description of P. antarctica strain CMS35T (P. fluorescens), P. meridiana strain CMS38T (P. gessardii), and P. proteolytica CMS64T (P. gessardii) | Resistance to TMP and FUZ in P. antarctica (1); resistance to P, AM, AMX, CB, E, LIN, C, TMP, SXT, GM, CL, PB, BAC, FM, FUZ, and NY in P. meridiana (1) and resistance to P, AM, AMX, CB, E, LIN, C, TMP, SXT, FUZ, NY, BAC, FM, and NFZ in P. proteolytica (1) A | [48] |
Rhizosphere of Amaranth/Northwestern Indian Himalayas | Pseudomonas sp. NARs9 (closely related to P. lurida, according to the authors) | Resistance to AM, P, PB, and C (1) B | [113] |
Drinking water from karstic ecosystems/Le Havre, France | P. fluorescens (P. fluorescens) and P. brenneri (P. gessardii) | P. fluorescens (6) and P. brenneri (1) were resistant to CF, AMX, AMC, CTX, CFS, TIC, TIM, C, and SXT. Resistance to ATM, FOS, and NA was frequent among the isolates A | [114] |
Soil/Isla de los Estados, Ushuaia, Argentina | Description of P. yamanorum strain 8H1T (P. gessardii) | Resistance to P, OX, CF, CXM, SAM, CTX, CAZ, E, CM, TEC, VA, C, SXT, and CL (1) A | [115] |
Brook sediment/Whalers Bay, Deception Island, Antarctica Ornithogenic soil/Galindez Island, Antarctica | Metal-resistant P. migulae (P. mandelii), P. gessardii (P. gessardii), and P. fluorescens (P. fluorescens) | P. migulae was intermediate to CIP and TM, resistant to GM, NB, LIN, AM, TE, C, VA, E, CZ (1) A P. gessardii was intermediate to GM and resistant to NB, LIN, TE, AM, C, VA, E, and CZ (1) A P. fluorescens was intermediate to CZ and E, resistant to NB, LIN, AM, and VA (1) A | [116] |
Soil from the northern deglaciated part of Ulu Peninsula/James Ross Island, Antarctica | Description of P. gregormendelii strain CCM 8506T (closely related to P. migulae, according to the authors) | Resistance to β-lactams TIC, TIM, CAZ, and ATM (2) A | [117] |
Rhizospheres of wild cranberry plants/Cape Cod National Seashore, Massachusetts, USA | Draft genome of Pseudomonas sp. strain MWU12-2534b (closely related to P. protegens, according to the authors) | Detection of efflux-pump genes, β-lactamases, aminoglycoside N(6′)-acetyltransferase, and fluoroquinolone resistance (1) | [118] |
Soil sample/King George Island, Antarctica | Description of fildesensis KG01T (P. fluorescens) | Resistance to CAZ and IPM C | [51] |
Rhizosphere of desert bloom plant/Atacama, Chile | Description of P. atacamensis M7D1T (P. koreensis) | Intermediate to MEM; resistance to CTX, CAZ, AM, and SAM A | [52] |
Calcite moonmilk deposits from caves/Moravian Karst, Czech Republic | Description of P. karstica HJ/4T and P. spelaei SJ/9/1T (P. gessardii) | Strain HJ/4T: resistance to ATM, PIP, and TZP. Strain SJ/9/1T: resistance to ATM and CL D | [53] |
Antartic Peninsula Soil | Pseudomonas ArH3a and Pseudomonas YeP6b (P. fluorescens) | Strains resistant against 9 to10 antimicrobial agents A with arbitrary breakpoints. Detection of genes encoding ABC and SMR efflux pumps | [55] |
Isolation Site | Isolates Identified and Characterized as Belonging to the Pseudomonas fluorescens Complex (Group) | Phenotype/Genotype (Number of Isolates) | Ref. |
---|---|---|---|
Sewage from sixteen sites/Casablanca, Morocco | Heavy metal-resistant P. fluorescens (P. fluorescens) | Notable resistance to all antibiotics tested, including AM, AMX, CRO, RIF, C, TE, CIP, and SPIR. (Undefined number of isolates) A | [61] |
Subtropical and temperate soils from maize fields/Sikkim Himalaya, India | P. corrugata (P. corrugata) | Resistance to P, AM, and CB at high concentrations (2) B | [119] |
Sea water | Arsenic-resistant P. fluorescens strain MSP3 (P. fluorescens) | Resistance to AM, RIF, NB, and BAC (1) C | [120] |
Kiwi-fruit plants/Korea and Japan | P. marginalis (P. fluorescens) | Streptomycin-resistance genes (strA and strB) (1) | [121] |
Soil artificially polluted with 1000 mg chromate (Cr(VI)) kg−1 | P. corrugata (P. corrugata) | Resistance to AM, CF, CRO, C, BLE, and FOS (2) D | [63] |
Hydrotherapy swimming pool/Northwestern Greece | P. fluorescens (P. fluorescens) | Resistance to TIC, TIM, AZT, SUT, FM, and TM; intermediate resistance to TZP and IPM (2) E | [122] |
Rape roots of Brassica napus in heavy metal-contaminated soils/Nanjing, China | P. fluorescens (P. fluorescens) | Resistance to AM, K, STS, and SPT (1) B | [62] |
Urban wastewater/L’Aquila, Italy | P. fluorescens (P. fluorescens) | Presence of the gene blaIMP-22, which encodes the metallo-β-lactamase IMP-22, capable of hydrolyzing narrow- and extended-spectrum β-lactams (2) | [64] |
Blowhole, gastric fluid, and feces of Tursiops truncatus dolphins from estuarine waters/Charleston and Indian River Lagoon, USA | P. fluorescens (P. fluorescens) | Frequent resistance to AM, AMC, CF, TE, E, C, SUT, and FM. Less-frequent resistance to PIP and EN (82) C | [123] |
Soil contaminated with wastewater/Sfax, Tunisia | Description of Pseudomonas sp. strain AHD-1 (closely related to P. azotoformans, P. gessardii, and P. libanensis, according to the authors) | Resistance to E and C (1) C | [50] |
Water from the Seine River/Paris, France | P. fluorescens (P. fluorescens) | Production of BIC-1, an Ambler class A carbapenemase capable of hydrolyzing penicillins, carbapenems, and cephalosporins (except CAZ). Resistance to TIC, TIM, PIP, and ATM, among others (1) E | [105] |
Seawater/Algiers, Algeria | P. fluorescens (P. fluorescens) | All 7 isolates tested were resistant to AMX, AMC, and FOX; 6 to CTX, TIC, TIM, and NA; 5 to CFS; 4 to TMP; 2 to IPM, TE, and SUT; 1 to RIF and CIP (7) C | [124] |
Freshwater and wastewater/Eastern Cape Province, South Africa | P. fluorescens (P. fluorescens) | Resistance to P, OX, CM, VAN, TMP, and RIF; varied resistance rates to CF, CTX, SAM, and FM C. Detection of blaTEM in 57.14% of isolated P. fluorescens (14.28% and 31.25% of isolates in freshwater and wastewater, respectively) | [109] |
Liver of wedge sole fish Dicologlossa cuneate/Coast of Spain | P. baetica a390T (P. koreensis) | Resistance to AM C Tolerant to OT B Detection of orthologs of MexAB–OprM and MexEF–OprN RND efflux pumps | [125,126] |
