Is Silver the New Gold? A Systematic Review of the Preclinical Evidence of Its Use in Bone Substitutes as Antiseptic
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sambri, A.; Spinnato, P.; Tedeschi, S.; Zamparini, E.; Fiore, M.; Zucchini, R.; Giannini, C.; Caldari, E.; Crombe, A.; Viale, P.; et al. Bone and Joint Infections: The Role of Imaging in Tailoring Diagnosis to Improve Patients’ Care. J. Pers. Med. 2021, 11, 1317. [Google Scholar] [CrossRef] [PubMed]
- Mandracchia, V.J.; Sanders, S.M.; Jaeger, A.J.; Nickles, W.A. Management of osteomyelitis. Clin. Podiatr. Med. Surg. 2004, 21, 335–351. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, B.; Han, C.; Huang, X.; Xiao, H.; Lu, X.; Lu, J.; Zhang, D.; Xue, F.; Xie, Y. Nanosized-Ag-doped porous beta-tricalcium phosphate for biological applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111037. [Google Scholar] [CrossRef] [PubMed]
- Paterson, T.E.; Shi, R.; Tian, J.; Harrison, C.J.; De Sousa Mendes, M.; Hatton, P.V.; Li, Z.; Ortega, I. Electrospun Scaffolds Containing Silver-Doped Hydroxyapatite with Antimicrobial Properties for Applications in Orthopedic and Dental Bone Surgery. J. Funct. Biomater. 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Sambri, A.; Fiore, M.; Tedeschi, S.; De Paolis, M. The Need for Multidisciplinarity in Modern Medicine: An Insight into Orthopaedic Infections. Microorganisms 2022, 10, 756. [Google Scholar] [CrossRef]
- Shimabukuro, M.; Hayashi, K.; Kishida, R.; Tsuchiya, A.; Ishikawa, K. No-Observed-Effect Level of Silver Phosphate in Carbonate Apatite Artificial Bone on Initial Bone Regeneration. ACS Infect. Dis. 2022, 8, 159–169. [Google Scholar] [CrossRef]
- Busch, A.; Wegner, A.; Haversath, M.; Jager, M. Bone Substitutes in Orthopaedic Surgery: Current Status and Future Perspectives. Z. Orthop. Unfallchir. 2021, 159, 304–313. [Google Scholar] [CrossRef]
- Correia, T.R.; Figueira, D.R.; de Sá, K.D.; Miguel, S.P.; Fradique, R.G.; Mendonca, A.G.; Correia, I.J. 3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration. Int. J. Biol. Macromol. 2016, 93, 1432–1445. [Google Scholar] [CrossRef]
- Dalavi, P.A.; Prabhu, A.; Shastry, R.P.; Venkatesan, J. Microspheres containing biosynthesized silver nanoparticles with alginate-nano hydroxyapatite for biomedical applications. J. Biomater. Sci. Polym. Ed. 2020, 31, 2025–2043. [Google Scholar] [CrossRef]
- Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G. Bone substitutes in orthopaedic surgery: From basic science to clinical practice. J. Mater. Sci. Mater. Med. 2014, 25, 2445–2461. [Google Scholar] [CrossRef]
- Bostancioglu, R.B.; Peksen, C.; Genc, H.; Gurbuz, M.; Karel, F.B.; Koparal, A.S.; Dogan, A.; Kose, N.; Koparal, A.T. Analyses of the modulatory effects of antibacterial silver doped calcium phosphate-based ceramic nano-powder on proliferation, survival, and angiogenic capacity of different mammalian cells in vitro. Biomed. Mater. 2015, 10, 045024. [Google Scholar] [CrossRef]
- Afzal, M.A.; Kalmodia, S.; Kesarwani, P.; Basu, B.; Balani, K. Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. J. Biomater. Appl. 2013, 27, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Bee, S.L.; Bustami, Y.; Ul-Hamid, A.; Lim, K.; Abdul Hamid, Z.A. Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties. J. Mater. Sci. Mater. Med. 2021, 32, 106. [Google Scholar] [CrossRef] [PubMed]
