Buffering Capacity and Effects of Sodium Hexametaphosphate Nanoparticles and Fluoride on the Inorganic Components of Cariogenic-Related Biofilms In Vitro
Abstract
:1. Introduction
2. Results
2.1. Determination of the Biofilm pH
2.2. Analysis of the Inorganic Composition of the Biofilm Fluid
2.3. Analysis of the Inorganic Components from the Biofilm Biomass
2.4. Determination of P Release from HMP
3. Discussion
4. Materials and Methods
4.1. Biofilm Growth and Treatment of the Biofilms with the Experimental Solutions
4.2. Determination of the Biofilm pH
4.3. Analysis of the Inorganic Composition of the Biofilm Fluid
4.4. Analysis of the Inorganic Composition of the Biofilm Biomass
4.5. Determination of P Release from HMP
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; et al. Terminology of Dental Caries and Dental Caries Management: Consensus Report of a Workshop Organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental Caries. Nat. Rev. Dis. Primers 2017, 3, 17030. [Google Scholar] [CrossRef] [PubMed]
- Ten Cate, J.M.; Dundon, K.A.; Vernon, P.G.; Damato, F.A.; Huntington, E.; Exterkate, R.A.; Wefel, J.S.; Jordan, T.; Stephen, K.W.; Roberts, A.J. Preparation and measurement of artificial enamel lesion, a four-laboratory ring test. Caries Res. 1996, 30, 400–407. [Google Scholar] [CrossRef]
- Tanaka, M.; Margolis, H.C. Release mineral ions in dental plaque following acid production. Arch. Oral Biol. 1999, 44, 253–258. [Google Scholar] [CrossRef]
- Ten Cate, J.M.; Buzalaf, M.A.R. Fluoride Mode of Action: Once There Was an Observant Dentist. J. Dent Res. 2019, 98, 725–730. [Google Scholar] [CrossRef]
- Shaw, L.; Murray, J.J.; Burchell, K.; Best, J.S. Calcium and phosphorus content of plaque and saliva in relation to dental caries. Caries Res. 1983, 17, 543–548. [Google Scholar] [CrossRef]
- Sounah, S.A.; Madfa, A.A. Correlation between dental caries experience and the level of Streptococcus mutans and lactobacilli in saliva and carious teeth in a Yemeni adult population. BMC Res. Notes 2020, 13, 112. [Google Scholar] [CrossRef]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 7.1.03. [Google Scholar] [CrossRef]
- Khoury, Z.H.; Vila, T.; Puthran, T.R.; Sultan, A.S.; Montelongo-Jauregui, D.; Melo, M.A.S.; Jabra-Rizk, M.A. The Role of Candida albicans Secreted Polysaccharides in Augmenting Streptococcus mutans Adherence and Mixed Biofilm Formation: In vitro and in vivo Studies. Front. Microbiol. 2020, 11, 307. [Google Scholar] [CrossRef]
- Kim, H.E.; Liu, Y.; Dhall, A.; Bawazir, M.; Koo, H.; Hwang, G. Synergism of Streptococcus mutans and Candida albicans Reinforces Biofilm Maturation and Acidogenicity in Saliva: An In Vitro Study. Front. Cell. Infect. Microbiol. 2021, 10, 623980. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015, 94, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 1992, 56, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Van der Mei, H.C.; White, D.; Cox, E.; Geertsema-Doornbusch, G.; Busscher, H. Bacterial detachment from salivary conditioning films by dentifrice supernates. J. Clin. Dent. 2002, 13, 44–49. [Google Scholar]
- Hosida, T.Y.; Pessan, J.P.; Cavazana, T.P.; Sampaio, C.; de Morais, L.A.; Monteiro, D.R.; Delbem, A.C.B. Effects of Sodium Hexametaphosphate and Fluoride on the pH and Inorganic Components of Streptococcus mutans and Candida albicans Biofilm after Sucrose Exposure. Antibiotics 2022, 11, 1044. [Google Scholar] [CrossRef]
- Garcia, L.S.G.; Delbem, A.C.B.; Pessan, J.P.; Dos Passos Silva, M.; Neto, F.N.S.; Gorup, L.F.; de Camargo, E.R.; Danelon, M. Anticaries effect of toothpaste with nano-sized sodium hexametaphosphate. Clin. Oral Investig. 2019, 23, 3535–3542. [Google Scholar] [CrossRef]
- Sampaio, C.; Botazzo Delbem, A.C.; Hosida, T.Y.; de Morais, L.A.; Fernandes, A.V.P.; Souza Neto, F.N.; de Camargo, E.R.; Monteiro, D.R.; Pessan, J.P. Effects of nano-sized sodium hexametaphosphate on the viability, metabolism, matrix composition, and structure of dual-species biofilms of Streptococcus mutans and Candida albicans. Biofouling 2022, 38, 321–330. [Google Scholar] [CrossRef]
- Marquis, R.E.; Clock, S.A.; Mota-Meira, M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 2003, 26, 493–510. [Google Scholar] [CrossRef]
- Ten Cate, J.M.; van Loveren, C. Fluoride mechanisms. Dent. Clin. N. Am. 1999, 43, 713–742. [Google Scholar] [CrossRef]
- Koo, H. Strategies to enhance the biological effects of fluoride on dental biofilms. Adv. Dent. Res. 2008, 20, 17–21. [Google Scholar] [CrossRef]