Coastal waters/Kaštela Bay, Croatia | P. fluorescens (P. fluorescens) | First report of a chromosomally located blaTEM-116 in P. fluorescens. 70 (of 185) isolates were MDR, with the highest rates for CTX, CAZ, MEM, ATM, and TE E | [108] |
Soils under distinct management (with or without manure/antibiotic history)/Masuria, Warka, and Lesznowola, Poland | P. jessenii (P. jessenii), P. mandelii, and P. fluorescens (P. fluorescens) | Tetracycline (tet-like), erythromycin (erm-like) and streptomycin (aac) resistance genes Detection of integrase, recombinase, and resolvase High MICs for TE, STS, and E B | [127] |
Treated wastewater/Puck Bay, Poland | P. protegens (P. protegens) | Resistance to TIM, CAZ, FEP, and ATM (1) F | [128] |
Small colony variant isolated from biofilm cultures of rhizosphere colonizing P. chlororaphis strain 30-84 | P. chlororaphis strain 30-84 | Resistance to K and PIP (one small colony variant) A | [129] |
Danube River water/Multinational | P. fluorescens (P. fluorescens) | All eight isolates tested were resistant to CAZ, six to MEM, four to CIP, three to IPM, two to TZP and/or FEP, and one to GM or LVX (eight) C Modified Hodge test was positive for carbapenemase presence in isolates resistant to MEM and IPM | [60] |
Halimione portulacoides tissue samples from a metal-contaminated estuary/Ria de Aveiro, northwest coast of Portugal | P. koreensis (P. koreensis); P. simiae (P. fluorescens); P. migulae (P. mandelii), and P. fragi (P. fragi) | The most common resistance phenotypes included AM, AMX, AMC, and CTX. P. koreensis (10), P. simiae (5), P. migulae (1), and P. fragi (1) C | [26] |
Treated wastewater/Germany | P. fluorescens (P. fluorescens) | Resistance to β-lactams (P, O CLO, CF, CZ, AMX, CRO, and CB); aminoglycosides (K, NEO, CAP, AN, GM, SIS, NB, and SPT); E, RIF, LIN, VAN, C, BLE, varied sulfonamides and tetracyclines; NA, OFL, LOM, and PB (1) D | [130] |
Peaty soil from biological pesticide sewage treatment plant/Jaworzno City, Silesia district, Southwestern Poland | Description of P. silesiensis strain A3T (P. mandelii) | Resistance to ATM, RIF, VAN G Resistance to AM B | [131] |
Water from Del Rey Lagoon (DRL). Lower Ballona Creek watershed/Los Angeles County, California, USA | P. fluorescens and P. rhodesiae (P. fluorescens) | Resistance phenotypes included AM, CTX, TE, E, S, STS, NA, and CIP for P. fluorescens (4) and CTX, E, TE, S, STS, NA, and CIP for P. rhodesiae (1) C | [132] |
Leaves of the Ni hyperaccumulator Alyssum serpyllifolium (subsp. malacitanum) grown in serpentine soils (high concentrations of heavy metals)/Bragança, Portugal | Drought-resistant P. azotoformans strain ASS1 (P. fluorescens) | Resistance to P, AM, C, and STS (1) C | [65] |
Red fox (Vulpes vulpes) feces/Northern Portugal | P. fluorescens (P. fluorescens) | Resistance to AMX, AMC, CF, FOX, CTX, TIC, TIM, IPM, ATM, E, TE, C, SUT, and FOS C Resistance to IPM and CIP on biofilm removal. Detection of blaOXA-aer (1) | [92] |
Fruits and leaves of sick Citrus sinensis cv. ‘Valencia Late’ and Citrus limon cv. ‘Eureka’/Tunisia | P. kairouanensis strains KC12T, KC17, KC20, KC22, KC24A, KC25, and KC26; P. nabeulensis strains E10BT, E10AB, E10CB1, and Iy3BA (P. fluorescens) | All strains displayed resistance to OX, CF, CZ, CXM, AMX, and TM C MDR phenotype among the strains | [133] |
Stream waters and effluents from urban wastewater treatment plants/Central Italy | P. koreensis (P. koreensis) | Resistance to AM and CTX B High MIC values for AMP, CZ, and ETP A Resistance to CL (5) A Detection of blaAmpC in two (of five) isolates | [29] |
Roots of Odontarrhena obovata on copper-influenced soil/Chelyabinsk region, Russia | Copper tolerant P. lurida strain EOO26 (P. fluorescens) | Resistance to AM, TE, C and P C | [84] |
Wastewater/Kwara, Nigeria | P. fluorescens (P. fluorescens) | Resistance to CAZ, CXM, CFM, OFL, CIP, FM C The same isolate, when plasmid-cured, was not resistant to CFM, OFL, CIP, and FM | [134] |
River, stream, lake, and sewage water samples/São Paulo state and Brasília, Brazil | Heavy-metal resistant P. saponiphila (P. chlororaphis) | Resistance to TZP, CRO, CTX, CAZ, IPM, MEM, FEP, ATM (10, 11, 11, 8, 2, 2, 5 and 7 of 13, respectively). Resistance to TE (11); C (10); CIP (2); LVX (4) and NOR (5); GM (1) and TM (1). A First report of blaGES, qnrS, aac(3′)-IIa, and tetB in P. saponiphila. | [73] |
Marine polypropylene/Øygarden, Norway | Draft genome sequence of P. protegens 11HC2 | Resistance to CTX, AM, C and TMP E The strain carries a class C β-lactamase, type-B chloramphenicol O-acetyltransferase (catB), three distinct copies of dihydrofolate reductase, and a bifunctional aminoglycoside phosphotransferase | [135] |
Antimicrobial Resistance Genes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Accession Number | Taxon ID | Isolation Source | Isolation Country | Aminoglycosides | β-Lactams | Phenicol | Fosfomycin | Sulfamethoxazole | Tetracycline | Other |
GCA_000801855.1 | P. fluorescens | sputum of an individual with cystic fibrosis | USA | tet(G) | ||||||
GCA_001021695.1 | P. fluorescens | sputum of an individual with cystic fibrosis | USA | aac(3)-IIIb | tet(B) | |||||
GCA_001542715.1 | P. fluorescens | mozzarella cheese | Italy | aph(3″)-Ib; aph(6)-Id | ||||||
GCA_004614275.1 | P. fluorescens | root | Poland | tet(A) | ||||||
GCA_900636635.1 | P. fluorescens | respiratory tract | - | aph(3′)-Iib | blaOXA-50; blaPAO | catB7 | fosA | crpP | ||
GCA_004102685.1 | P. azotoformans | chickpea rhizosphere grown in saline soil | India | ant(3″)-Ia | sul1 | qacE | ||||
GCA_003851525.1 | P. synxantha | wheat rhizosphere | USA | tet(A) | ||||||
GCA_003852025.1 | P. synxantha | wheat rhizosphere | USA | tet(A) | ||||||
GCA_008632315.1 | P. veronii | soil | Svalbard | aph(3″)-Ib; aph(6)-Id | ||||||
GCA_014076455.1 | P. migulae | biofilm reactor | China | aadA15; aph(3″)-Ib; aph(6)-Id | cmlA1; floR | sul1 | tet(G) | qacE | ||
GCA_002177125.1 | P. koreensis | lake soil | India | ant(3″)-Ia | sul1 | qacE | ||||
GCA_003666515.1 | P. protegens | soil | Netherlands | aph(3′)-Ia | catA1 | |||||
GCA_004212425.1 | P. moorei | activated sludge | Poland | tet(A) | ||||||
GCA_000282975.1 | P. psychrophila | activated sludge sample | China | ant(2″)-Ia; aph(3″)-Ib; aph(3′)-XV; aph(6)-Id | catB3; floR | tet(G) | qacE | |||