- Kolmas, J.; Groszyk, E.; Kwiatkowska-Rozycka, D. Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int. 2014, 2014, 178123. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Sambri, A.; Zucchini, R.; Giannini, C.; Donati, D.M.; De Paolis, M. Silver-coated megaprosthesis in prevention and treatment of peri-prosthetic infections: A systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 201–220. [Google Scholar] [CrossRef]
- Deng, L.; Deng, Y.; Xie, K. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloids Surf. B Biointerfaces 2017, 160, 483–492. [Google Scholar] [CrossRef]
- Gong, J.; Yang, L.; He, Q.; Jiao, T. In vitro evaluation of the biological compatibility and antibacterial activity of a bone substitute material consisting of silver-doped hydroxyapatite and Bio-Oss((R)). J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 410–420. [Google Scholar] [CrossRef]
- Jacquart, S.; Siadous, R.; Henocq-Pigasse, C.; Bareille, R.; Roques, C.; Rey, C.; Combes, C. Composition and properties of silver-containing calcium carbonate-calcium phosphate bone cement. J. Mater. Sci. Mater. Med. 2013, 24, 2665–2675. [Google Scholar] [CrossRef] [Green Version]
- Jegatheeswaran, S.; Sundrarajan, M. PEGylation of novel hydroxyapatite/PEG/Ag nanocomposite particles to improve its antibacterial efficacy. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 51, 174–181. [Google Scholar] [CrossRef]
- Jiang, J.; Li, L.; Li, K.; Li, G.; You, F.; Zuo, Y.; Li, Y.; Li, J. Antibacterial nanohydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration. J. Biomater. Sci. Polym. Ed. 2016, 27, 1584–1598. [Google Scholar] [CrossRef]
- Kose, N.; Asfuroglu, Z.M.; Kose, A.; Sahinturk, V.; Gurbuz, M.; Dogan, A. Silver ion-doped calcium phosphate-based bone-graft substitute eliminates chronic osteomyelitis: An experimental study in animals. J. Orthop. Res. 2021, 39, 1390–1401. [Google Scholar] [CrossRef] [PubMed]
- Sampath Kumar, T.S.; Madhumathi, K.; Rubaiya, Y.; Doble, M. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections. Front. Bioeng. Biotechnol. 2015, 3, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, P.N.; Shi, Z.; Neoh, K.G.; Ho, B.; Tay, B.Y.; Thian, E.S. The effects of silver, silicon-containing apatite towards bacteria and cell responses. Biomed. Mater. 2014, 9, 015010. [Google Scholar] [CrossRef]
- Nam, K.Y. Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles. J. Adv. Prosthodont. 2017, 9, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Sethmann, I.; Volkel, S.; Pfeifer, F.; Kleebe, H.J. Development of Phosphatized Calcium Carbonate Biominerals as Bioactive Bone Graft Substitute Materials, Part II: Functionalization with Antibacterial Silver Ions. J. Funct. Biomater. 2018, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Sonamuthu, J.; Samayanan, S.; Jeyaraman, A.R.; Murugesan, B.; Krishnan, B.; Mahalingam, S. Influences of ionic liquid and temperature on the tailorable surface morphology of F-apatite nanocomposites for enhancing biological abilities for orthopedic implantation. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 84, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Kumar, P.T.; Nair, S.V.; Nair, S.V.; Chennazhi, K.P.; Jayakumar, R. Antibacterial and bioactive alpha- and beta-chitin hydrogel/nanobioactive glass ceramic/nano silver composite scaffolds for periodontal regeneration. J. Biomed. Nanotechnol. 2013, 9, 1803–1816. [Google Scholar] [CrossRef] [PubMed]