- Sampaio, C.; Deng, D.; Exterkate, R.; Zen, I.; Hosida, T.Y.; Monteiro, D.R.; Delbem, A.C.B.; Pessan, J.P. Effects of sodium hexametaphosphate microparticles or nanoparticles on the growth of saliva-derived microcosm biofilms. Clin. Oral Investig. 2022, 19, 1–8. [Google Scholar] [CrossRef]
- Lanigan, R.S. Final report on the safety assessment of sodium metaphosphate, sodium trimetaphosphate, and sodium hexametaphosphate. Int. J. Toxicol. 2001, 20, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.H.; Weir, M.D.; Sun, L.; Moreau, J.L.; Takagi, S.; Chow, L.C.; Antonucci, J.M. Strong nanocomposites with Ca, PO4 and F release for caries inhibition. J. Dent. Res. 2010, 89, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Jandt, K.D.; Watts, D.C. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent. Mater. 2020, 36, 1365–1378. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.K.; Wen, W.W.; Smith, R.W. The effect of a long chain phosphate on the adsorption of collectors on kaolinite. Min. Eng. 1993, 6, 1191–1197. [Google Scholar] [CrossRef]
- Lee, R.M.; Hartman, P.A.; Stahr, H.M.; Olson, D.G.; Williams, F.D. Antibacterial mechanism of long-chain polyphosphates in Staphylococcus aureus. J. Food Prot. 1994, 57, 289–294. [Google Scholar] [CrossRef]
- Changgen, L.; Yongxin, L. Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. II. The mechanism of the interaction between phosphate modifiers and minerals. Int. J. Miner. Process. 1983, 10, 219–235. [Google Scholar] [CrossRef]
- Hosida, T.Y.; Pessan, J.P.; Cavazana, T.P.; Sampaio, C.; Monteiro, D.R.; Delbem, A.C.B. Effect of sodium hexametaphosphate and fluoride on dual-species biofilms of Candida albicans and Streptococcus mutans. Biofouling 2021, 37, 939–948. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Wu, C.; Chen, X.; Duan, Z.; Xu, Q.; Jiang, W.; Xu, L.; Wang, T.; Su, L.; et al. Oral Microbiome Alterations Associated with Early Childhood Caries Highlight the Importance of Carbohydrate Metabolic Activities. mSystems 2019, 4, e00450-19. [Google Scholar] [CrossRef]
- Lamfon, H.; Porter, S.R.; McCullough, M.; Pratten, J. Formation of Candida albicans biofilms on non-shedding oral surfaces. Eur. J. Oral Sci. 2003, 111, 465–471. [Google Scholar] [CrossRef]
- Vogel, G.L.; Chow, L.C.; Brown, W.E. A microanalytical procedure for the determination of calcium, phosphate and fluoride in enamel biopsy samples. Caries Res. 1983, 17, 23–31. [Google Scholar] [CrossRef]
- Fiske, C.H.; Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- Cury, J.A.; Rebelo, M.A.; Del Bel Cury, A.A.; Derbyshire, M.T.; Tabchoury, C.P. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res. 2000, 34, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Nobre dos Santos, M.; Melo dos Santos, L.; Francisco, S.B.; Cury, J.A. Relationship among dental plaque composition, daily sugar exposure and caries in the primary dentition. Caries Res. 2002, 36, 347–352. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampaio, C.; Delbem, A.C.B.; Hosida, T.Y.; Fernandes, A.V.P.; Alves, G.d.S.G.; Souza, J.A.S.; Monteiro, D.R.; Pessan, J.P. Buffering Capacity and Effects of Sodium Hexametaphosphate Nanoparticles and Fluoride on the Inorganic Components of Cariogenic-Related Biofilms In Vitro. Antibiotics 2022, 11, 1173. https://doi.org/10.3390/antibiotics11091173
Sampaio C, Delbem ACB, Hosida TY, Fernandes AVP, Alves GdSG, Souza JAS, Monteiro DR, Pessan JP. Buffering Capacity and Effects of Sodium Hexametaphosphate Nanoparticles and Fluoride on the Inorganic Components of Cariogenic-Related Biofilms In Vitro. Antibiotics. 2022; 11(9):1173. https://doi.org/10.3390/antibiotics11091173
Chicago/Turabian StyleSampaio, Caio, Alberto Carlos Botazzo Delbem, Thayse Yumi Hosida, Ana Vitória Pereira Fernandes, Guilherme dos Santos Gomes Alves, José Antônio Santos Souza, Douglas Roberto Monteiro, and Juliano Pelim Pessan. 2022. "Buffering Capacity and Effects of Sodium Hexametaphosphate Nanoparticles and Fluoride on the Inorganic Components of Cariogenic-Related Biofilms In Vitro" Antibiotics 11, no. 9: 1173. https://doi.org/10.3390/antibiotics11091173
APA StyleSampaio, C., Delbem, A. C. B., Hosida, T. Y., Fernandes, A. V. P., Alves, G. d. S. G., Souza, J. A. S., Monteiro, D. R., & Pessan, J. P. (2022). Buffering Capacity and Effects of Sodium Hexametaphosphate Nanoparticles and Fluoride on the Inorganic Components of Cariogenic-Related Biofilms In Vitro. Antibiotics, 11(9), 1173. https://doi.org/10.3390/antibiotics11091173