GCA_001043065.1 | P. helleri | raw milk | Germany | aph(3″)-Ib; aph(6)-Id | tet(A) | |||||
GCA_001050345.1 | P. fildesensis | Antarctic soil | Antarctica | aph(3′)-Ia | tet(C) | |||||
GCA_001594225.2 | P. glycinae | cotton field | USA | aph(3′)-Ia |
4. Final Considerations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas Genomes: Diverse and Adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, S.-R.; Wassenaar, T.M.; Nookaew, I.; Hauser, L.; Wanchai, V.; Land, M.; Timm, C.M.; Lu, T.-Y.S.; Schadt, C.W.; Doktycz, M.J.; et al. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis. Appl. Environ. Microbiol. 2016, 82, 375–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas Aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Hsueh, P.-R.; Teng, L.-J.; Pan, H.-J.; Chen, Y.-C.; Sun, C.-C.; Ho, S.-W.; Luh, K.-T. Outbreak of Pseudomonas fluorescens Bacteremia among Oncology Patients. J. Clin. Microbiol. 1998, 36, 2914–2917. [Google Scholar] [CrossRef] [Green Version]
- Koh, T.H.; Wang, G.C.Y.; Sng, L.-H. IMP-1 and a Novel Metallo-β-Lactamase, VIM-6, in Fluorescent Pseudomonads Isolated in Singapore. Antimicrob. Agents Chemother. 2004, 48, 2334–2336. [Google Scholar] [CrossRef] [Green Version]
- Rolston, K.V.I.; Kontoyiannis, D.P.; Yadegarynia, D.; Raad, I.I. Nonfermentative Gram-Negative Bacilli in Cancer Patients: Increasing Frequency of Infection and Antimicrobial Susceptibility of Clinical Isolates to Fluoroquinolones. Diagn. Microbiol. Infect. Dis. 2005, 51, 215–218. [Google Scholar] [CrossRef]
- Sader, H.S.; Jones, R.N. Antimicrobial Susceptibility of Uncommonly Isolated Non-Enteric Gram-Negative Bacilli. Int. J. Antimicrob. Agents 2005, 25, 95–109. [Google Scholar] [CrossRef]
- Lindholm, D.A.; Murray, C.K.; Akers, K.S.; O’Brien, S.D.; Alderete, J.F.; Vento, T.J. Novel Pseudomonas Fluorescens Septic Sacroiliitis in a Healthy Soldier. Mil. Med. 2013, 178, e963–e966. [Google Scholar] [CrossRef] [Green Version]
- Faccone, D.; Pasteran, F.; Albornoz, E.; Gonzalez, L.; Veliz, O.; Prieto, M.; Bucciarelli, R.; Callejo, R.; Corso, A. Human Infections Due to Pseudomonas chlororaphis and Pseudomonas oleovorans Harboring New BlaVIM-2-Borne Integrons. Infect. Genet. Evol. 2014, 28, 276–277. [Google Scholar] [CrossRef]
- Arega, B.; Wolde-Amanuel, Y.; Adane, K.; Belay, E.; Abubeker, A.; Asrat, D. Rare Bacterial Isolates Causing Bloodstream Infections in Ethiopian Patients with Cancer. Infect Agents Cancer 2017, 12, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oba, Y.; Nakajima, T.; Ogida, C.; Kawanami, M.; Fujiwara, M.; Matsumura, I. Longitudinal Nosocomial Outbreak of Pseudomonas fluorescens Bloodstream Infection of 2 Years’ Duration in a Coronary Care Unit. Am. J. Infec. Control 2017, 45, e75–e79. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-R.; Lien, C.-Y.; Tsai, W.-C.; Lai, W.-A.; Hsu, C.-W.; Tsai, N.-W.; Chang, C.-C.; Lu, C.-H.; Chien, C.-C.; Chang, W.-N. The Clinical Characteristics of Adult Bacterial Meningitis Caused by Non- Pseudomonas (Ps.) aeruginosa Pseudomonas Species: A Clinical Comparison with Ps. aeruginosa Meningitis. Kaohsiung J. Med. Sci. 2018, 34, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Montaña, S.; Lazzaro, T.; Uong, S.; Place, K.; Iriarte, A.; Ocampo, C.V.; Vay, C.; Ramírez, M.S. Genomics Helps to Decipher the Resistance Mechanisms Present in a Pseudomonas chlororaphis Strain Recovered in an HIV Patient. New Microbes New Infect. 2018, 25, 45–47. [Google Scholar] [CrossRef]
- Wilkinson, F.H.; Kerr, K.G. Bottled Water as a Source of Multi-Resistant Stenotrophomonas and Pseudomonas Species for Neutropenic Patients. Eur. J. Cancer Care 1998, 7, 12–14. [Google Scholar] [CrossRef]
- Wong, V.; Levi, K.; Baddal, B.; Turton, J.; Boswell, T.C. Spread of Pseudomonas fluorescens Due to Contaminated Drinking Water in a Bone Marrow Transplant Unit: Table 1. J. Clin. Microbiol. 2011, 49, 2093–2096. [Google Scholar] [CrossRef] [Green Version]
- Faulde, M.; Spiesberger, M. Role of the Moth Fly Clogmia Albipunctata (Diptera: Psychodinae) as a Mechanical Vector of Bacterial Pathogens in German Hospitals. J. Hosp. Infect. 2013, 83, 51–60. [Google Scholar] [CrossRef]
- Vincenti, S.; Quaranta, G.; De Meo, C.; Bruno, S.; Ficarra, M.G.; Carovillano, S.; Ricciardi, W.; Laurenti, P. Non-Fermentative Gram-Negative Bacteria in Hospital Tap Water and Water Used for Haemodialysis and Bronchoscope Flushing: Prevalence and Distribution of Antibiotic Resistant Strains. Sci. Total Environ. 2014, 499, 47–54. [Google Scholar] [CrossRef]
- Iseppi, R.; Sabia, C.; Bondi, M.; Mariani, M.; Messi, P. Virulence Factors, Drug Resistance and Biofilm Formation in Pseudomonas Species Isolated from Healthcare Water Systems. Curr. Microbiol. 2020, 77, 1737–1745. [Google Scholar] [CrossRef]
- Bennasar, A.; Mulet, M.; Lalucat, J.; García-Valdés, E. PseudoMLSA: A Database for Multigenic Sequence Analysis of Pseudomonas Species. BMC Microbiol. 2010, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- van den Beld, M.J.C.; Reinders, E.; Notermans, D.W.; Reubsaet, F.A.G. Possible Misidentification of Species in the Pseudomonas fluorescens Lineage as Burkholderia pseudomallei and Francisella tularensis, and Emended Descriptions of Pseudomonas brenneri, Pseudomonas gessardii and Pseudomonas proteolytica. Int. J. Syst. Evol. Microbiol 2016, 66, 3420–3425. [Google Scholar] [CrossRef] [PubMed]
- Lalucat, J.; Mulet, M.; Gomila, M.; García-Valdés, E. Genomics in Bacterial Taxonomy: Impact on the Genus Pseudomonas. Genes 2020, 11, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido-Sanz, D.; Meier-Kolthoff, J.P.; Göker, M.; Martín, M.; Rivilla, R.; Redondo-Nieto, M. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex. PLoS ONE 2016, 11, e0150183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peix, A.; Ramírez-Bahena, M.-H.; Velázquez, E. The Current Status on the Taxonomy of Pseudomonas Revisited: An Update. Infect Genet.Evol. 2018, 57, 106–116. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Expected Resistant Phenotypes Version 1.1. 2022. Available online: https://www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes/ (accessed on 21 June 2022).