- Miola, M.; Ferraris, S.; Di Nunzio, S.; Robotti, P.F.; Bianchi, G.; Fucale, G.; Maina, G.; Cannas, M.; Gatti, S.; Masse, A.; et al. Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: Plasma sprayed glass-coatings. J. Mater. Sci. Mater. Med. 2009, 20, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Verne, E.; Miola, M.; Vitale Brovarone, C.; Cannas, M.; Gatti, S.; Fucale, G.; Maina, G.; Masse, A.; Di Nunzio, S. Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: Massive glass. J. Mater. Sci. Mater. Med. 2009, 20, 733–740. [Google Scholar] [CrossRef]
- Vollmer, N.L.; Spear, J.R.; Ayers, R.A. Antimicrobial activity and biologic potential of silver-substituted calcium phosphate constructs produced with self-propagating high-temperature synthesis. J. Mater. Sci. Mater. Med. 2016, 27, 104. [Google Scholar] [CrossRef]
- Weng, W.; Li, X.; Nie, W.; Liu, H.; Liu, S.; Huang, J.; Zhou, Q.; He, J.; Su, J.; Dong, Z.; et al. One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment. Int. J. Nanomed. 2020, 15, 5027–5042. [Google Scholar] [CrossRef] [PubMed]
- Wilcock, C.J.; Stafford, G.P.; Miller, C.A.; Ryabenkova, Y.; Fatima, M.; Gentile, P.; Mobus, G.; Hatton, P.V. Preparation and Antibacterial Properties of Silver-Doped Nanoscale Hydroxyapatite Pastes for Bone Repair and Augmentation. J. Biomed. Nanotechnol. 2017, 13, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, W.; Wu, X.D.; He, X.; Lin, X.; Wang, H.; Li, J.; Jiang, J.; Huang, W. Efficacy of novel nano-hydroxyapatite/polyurethane composite scaffolds with silver phosphate particles in chronic osteomyelitis. J. Mater. Sci. Mater. Med. 2019, 30, 59. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, G.; Tang, M.; Chen, C.; Niu, J.; Huang, H.; Kang, B.; Pei, J.; Zeng, H.; Yuan, G. Simultaneous enhancement of anti-corrosion, biocompatibility, and antimicrobial activities by hierarchically-structured brushite/Ag3PO4-coated Mg-based scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 111, 110779. [Google Scholar] [CrossRef]
- Cao, H.; Liu, X.; Meng, F.; Chu, P.K. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 2011, 32, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Tweden, K.S.; Cameron, J.D.; Razzouk, A.J.; Holmberg, W.R.; Kelly, S.J. Biocompatibility of silver-modified polyester for antimicrobial protection of prosthetic valves. J. Heart Valve Dis. 1997, 6, 553–561. [Google Scholar] [PubMed]
- Wan, A.T.; Conyers, R.A.; Coombs, C.J.; Masterton, J.P. Determination of silver in blood, urine, and tissues of volunteers and burn patients. Clin. Chem. 1991, 37, 1683–1687. [Google Scholar] [CrossRef]
- Russell, A.D.; Hugo, W.B. Antimicrobial activity and action of silver. Prog. Med. Chem. 1994, 31, 351–370. [Google Scholar] [CrossRef]
- Hetrick, E.M.; Schoenfisch, M.H. Reducing implant-related infections: Active release strategies. Chem. Soc. Rev. 2006, 35, 780–789. [Google Scholar] [CrossRef]
- Palanisamy, N.K.; Ferina, N.; Amirulhusni, A.N.; Mohd-Zain, Z.; Hussaini, J.; Ping, L.J.; Durairaj, R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J. Nanobiotechnol. 2014, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Afkhami, F.; Ahmadi, P.; Chiniforush, N.; Sooratgar, A. Correction to: Effect of different activations of silver nanoparticle irrigants on the elimination of Enterococcus faecalis. Clin. Oral Investig. 2022, 26, 1103. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Lee, P.; Lui, V.C.; Chen, Y.; Liu, X.; Lok, C.N.; To, M.; Yeung, K.W.; Wong, K.K. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine 2015, 11, 1949–1959. [Google Scholar] [CrossRef] [PubMed]
- AshaRani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef]
- Clement, J.L.; Jarrett, P.S. Antibacterial silver. Met.-Based Drugs 1994, 1, 467–482. [Google Scholar] [CrossRef]
- Pauksch, L.; Hartmann, S.; Rohnke, M.; Szalay, G.; Alt, V.; Schnettler, R.; Lips, K.S. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014, 10, 439–449. [Google Scholar] [CrossRef]
- Necula, B.S.; van Leeuwen, J.P.; Fratila-Apachitei, L.E.; Zaat, S.A.; Apachitei, I.; Duszczyk, J. In vitro cytotoxicity evaluation of porous TiO(2)-Ag antibacterial coatings for human fetal osteoblasts. Acta Biomater. 2012, 8, 4191–4197. [Google Scholar] [CrossRef]
- Brutel de la Riviere, A.; Dossche, K.M.; Birnbaum, D.E.; Hacker, R. First clinical experience with a mechanical valve with silver coating. J. Heart Valve Dis. 2000, 9, 123–129. [Google Scholar]
- Lansdown, A.B. Critical observations on the neurotoxicity of silver. Crit. Rev. Toxicol. 2007, 37, 237–250. [Google Scholar] [CrossRef]
- Shavlovski, M.M.; Chebotar, N.A.; Konopistseva, L.A.; Zakharova, E.T.; Kachourin, A.M.; Vassiliev, V.B.; Gaitskhoki, V.S. Embryotoxicity of silver ions is diminished by ceruloplasmin—Further evidence for its role in the transport of copper. Biometals 1995, 8, 122–128. [Google Scholar] [CrossRef]
- Percival, S.L.; Bowler, P.G.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005, 60, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Landsdown, A.B.; Williams, A. Bacterial resistance to silver in wound care and medical devices. J. Wound Care 2007, 16, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.; Panacek, A.; Prucek, R.; Kriegova, E.; Hradilova, S.; Hobza, M.; Holinka, M. Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection. Materials 2016, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Schneider, O.D.; Mohn, D.; Fuhrer, R.; Klein, K.; Kampf, K.; Nuss, K.M.; Sidler, M.; Zlinszky, K.; von Rechenberg, B.; Stark, W.J. Biocompatibility and Bone Formation of Flexible, Cotton Wool-like PLGA/Calcium Phosphate Nanocomposites in Sheep. Open Orthop. J. 2011, 5, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wnukiewicz, W.; Rutowski, R.; Zboromirska-Wnukiewicz, B.; Reichert, P.; Gosk, J. Evaluation of Soft Tissue Reaction to Corundum Ceramic Implants Infiltrated with Colloidal Silver. Adv. Clin. Exp. Med. 2016, 25, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Study | Type of Study | Material Tested | Antimicrobial Activity Evaluations | Bacteria Tested | Reported Results | Toxicity |
---|---|---|---|---|---|---|
Afzal, 2012 [12] | In vitro | Hydroxyapatite–silver (Ag-HA) and carbon nanotube–silver (CNT-Ag) composites | Bacterial count through SEM | Escherichia coli Staphylococcus epidermidis | Partial response. | N/A |
Bee, 2020 [13] | In vitro | Antibacterial silver-nanoparticle-decorated hydroxyapatite (HAp/AgNP) | Agar diffusion | Staphylococcus aureus | Zone of inhibition of bacterial growth. | N/A |
Bostancıoğlu, 2015 [11] | In vitro | Silver-doped calcium-phosphate-based inorganic powder (ABT) | Agar diffusion Agar dilution | Escherichia coli Pseudomonas aeruginosa Staphylococcus aureus | Partial response or total response depending on dilution and concentration. | Concentration-dependent cytotoxicity on V79 379A and HUVEC lines. ABT is noncytotoxic and bears good biocompatibility even at 1000 μg mL−1 of ABT with the highest content of silver. |