- Rocha, J.; Tacão, M.; Fidalgo, C.; Alves, A.; Henriques, I. Diversity of Endophytic Pseudomonas in Halimione Portulacoides from Metal(Loid)-Polluted Salt Marshes. Environ. Sci. Pollut. Res. 2016, 23, 13255–13267. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. AmpC β-Lactamases. Clin. Microbiol. Ver. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.B.M.; de Oliveira Leão-Vasconcelos, L.S.N.; de Melo Costa, D.; Vilefort, L.O.R.; André, M.C.D.P.B.; Barbosa, M.A.; Prado-Palos, M.A. Pseudomonas spp. Isolated from the Oral Cavity of Healthcare Workers from an Ocology Hospital in Midwestern Brazil. Rev. Inst. Med. Trop. S. Paulo 2015, 57, 513–514. [Google Scholar] [CrossRef] [Green Version]
- Piccirilli, A.; Pompilio, A.; Rossi, L.; Segatore, B.; Amicosante, G.; Rosatelli, G.; Perilli, M.; Di Bonaventura, G. Identification of CTX-M-15 and CTX-M-27 in Antibiotic-Resistant Gram-Negative Bacteria Isolated from Three Rivers Running in Central Italy. Microb. Drug Resist. 2019, 25, 1041–1049. [Google Scholar] [CrossRef]
- Heir, E.; Moen, B.; Åsli, A.W.; Sunde, M.; Langsrud, S. Antibiotic Resistance and Phylogeny of Pseudomonas Spp. Isolated over Three Decades from Chicken Meat in the Norwegian Food Chain. Microorganisms 2021, 9, 207. [Google Scholar] [CrossRef]
- Jorth, P.; McLean, K.; Ratjen, A.; Secor, P.R.; Bautista, G.E.; Ravishankar, S.; Rezayat, A.; Garudathri, J.; Harrison, J.J.; Harwood, R.A.; et al. Evolved Aztreonam Resistance Is Multifactorial and Can Produce Hypervirulence in Pseudomonas aeruginosa. mBio 2017, 8, e00517-17. [Google Scholar] [CrossRef] [Green Version]
- Olivares Pacheco, J.; Alvarez-Ortega, C.; Alcalde Rico, M.; Martínez, J.L. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps. mBio 2017, 8, e00500-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, A.; Rojo, F.; Martinez, J.L. Environmental and Clinical Isolates of Pseudomonas aeruginosa Show Pathogenic and Biodegradative Properties Irrespective of Their Origin. Environ. Microbiol. 1999, 1, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L.; Sánchez, M.B.; Martínez-Solano, L.; Hernandez, A.; Garmendia, L.; Fajardo, A.; Alvarez-Ortega, C. Functional Role of Bacterial Multidrug Efflux Pumps in Microbial Natural Ecosystems. FEMS Microbiol. Rev. 2009, 33, 430–449. [Google Scholar] [CrossRef] [PubMed]
- Hearn, E.M.; Dennis, J.J.; Gray, M.R.; Foght, J.M. Identification and Characterization of the EmhABC Efflux System for Polycyclic Aromatic Hydrocarbons in Pseudomonas fluorescens CLP6a. J. Bacteriol. 2003, 185, 6233–6240. [Google Scholar] [CrossRef] [Green Version]
- Hearn, E.M.; Gray, M.R.; Foght, J.M. Mutations in the Central Cavity and Periplasmic Domain Affect Efflux Activity of the Resistance-Nodulation-Division Pump EmhB from Pseudomonas fluorescens CLP6a. J. Bacteriol. 2006, 188, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Wu, X.-G.; Duan, H.-M.; Zhang, L.-Q. The Resistance-Nodulation-Division Efflux Pump EmhABC Influences the Production of 2,4-Diacetylphloroglucinol in Pseudomonas fluorescens 2P24. Microbiology 2010, 156, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Adebusuyi, A.A.; Foght, J.M. An Alternative Physiological Role for the EmhABC Efflux Pump in Pseudomonas fluorescens CLP6a. BMC Microbiol. 2011, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Adebusuyi, A.; Foght, J. Physico-Chemical Factors Affect Chloramphenicol Efflux and EmhABC Efflux Pump Expression in Pseudomonas fluorescens CLP6a. Res. Microbiol. 2013, 164, 172–180. [Google Scholar] [CrossRef]
- Lim, C.K.; Penesyan, A.; Hassan, K.A.; Loper, J.E.; Paulsen, I.T. Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects. PLoS ONE 2016, 11, e0159884. [Google Scholar] [CrossRef]
- Duan, J.; Jiang, W.; Cheng, Z.; Heikkila, J.J.; Glick, B.R. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4. PLoS ONE 2013, 8, e58640. [Google Scholar] [CrossRef] [Green Version]
- Papapetropoulou, M.; Rodopoulou, G.; Giannoulaki, E.; Stergiopoulos, P. Effect of Temperature on Antimicrobial Susceptibilities of Pseudomonas Species Isolated from Drinking Water. J. Chemother. 1994, 6, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Jin, S. Aph(3J)-IIb, a Gene Encoding an Aminoglycoside-Modifying Enzyme, Is under the Positive Control of Surrogate Regulator HpaA. Antimicrob. Agents Chemother. 2003, 47, 10. [Google Scholar] [CrossRef] [Green Version]
- Snesrud, E.; Maybank, R.; Kwak, Y.I.; Jones, A.R.; Hinkle, M.K.; McGann, P. Chromosomally Encoded Mcr-5 in Colistin-Nonsusceptible Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2018, 62, e00679-18. [Google Scholar] [CrossRef] [Green Version]
- Kupferschmied, P.; Chai, T.; Flury, P.; Blom, J.; Smits, T.H.M.; Maurhofer, M.; Keel, C. Specific Surface Glycan Decorations Enable Antimicrobial Peptide Resistance in Plant-Beneficial Pseudomonads with Insect-Pathogenic Properties: O-Antigen Function in Biocontrol Pseudomonads. Environ. Microbiol. 2016, 18, 4265–4281. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.; Gooderham, W.J.; Bains, M.; McPhee, J.B.; Wiegand, I.; Hancock, R.E.W. Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS. Antimicrob. Agents Chemother. 2010, 54, 3372–3382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivaji, S.; Rao, N.S.; Saisree, L.; Sheth, V.; Reddy, G.S.; Bhargava, P.M. Isolation and Identification of Pseudomonas Spp. from Schirmacher Oasis, Antarctica. Appl. Environ. Microbiol. 1989, 55, 767–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, G.S.N.; Matsumoto, G.I.; Schumann, P.; Stackebrandt, E.; Shivaji, S. Psychrophilic Pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Saez, M.; Pacheco, N.; Costa, J.I.; Mendez, K.N.; Miossec, M.J.; Meneses, C.; Castro-Nallar, E.; Marcoleta, A.E.; Poblete-Castro, I. In-Depth Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and Biotechnological Potential. Front. Microbiol. 2019, 10, 1154. [Google Scholar] [CrossRef]