Correia, 2016 [8] | In vitro | Tricalcium phosphate (TCP)/sodium alginate scaffold doped with AgNP | Agar diffusion | Staphylococcus aureus | Halo of 0.820 cm with 1 cm scaffold. | No cytotoxicity on osteoblast cells. |
Dalavi, 2020 [9] | In vitro | Alginate-nanohydroxyapatite doped with chitooligosaccharide-coated silver nanoparticles (COS-Ag-Alg-HA) | Broth microdilution | Staphylococcus aureus | Total response at higher concentration than 77.2% using 3 mg/mL of microsphere. | No cytotoxicity on human osteosarcoma osteoblast-like MG-63 cells. |
Deng, 2017 [16] | In vitro | PEEK doped with Ag + nanoparticles | Agar diffusion | Staphylococcus aureus Escherichia coli | Halo of 14 mm of inhibition for both the bacteria with 0.9 mm scaffold. | Initial low proliferation rate of human osteosarcoma osteoblast-like MG-63 cells. |
Gong, 2017 [17] | In vitro | Silver-doped hydroxyapatite (Ag-HA) + Bio-Oss | RT-PCR bacterial DNA measurement | Porphyromonas gingivalis Fusobacterium nucleatum | Partial response, with decreasing of bacterial DNA at 2 h, 4 h, and 24 h compared to control group in which no inhibition was seen. | AgHA showed obvious cytotoxicity against periodontal fibroblasts and rat bone-marrow stromal cells, with relative survival rates of <80%. Bio-Oss only showed survival rates exceeding 95% of periodontal. |
Jacquart, 2013 [18] | In vitro | Calcium carbonate–calcium phosphate bone cement doped with silver (Ag-CaCO3-CaP) | Broth microdilution | Staphylococcus aureus Escherichia coli | Complete response. | No cytotoxicity on human bone marrow stroma cells. |
Jegatheeswaran, 2015 [19] | In vitro | Polyethylene-glycol/hydroxyapatite doped with silver (Ag-HAp-PEG) | Epi-fluorescence microscopy | Escherichia coli | Partial response with increasing bacteria death in analyses at 6 and 12 h. | N/A |
Jiang, 2016 [20] | In vitro | Hydroxyapatite/polyurethane composite scaffolds doped with silver phosphate particles (Ag3PO4-n-HA/PU) | Agar diffusion | Staphylococcus aureus Escherichia coli | The bacteriostatic rate resulted time and weight percentage of Ag incorporated depending. | Scaffolds with no more than 5 wt% appear to have no cytotoxicity on human osteosarcoma osteoblast-like MG-63 cells. Higher concentration (>5%) would weaken cytocompatibility. |
Kose, 2020 [21] | In vivo (rabbit) | Calcium phosphate (CP) with silver ions | Radiological examination Bacterial cultures from bone samples Histopathological examinations | Staphylococcus aureus | No MRSA was found at cultures, no X-ray signs of osteomyelitis and no sign of chronic inflammation in histological analysis, compared to the control groups. | No inflammatory reactions. |
Sampath Kumar, 2015 [22] | In vitro | Calcium-deficient hydroxyapatite (CDHA) carrier of doxycycline and Ag+ ions | MIC/MBC studies and time-kill assay | Staphylococcus aureus Escherichia coli | When compared with doxycycline, the antibiotic release provided the initial high antibacterial activity, while the sustained ion release provided a long-term antibacterial activity. | No cytotoxicity on L6 myoblast cells. |
Lim, 2014 [23] | In vitro | Silver and silicon-containing apatite (Ag,Si-HA) | Bacterial count through SEM | Staphylococcus aureus Escherichia coli | No bacteria growth compared to negative control: complete response. | MSCs treated with Ag,Si-HA showed an initial low proliferation rate compared to controls, and faster proliferation after day 3. |
Nam, 2017 [24] | In vitro | Portland cement doped with silver nanoparticles (SNPC) | Agar diffusion | Streptococcus mutans Streptococcus sobrinus | 1.0% wt of SNPC has no antibacterial effect; 3.0 wt% SNPC inhibited S. sorbinus by 1.9 ± 0.5 mm, while no inhibition halos were shown for S. mutans at the same dose. SNPC of 5.0 wt% significantly inhibited S. sorbinus (halo diameter 4.2 ± 0.3 mm) and S. mutans (halo diameter 2.2 ± 0.4 mm). | N/A |
Paterson, 2020 [4] | In vitro | Polycaprolactone scaffolds with silver-doped hydroxyapatite (Ag-nHA) | Agar diffusion | Staphylococcus aureus Escherichia coli | The scaffold reduced the viable bacteria count to undetectable levels by 48 h for E. coli and 96 h for S. aureus: complete response. | Silver-doped nHA to enhance MSC differentiation down an osteogenic path. Scaffolds containing 10 mol.% silver may be toxic for MSCs. |
Sethmann, 2018 [25] | In vitro | Phosphatized Calcium Carbonate biomineral (PCCB) doped with Ag + silver ions | Agar diffusion | Pseudomonas aeruginosa Staphylococcus aureus | Samples treated with an AgNO3 solution with 10 mmol/L showed nearly the same antibacterial performance as samples treated with 100 mmol/L. Halo of 1.1–1.2 mm for Gram- and 3 mm for Gram+. | N/A |
Shimabukuro, 2021 [6] | In vitro + in vivo (rabbit) | Silver phosphate in carbonate apatite (Ag3PO4-CO3Ap) | Agar diffusion immunofluorescence | Staphylococcus epidermidis | Antibacterial effect if concentration of Ag3Po4 is more than 0.1 wt %. Complete response. | Ag3PO4 content of 0.1–0.95 wt % may show antibacterial properties without cytotoxicity. Higher concentrations showed increasing toxicity for MC3T3-E1 cells. Ag3PO4 content of 0.1–0.3 wt % in the samples did not affect bone formation in vivo. |
Sonamuthu, 2018 [26] | In vitro | Fluorinate-hydroxyapatite/polyvinyl alcohol doped with silver nanoparticles (AgNp-fHA) | Agar diffusion CLSM Broth microdilution | Staphylococcus aureus Escherichia coli | Antibacterial activity is time- and concentration-dependent. More effect on Gram + due to the different composition of membrane; complete response G+ and G- partial response in CLSM. | No cytotoxicity on human osteosarcoma osteoblast-like MG-63 cells. |
Sowmya-Srinavasan, 2013 [27] | In vitro | Bioactive alpha- and beta-chitin hydrogel/nanobioactive glass ceramic doped with silver | Agar diffusion | Staphylococcus aureus Escherichia coli | Antibacterial activity of Ag dose dependent, similar effect between G+ and G-, but less effective than gentamicin alone. | No cytotoxicity on human primary osteoblasts and human periodontal ligament cells. |
Verné, 2009 [29] + Miola, 2009 [28] | In vitro | SiO-CaO-NaO-AlO doped with silver (Ag-SCNA) | Agar diffusion Broth microdilution | Staphylococcus aureus Escherichia coli | Same antimicrobial activity against G+ and G-, halo of 2 mm. | No cytotoxicity on fibroblasts. Slightly lower proliferation rate compared to control cells. |
Vollmer, 2016 [30] | In vitro | Calcium phosphate (CaP) doped with silver | Agar diffusion Bacterial count through SEM | Escherichia coli | Antimicrobial activity with halo in agar diffusion (no dimensions reported) and characteristics of poor health of bacteria at SEM compared to control. | No cytotoxicity on human osteoblasts. |