- Fendri, I.; Chaari, A.; Dhouib, A.; Jlassi, B.; Abousalham, A.; Carrière, F.; Sayadi, S.; Abdelkafi, S. Isolation, Identification and Characterization of a New Lipolytic Pseudomonas Sp., Strain AHD-1, from Tunisian Soil. Environ. Technol. 2010, 31, 87–95. [Google Scholar] [CrossRef]
- Pavlov, M.S.; Lira, F.; Martinez, J.L.; Olivares-Pacheco, J.; Marshall, S.H. Pseudomonas fildesensis sp. nov., a Psychrotolerant Bacterium Isolated from Antarctic Soil of King George Island, South Shetland Islands. Int. J. Syst. Evol. Microbiol. 2020, 70, 3255–3263. [Google Scholar] [CrossRef]
- Poblete-Morales, M.; Carvajal, D.; Almasia, R.; Michea, S.; Cantillana, C.; Levican, A.; Silva-Moreno, E. Pseudomonas atacamensis sp. nov., Isolated from the Rhizosphere of Desert Bloom Plant in the Region of Atacama, Chile. Antonie Van Leeuwenhoek 2020, 113, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Švec, P.; Kosina, M.; Zeman, M.; Holochová, P.; Králová, S.; Němcová, E.; Micenková, L.; Urvashi; Gupta, V.; Sood, U.; et al. Pseudomonas karstica sp. nov. and Pseudomonas spelaei sp. nov., Isolated from Calcite Moonmilk Deposits from Caves. Int. J. Syst. Evol. Microbiol. 2020, 70, 5131–5140. [Google Scholar] [CrossRef] [PubMed]
- Na, G.; Zhang, W.; Gao, H.; Wang, C.; Li, R.; Zhao, F.; Zhang, K.; Hou, C. Occurrence and Antibacterial Resistance of Culturable Antibiotic-Resistant Bacteria in the Fildes Peninsula, Antarctica. Mar. Pollut. Bull. 2021, 162, 111829. [Google Scholar] [CrossRef] [PubMed]
- Marcoleta, A.E.; Arros, P.; Varas, M.A.; Costa, J.; Rojas-Salgado, J.; Berríos-Pastén, C.; Tapia-Fuentes, S.; Silva, D.; Fierro, J.; Canales, N.; et al. The Highly Diverse Antarctic Peninsula Soil Microbiota as a Source of Novel Resistance Genes. Sci. Total Environ. 2022, 810, 152003. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.K.; Moe, L.A.; Rodbumrer, J.; Gaarder, A.; Handelsman, J. Functional Metagenomics Reveals Diverse β-Lactamases in a Remote Alaskan Soil. ISME J. 2009, 3, 243–251. [Google Scholar] [CrossRef]
- Chow, L.; Waldron, L.; Gillings, M.R. Potential Impacts of Aquatic Pollutants: Sub-Clinical Antibiotic Concentrations Induce Genome Changes and Promote Antibiotic Resistance. Front. Microbiol. 2015, 6, 803. [Google Scholar] [CrossRef] [Green Version]
- Lugli, G.A.; Milani, C.; Mancabelli, L.; Turroni, F.; Ferrario, C.; Duranti, S.; van Sinderen, D.; Ventura, M. Ancient Bacteria of the Ötzi’s Microbiome: A Genomic Tale from the Copper Age. Microbiome 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Mulet, M.; Montaner, M.; Román, D.; Gomila, M.; Kittinger, C.; Zarfel, G.; Lalucat, J.; García-Valdés, E. Pseudomonas Species Diversity Along the Danube River Assessed by RpoD Gene Sequence and MALDI-TOF MS Analyses of Cultivated Strains. Front. Microbiol. 2020, 11, 2114. [Google Scholar] [CrossRef]
- Kittinger, C.; Lipp, M.; Baumert, R.; Folli, B.; Koraimann, G.; Toplitsch, D.; Liebmann, A.; Grisold, A.J.; Farnleitner, A.H.; Kirschner, A.; et al. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube. Front. Microbiol. 2016, 7, 586. [Google Scholar] [CrossRef] [Green Version]
- Filali, B.K.; Taoufik, J.; Zeroual, Y.; Dzairi, F.Z.; Talbi, M.; Blaghen, M. Waste Water Bacterial Isolates Resistant to Heavy Metals and Antibiotics. Curr. Microbiol. 2000, 41, 151–156. [Google Scholar] [CrossRef]
- Sheng, X.-F.; Xia, J.-J.; Jiang, C.-Y.; He, L.-Y.; Qian, M. Characterization of Heavy Metal-Resistant Endophytic Bacteria from Rape (Brassica Napus) Roots and Their Potential in Promoting the Growth and Lead Accumulation of Rape. Environ. Pollut. 2008, 156, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Viti, C.; Decorosi, F.; Tatti, E.; Giovannetti, L. Characterization of Chromate-Resistant and -Reducing Bacteria by Traditional Means and by a High-Throughput Phenomic Technique for Bioremediation Purposes. Biotechnol. Progress 2008, 23, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Mercuri, P.S.; Celenza, G.; Galleni, M.; Segatore, B.; Sacchetti, E.; Volpe, R.; Amicosante, G.; Perilli, M. Identification of BlaIMP-22 in Pseudomonas spp. in Urban Wastewater and Nosocomial Environments: Biochemical Characterization of a New IMP Metallo-Enzyme Variant and Its Genetic Location. J. Antimicrob. Chemother. 2009, 63, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Rajkumar, M.; Moreno, A.; Zhang, C.; Freitas, H. Serpentine Endophytic Bacterium Pseudomonas azotoformans ASS1 Accelerates Phytoremediation of Soil Metals under Drought Stress. Chemosphere 2017, 185, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, W.; Jiang, Q.; Fei, Z.; Xiao, M. Genome Analysis of Plant Growth-Promoting Rhizobacterium Pseudomonas chlororaphis Subsp. aurantiaca JD37 and Insights from Comparasion of Genomics with Three Pseudomonas Strains. Microbiol. Res. 2020, 237, 126483. [Google Scholar] [CrossRef]
- Malik, A.; Aleem, A. Incidence of Metal and Antibiotic Resistance in Pseudomonas Spp. from the River Water, Agricultural Soil Irrigated with Wastewater and Groundwater. Environ. Monit. Assess. 2011, 178, 293–308. [Google Scholar] [CrossRef]
- Henriques, I.; Tacão, M.; Leite, L.; Fidalgo, C.; Araújo, S.; Oliveira, C.; Alves, A. Co-Selection of Antibiotic and Metal(Loid) Resistance in Gram-Negative Epiphytic Bacteria from Contaminated Salt Marshes. Mar. Pollut. Bull. 2016, 109, 427–434. [Google Scholar] [CrossRef]
- Seiler, C.; Berendonk, T.U. Heavy Metal Driven Co-Selection of Antibiotic Resistance in Soil and Water Bodies Impacted by Agriculture and Aquaculture. Front. Microbio. 2012, 3, 399. [Google Scholar] [CrossRef] [Green Version]
- Matyar, F.; Akkan, T.; Uçak, Y.; Eraslan, B. Aeromonas and Pseudomonas: Antibiotic and Heavy Metal Resistance Species from Iskenderun Bay, Turkey (Northeast Mediterranean Sea). Environ. Monit. Assess. 2010, 167, 309–320. [Google Scholar] [CrossRef]