Weng, 2020 [31] | In vitro + in vivo (rabbit) | Loaded nano-hydroxyapatite-reduced graphene oxide doped with Ag nanoparticles (AgNp-AHRG) | Agar diffusion Kirby–Bauer diffusion WBC count CRP Radiological examination | Staphylococcus aureus | Antibacterial activity in vitro and the halo zone is dependent on the concentration of Ag. In vivo, it significantly reduced the levels of inflammatory markers, such as leukocytes and CRP, after implantation in the infected site. In subsequent observations, the healing of the bone in the implanted group was significantly improved compared to the untreated group. | Concentration-dependent cytotoxicity on bone marrow stromal cells. No cytotoxicity for 1% and 2% silver AgNp-AHRG scaffolds. |
Wilcock, 2017 [32] | In vitro | Hydroxyapatite paste silver doped (Ag-nHA) | Agar diffusion | Pseudomonas aeruginosa Staphylococcus aureus | Antibacterial activity dependent on Ag concentration. | N/A |
Yuan, 2016 [3] | In vitro + in vivo (rabbit) | Porous β-tricalcium phosphate with Ag nanoparticles (AgNp- βTCP) | Agar diffusion Bacterial count through SEM | Staphylococcus aureus Escherichia coli | Antibacterial activity dependent on concentration. Difference in activity between G+ and G- was not reported. At SEM, there is some bacteria visible, but no biofilm was seen. | No local and systemic toxicity. |
Zhang, 2019 [33] | In vivo (rabbit) | Nano-hydroxyapatite/polyurethane composite scaffolds doped with silver phosphate particles (Ag/n-HA/PU) | WBC count Radiological examination Histopathological examinations | Staphylococcus aureus | Radiological healing of infection with no difference between 3% wt and 10% wt concentration as well as no difference in histological analysis for trabeculae formation. | Local toxicity for highest concentration of silver (Ag/n-HA/10PU). |
Zhang, 2020 [34] | In vitro | Brushite/Ag3PO4-coated Mg-based scaffolds (Mg-DCPD-Ag) | Spread plate method Bacterial count through SEM | Staphylococcus aureus Escherichia coli Staphylococcus epidermidis | Antibacterial activity with complete response depending on concentration of Ag. | Cytotoxicity for highest concentration of silver (Mg-DCPD-0.46 Ag) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, M.; Bruschi, A.; Giannini, C.; Morante, L.; Rondinella, C.; Filippini, M.; Sambri, A.; De Paolis, M. Is Silver the New Gold? A Systematic Review of the Preclinical Evidence of Its Use in Bone Substitutes as Antiseptic. Antibiotics 2022, 11, 995. https://doi.org/10.3390/antibiotics11080995
Fiore M, Bruschi A, Giannini C, Morante L, Rondinella C, Filippini M, Sambri A, De Paolis M. Is Silver the New Gold? A Systematic Review of the Preclinical Evidence of Its Use in Bone Substitutes as Antiseptic. Antibiotics. 2022; 11(8):995. https://doi.org/10.3390/antibiotics11080995
Chicago/Turabian StyleFiore, Michele, Alessandro Bruschi, Claudio Giannini, Lorenzo Morante, Claudia Rondinella, Matteo Filippini, Andrea Sambri, and Massimiliano De Paolis. 2022. "Is Silver the New Gold? A Systematic Review of the Preclinical Evidence of Its Use in Bone Substitutes as Antiseptic" Antibiotics 11, no. 8: 995. https://doi.org/10.3390/antibiotics11080995
APA StyleFiore, M., Bruschi, A., Giannini, C., Morante, L., Rondinella, C., Filippini, M., Sambri, A., & De Paolis, M. (2022). Is Silver the New Gold? A Systematic Review of the Preclinical Evidence of Its Use in Bone Substitutes as Antiseptic. Antibiotics, 11(8), 995. https://doi.org/10.3390/antibiotics11080995