- Deredjian, A.; Colinon, C.; Brothier, E.; Favre-Bonté, S.; Cournoyer, B.; Nazaret, S. Antibiotic and Metal Resistance among Hospital and Outdoor Strains of Pseudomonas aeruginosa. Res. Microbiol. 2011, 162, 689–700. [Google Scholar] [CrossRef]
- Pitondo-Silva, A.; Gonçalves, G.B.; Stehling, E.G. Heavy Metal Resistance and Virulence Profile in Pseudomonas aeruginosa Isolated from Brazilian Soils. APMIS 2016, 124, 681–688. [Google Scholar] [CrossRef]
- Ramos, M.S.; Furlan, J.P.R.; Gallo, I.F.L.; dos Santos, L.D.R.; de Campos, T.A.; Savazzi, E.A.; Stehling, E.G. High Level of Resistance to Antimicrobials and Heavy Metals in Multidrug-Resistant Pseudomonas sp. Isolated from Water Sources. Curr. Microbiol. 2020, 77, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
- Hamilton-Miller, J.M.T.; Shah, S. Identity and Antibiotic Susceptibility of Enterobacterial Flora of Salad Vegetables. Int. J. Antimicrob. Agents 2001, 18, 81–83. [Google Scholar] [CrossRef]
- Miranda, C.D.; Zemelman, R. Antimicrobial Multiresistance in Bacteria Isolated from Freshwater Chilean Salmon Farms. Sci. Total Environ. 2002, 293, 207–218. [Google Scholar] [CrossRef]
- Munsch, P. Pseudomonas costantinii sp. nov., Another Causal Agent of Brown Blotch Disease, Isolated from Cultivated Mushroom Sporophores in Finland. Int. J. Syst. Evol. Microbiol. 2002, 52, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Igbeneghu, O.A.; Abdu, A.B. Multiple Antibiotic-Resistant Bacteria on Fluted Pumpkin Leaves, a Herb of Therapeutic Value. J. Health Popul. Nutr. 2014, 32, 7. [Google Scholar]
- Iliev, I.; Marhova, M.; Gochev, V.; Tsankova, M.; Trifonova, S. Antibiotic Resistance of Gram-Negative Benthic Bacteria Isolated from the Sediments of Kardzhali Dam (Bulgaria). Biotechnol. Biotechnol. Equip. 2015, 29, 274–280. [Google Scholar] [CrossRef]
- Osman, K.; Orabi, A.; Elbehiry, A.; Hanafy, M.H.; Ali, A.M. Pseudomonas Species Isolated from Camel Meat: Quorum Sensing-Dependent Virulence, Biofilm Formation and Antibiotic Resistance. Future Microbiol. 2019, 14, 609–622. [Google Scholar] [CrossRef]
- Poirel, L.; Palmieri, M.; Brilhante, M.; Masseron, A.; Perreten, V.; Nordmann, P. PFM-Like Enzymes Are a Novel Family of Subclass B2 Metallo- β-Lactamases from Pseudomonas synxantha Belonging to the Pseudomonas fluorescens Complex. Antimicrob. Agents Chemother. 2020, 64, 7. [Google Scholar] [CrossRef]
- Quintieri, L.; Caputo, L.; De Angelis, M.; Fanelli, F. Genomic Analysis of Three Cheese-Borne Pseudomonas lactis with Biofilm and Spoilage-Associated Behavior. Microorganisms 2020, 8, 1208. [Google Scholar] [CrossRef]
- Lavilla Lerma, L.; Benomar, N.; del Carmen Casado Muñoz, M.; Gálvez, A.; Abriouel, H. Antibiotic Multiresistance Analysis of Mesophilic and Psychrotrophic Pseudomonas spp. Isolated from Goat and Lamb Slaughterhouse Surfaces throughout the Meat Production Process. Appl. Environ. Microbiol. 2014, 80, 6792–6806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estepa, V.; Rojo-Bezares, B.; Torres, C.; Sáenz, Y. Genetic Lineages and Antimicrobial Resistance in Pseudomonas spp. Isolates Recovered from Food Samples. Foodborne Path. Dis. 2015, 12, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Franzetti, L.; Kaushal, A.; Kumar, D. Pseudomonas fluorescens: A Potential Food Spoiler and Challenges and Advances in Its Detection. Ann. Microbiol 2019, 69, 873–883. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Caputo, L. Antibiotic Resistant Pseudomonas spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019, 8, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dougnon, V.; Houssou, V.M.C.; Anago, E.; Nanoukon, C.; Mohammed, J.; Agbankpe, J.; Koudokpon, H.; Bouraima, B.; Deguenon, E.; Fabiyi, K.; et al. Assessment of the Presence of Resistance Genes Detected from the Environment and Selected Food Products in Benin. J. Environ. Public Health 2021, 2021, 8420590. [Google Scholar] [CrossRef]
- Meyer, F.P.; Collar, J.D. Description and Treatment of a Pseudomonas Infection in White Catfish. Appl. Microbiol. 1964, 12, 201–203. [Google Scholar] [CrossRef]
- Martin Barrasa, J.L.; Lupiola Gomez, P.; Gonzalez Lama, Z.; Tejedor Junco, M.T. Antibacterial Susceptibility Patterns of Pseudomonas Strains Isolated from Chronic Canine Otitis Externa. J. Vet. Med. Series B 2000, 47, 191–196. [Google Scholar] [CrossRef]
- Nam, H.M.; Lim, S.K.; Kang, H.M.; Kim, J.M.; Moon, J.S.; Jang, K.C.; Kim, J.M.; Joo, Y.S.; Jung, S.C. Prevalence and Antimicrobial Susceptibility of Gram-Negative Bacteria Isolated from Bovine Mastitis between 2003 and 2008 in Korea. J. Dairy Sci. 2009, 92, 2020–2026. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, D.; Mruk, K.; Rocheleau, J.M.; Kobertz, W.R. Xenopus Laevis Oocytes Infected with Multi-Drug–Resistant Bacteria: Implications for Electrical Recordings. J. Gen. Physiol. 2011, 138, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.; Townsend, F.; Lane, S.; Dyar, E.; Hohn, A.; Rowles, T.; Staggs, L.; Wells, R.; Balmer, B.; Schwacke, L. Survey of Antibiotic-Resistant Bacteria Isolated from Bottlenose Dolphins Tursiops Truncatus in the Southeastern USA. Dis. Aquat. Org. 2014, 108, 91–102. [Google Scholar] [CrossRef]
- Dias, C.; Borges, A.; Oliveira, D.; Martinez-Murcia, A.; Saavedra, M.J.; Simões, M. Biofilms and Antibiotic Susceptibility of Multidrug-Resistant Bacteria from Wild Animals. PeerJ 2018, 6, e4974. [Google Scholar] [CrossRef] [PubMed]
- Umasuthan, N.; Valderrama, K.; Vasquez, I.; Segovia, C.; Hossain, A.; Cao, T.; Gnanagobal, H.; Monk, J.; Boyce, D.; Santander, J. A Novel Marine Pathogen Isolated from Wild Cunners (Tautogolabrus adspersus): Comparative Genomics and Transcriptome Profiling of Pseudomonas sp. Strain J380. Microorganisms 2021, 9, 812. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M100—Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://eucast.org/clinical_breakpoints/ (accessed on 19 May 2021).
- Forsberg, K.J.; Reyes, A.; Wang, B.; Selleck, E.M.; Sommer, M.O.A.; Dantas, G. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science 2012, 337, 1107–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrick, J.B.; Haynes, R.; Heringa, S.; Brooks, J.M.; Sobota, L.T. Coselection for Resistance to Multiple Late-Generation Human Therapeutic Antibiotics Encoded on Tetracycline Resistance Plasmids Captured from Uncultivated Stream and Soil Bacteria. J. Appl. Microbiol. 2014, 117, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Venkatesh, B.; Lalithakumari, D. Transfer and Expression of a Multiple Antibiotic Resistance Plasmid in Marine Bacteria. Curr. Microbiol. 1998, 37, 347–351. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Lalithakumari, D. Plasmid-Mediated Rifampicin Resistance in Pseudomonas Fluorescens. J. Med. Microbiol. 1998, 47, 197–200. [Google Scholar] [CrossRef]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular Basis of Bacterial Resistance to Chloramphenicol and Florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z.S.; Elshafiee, E.A.; Khalefa, H.S.; Kadry, M.; Hamza, D.A. Evidence of Colistin Resistance Genes (Mcr-1 and Mcr-2) in Wild Birds and Its Public Health Implication in Egypt. Antimicrob. Resist. Infect. Control 2019, 8, 197. [Google Scholar] [CrossRef]
- Hameed, F.; Khan, M.A.; Muhammad, H.; Sarwar, T.; Bilal, H.; Rehman, T.U. Plasmid-Mediated Mcr-1 Gene in Acinetobacter Baumannii and Pseudomonas Aeruginosa: First Report from Pakistan. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190237. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Baky, R.M.; Masoud, S.M.; Mohamed, D.S.; Waly, N.G.; Shafik, E.A.; Mohareb, D.A.; Elkady, A.; Elbadr, M.M.; Hetta, H.F. Prevalence and Some Possible Mechanisms of Colistin Resistance Among Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas Aeruginosa. IDR 2020, 13, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Ahombo, G.; Baloki Ngoulou, T.; Moyen, R.; Kayath, A.C.; Ontsira Ngoyi, N.E. Study of Colistin Resistance Encoded by the Mcr-1 Gene in Community and Clinical Pseudomonas in Brazzaville, Republic of Congo. J. Microb. Biochem. Technol. 2019, 11, 7. [Google Scholar]
- Girlich, D.; Poirel, L.; Nordmann, P. Novel Ambler Class A Carbapenem-Hydrolyzing β-Lactamase from a Pseudomonas Fluorescens Isolate from the Seine River, Paris, France. AAC 2010, 54, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurens, C.; Jean-Pierre, H.; Licznar-Fajardo, P.; Hantova, S.; Godreuil, S.; Martinez, O.; Jumas-Bilak, E. Transmission of IMI-2 Carbapenemase-Producing Enterobacteriaceae from River Water to Human. J. Glob. Antimicrob. Resist. 2018, 15, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Harmon, D.E.; Miranda, O.A.; McCarley, A.; Eshaghian, M.; Carlson, N.; Ruiz, C. Prevalence and Characterization of Carbapenem-resistant Bacteria in Water Bodies in the Los Angeles–Southern California Area. Microbiol. Open 2019, 8, e00692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maravić, A.; Skočibušić, M.; Šamanić, I.; Puizina, J. Antibiotic Susceptibility Profiles and First Report of TEM Extended-Spectrum β-Lactamase in Pseudomonas Fluorescens from Coastal Waters of the Kaštela Bay, Croatia. World J. Microbiol. Biotechnol. 2012, 28, 2039–2045. [Google Scholar] [CrossRef]
- Igbinosa, I.H.; Nwodo, U.U.; Sosa, A.; Tom, M.; Okoh, A.I. Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants. Int. J. Environ. Res. Public Health 2012, 9, 2537–2549. [Google Scholar] [CrossRef] [Green Version]
- Skariyachan, S.; Mahajanakatti, A.B.; Grandhi, N.J.; Prasanna, A.; Sen, B.; Sharma, N.; Vasist, K.S.; Narayanappa, R. Environmental Monitoring of Bacterial Contamination and Antibiotic Resistance Patterns of the Fecal Coliforms Isolated from Cauvery River, a Major Drinking Water Source in Karnataka, India. Environ. Monit. Assess. 2015, 187, 279. [Google Scholar] [CrossRef]
- Alves, J.; Dias, L.; Mateus, J.; Marques, J.; Graças, D.; Ramos, R.; Seldin, L.; Henriques, I.; Silva, A.; Folador, A. Resistome in Lake Bolonha, Brazilian Amazon: Identification of Genes Related to Resistance to Broad-Spectrum Antibiotics. Front. Microbiol. 2020, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, J.; Sapkale, V.; Rajput, V.; Shah, M.; Kamble, S.; Dharne, M. Shotgun Metagenome Guided Exploration of Anthropogenically Driven Resistomic Hotspots within Lonar Soda Lake of India. Ecotoxicol. Environ. Saf. 2020, 194, 110443. [Google Scholar] [CrossRef]
- Mishra, P.K.; Mishra, S.; Bisht, S.C.; Selvakumar, G.; Kundu, S.; Bisht, J.K.; Gupta, H.S. Isolation, Molecular Characterization and Growth-Promotion Activities of a Cold Tolerant Bacterium Pseudomonas Sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol. Res. 2009, 42, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Flores Ribeiro, A.; Bodilis, J.; Alonso, L.; Buquet, S.; Feuilloley, M.; Dupont, J.-P.; Pawlak, B. Occurrence of Multi-Antibiotic Resistant Pseudomonas Spp. in Drinking Water Produced from Karstic Hydrosystems. Sci. Total Environ. 2014, 490, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Arnau, V.G.; Sánchez, L.A.; Delgado, O.D. Pseudomonas Yamanorum Sp. Nov., a Psychrotolerant Bacterium Isolated from a Subantarctic Environment. Int. J. Syst. Evol. Microbiol. 2015, 65, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Tomova, I.; Stoilova-Disheva, M.; Lazarkevich, I.; Vasileva-Tonkova, E. Antimicrobial Activity and Resistance to Heavy Metals and Antibiotics of Heterotrophic Bacteria Isolated from Sediment and Soil Samples Collected from Two Antarctic Islands. Front. Life Sci. 2015, 8, 348–357. [Google Scholar] [CrossRef]
- Kosina, M.; Švec, P.; Černohlávková, J.; Barták, M.; Snopková, K.; De Vos, P.; Sedláček, I. Description of Pseudomonas Gregormendelii Sp. Nov., a Novel Psychrotrophic Bacterium from James Ross Island, Antarctica. Curr. Microbiol. 2016, 73, 84–90. [Google Scholar] [CrossRef]
- Ebadzadsahrai, G.; Thomson, J.; Soby, S. Draft Genome Sequence of Pseudomonas sp. Strain MWU12-2534b, Isolated from a Wild Cranberry Bog in Truro, Massachusetts. Microbiol. Resour. Announc. 2018, 7, e01005-18. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Palni, L.M.S.; Hebbar, K.P. Suppression of Damping-off in Maize Seedlings by Pseudomonas corrugata. Microbiol. Res. 2001, 156, 191–194. [Google Scholar] [CrossRef]
- Prithivirajsingh, S.; Mishra, S.K.; Mahadevan, A. Detection and Analysis of Chromosomal Arsenic Resistance in Pseudomonas fluorescens Strain MSP3. Biochem. Biophys. Res. Commun. 2001, 280, 1393–1401. [Google Scholar] [CrossRef]
- Han, H.S.; Koh, Y.J.; Hur, J.-S.; Jung, J.S. Occurrence of the StrA-StrB Streptomycin Resistance Genes in Pseudomonas Species Isolated from Kiwifruit Plants. J. Microbiol. 2004, 42, 365–368. [Google Scholar]
- Papadopoulou, C.; Economou, V.; Sakkas, H.; Gousia, P.; Giannakopoulos, X.; Dontorou, C.; Filioussis, G.; Gessouli, H.; Karanis, P.; Leveidiotou, S. Microbiological Quality of Indoor and Outdoor Swimming Pools in Greece: Investigation of the Antibiotic Resistance of the Bacterial Isolates. Int. J. Hyg. Environ. Health 2008, 211, 385–397. [Google Scholar] [CrossRef]
- Schaefer, A.M.; Goldstein, J.D.; Reif, J.S.; Fair, P.A.; Bossart, G.D. Antibiotic-Resistant Organisms Cultured from Atlantic Bottlenose Dolphins (Tursiops Truncatus) Inhabiting Estuarine Waters of Charleston, SC and Indian River Lagoon, FL. Ecohealth 2009, 6, 33–41. [Google Scholar] [CrossRef]
- Alouache, S.; Kada, M.; Messai, Y.; Estepa, V.; Torres, C.; Bakour, R. Antibiotic Resistance and Extended-Spectrum β-Lactamases in Isolated Bacteria from Seawater of Algiers Beaches (Algeria). Microb. Environ. 2012, 27, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, J.R.; Diéguez, A.L.; Doce, A.; De la Roca, E.; De la Herran, R.; Navas, J.I.; Toranzo, A.E.; Romalde, J.L. Pseudomonas baetica sp. nov., a Fish Pathogen Isolated from Wedge Sole, Dicologlossa Cuneata (Moreau). Int. J. Syst. Evol. Microbiol. 2012, 62, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaton, A.; Lood, C.; Cunningham-Oakes, E.; MacFadyen, A.; Mullins, A.J.; Bestawy, W.E.; Botelho, J.; Chevalier, S.; Coleman, S.; Dalzell, C.; et al. Community-Led Comparative Genomic and Phenotypic Analysis of the Aquaculture Pathogen Pseudomonas baetica A390T Sequenced by Ion Semiconductor and Nanopore Technologies. FEMS Microbiol. Lett. 2018, 365, fny069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popowska, M.; Rzeczycka, M.; Miernik, A.; Krawczyk-Balska, A.; Walsh, F.; Duffy, B. Influence of Soil Use on Prevalence of Tetracycline, Streptomycin, and Erythromycin Resistance and Associated Resistance Genes. Antimicrob. Agents Chemother. 2012, 56, 1434–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luczkiewicz, A.; Kotlarska, E.; Artichowicz, W.; Tarasewicz, K.; Fudala-Ksiazek, S. Antimicrobial Resistance of Pseudomonas spp. Isolated from Wastewater and Wastewater-Impacted Marine Coastal Zone. Environ. Sci. Pollut. Res. 2015, 22, 19823–19834. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Dorosky, R.J.; Han, C.S.; Lo, C.; Dichosa, A.E.K.; Chain, P.S.; Yu, J.M.; Pierson, L.S.; Pierson, E.A. Adaptation Genomics of a Small-Colony Variant in a Pseudomonas chlororaphis 30-84 Biofilm. Appl. Environ. Microbiol. 2015, 81, 890–899. [Google Scholar] [CrossRef] [Green Version]
- Jałowiecki, Ł.; Chojniak, J.; Dorgeloh, E.; Hegedusova, B.; Ejhed, H.; Magnér, J.; Płaza, G. Using Phenotype Microarrays in the Assessment of the Antibiotic Susceptibility Profile of Bacteria Isolated from Wastewater in On-Site Treatment Facilities. Folia Microbiol. 2017, 62, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, M.A.; Furmanczyk, E.M.; Sobczak, A.; Dziembowski, A.; Lipinski, L. Pseudomonas silesiensis sp. nov. Strain A3 T Isolated from a Biological Pesticide Sewage Treatment Plant and Analysis of the Complete Genome Sequence. Syst. Appl. Microbiol. 2018, 41, 13–22. [Google Scholar] [CrossRef]
- Kawecki, S.; Kuleck, G.; Dorsey, J.H.; Leary, C.; Lum, M. The Prevalence of Antibiotic-Resistant Bacteria (ARB) in Waters of the Lower Ballona Creek Watershed, Los Angeles County, California. Environ. Monit. Assess. 2017, 189, 261. [Google Scholar] [CrossRef]
- Oueslati, M.; Mulet, M.; Gomila, M.; Berge, O.; Hajlaoui, M.R.; Lalucat, J.; Sadfi-Zouaoui, N.; García-Valdés, E. New Species of Pathogenic Pseudomonas Isolated from Citrus in Tunisia: Proposal of Pseudomonas kairouanensis sp. nov. and Pseudomonas nabeulensis sp. nov. Syst. Appl. Microbiol. 2019, 42, 348–359. [Google Scholar] [CrossRef]
- Olawale, S.I.; Mutiat Busayo, O.-O.; Iyiola Olatunji, O.; Mariam, M.; Sariyat Olayinka, O. Plasmid Profiles and Antibiotic Susceptibility Patterns of Bacteria Isolated from Abattoirs Wastewater within Ilorin, Kwara, Nigeria. Iran J. Microbiol. 2020, 12, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Radisic, V.; Lunestad, B.T.; Sanden, M.; Bank, M.S.; Marathe, N.P. Draft Genome Sequence of Multidrug-Resistant Pseudomonas protegens Strain 11HC2, Isolated from Marine Plastic Collected from the West Coast of Norway. Microbiol. Resour. Announc. 2021, 10, e01285-20. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silverio, M.P.; Kraychete, G.B.; Rosado, A.S.; Bonelli, R.R. Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites. Antibiotics 2022, 11, 985. https://doi.org/10.3390/antibiotics11080985
Silverio MP, Kraychete GB, Rosado AS, Bonelli RR. Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites. Antibiotics. 2022; 11(8):985. https://doi.org/10.3390/antibiotics11080985
Chicago/Turabian StyleSilverio, Myllena Pereira, Gabriela Bergiante Kraychete, Alexandre Soares Rosado, and Raquel Regina Bonelli. 2022. "Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites" Antibiotics 11, no. 8: 985. https://doi.org/10.3390/antibiotics11080985
APA StyleSilverio, M. P., Kraychete, G. B., Rosado, A. S., & Bonelli, R. R. (2022). Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites. Antibiotics, 11(8), 985. https://doi.org/10.3390/antibiotics11080985