Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization?
Abstract
:1. Introduction
2. Results
2.1. Characterization of Mixtures Obtained from Propolis Samples Harvested from the Same Apiary over Different Years
2.1.1. Total Polyphenols and Flavonoids Contents
2.1.2. Antioxidant Potential of Propolis
2.1.3. Antimicrobial Potential of Propolis
2.2. Characterization of Mixtures of Propolis Obtained from Two Apiaries and Different Harvesting Years
2.2.1. Total Polyphenols and Flavonoids Contents
2.2.2. Antioxidant Potential
2.2.3. Antimicrobial Potential of Propolis Blends
3. Materials and Methods
3.1. Propolis Origin and Ethanol Extraction
3.2. Preparation of Blends of Propolis Ethanol Extracts
3.2.1. Mixtures of Ethanol Extracts of Propolis from Pereiro
3.2.2. Mixtures of Ethanol Extracts of Propolis from Pereiro and from Gerês
3.3. Determination of Total Poliphenols Contents
3.4. Determination of Total Flavonoids Contents
3.5. Determination of of DPPH• Scavenging Potential
3.6. Evaluation of Antimicrobial Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stan, L.; Mărghitaş, L.A.; Dezmirean, D. Quality criteria for propolis standardization. Sci. Pap. Anim. Sci. Biotechnol. 2011, 44, 137–140. [Google Scholar]
- Osés, S.M.; Melgosa, L.; Pascual-Maté, A.; Fernández-Muiño, M.A.; Sancho, M.T. Design of a food product composed of honey and propolis. J. Apic. Res. 2015, 54, 461–467. [Google Scholar] [CrossRef]
- Sforcin, J.M. Biological properties and therapeutic applications of propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- Santos, F.A.; Bastos, E.M.A.; Uzeda, M.; Carvalho, M.A.R.; Farias, L.M.; Moreira, E.S.A.; Braga, F.C. Antibacterial activity of Brazilian propolis and fractions against oral anaerobic bacteria. J. Ethnopharmacol. 2002, 80, 1–7. [Google Scholar] [CrossRef]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2018, 26, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Sharma, P.K.; Kumara, S. Nutraceuticals: A Review. J. Chronother. Drug Deliv. 2015, 6, 1–10. [Google Scholar]
- Market Research Future. Propolis Market Research Report—Global Forecast Till 2024; ID: MRFR/F-B & N/0298-HCR 140; Market Research Future: Pune, India, 2019. [Google Scholar]
- Burdock, G.A. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Pereira, A.S.; Seixas, F.R.M.S.; Aquino Neto, F.R. Própolis: 100 years of research and future perspectives. Química Nova 2002, 25, 321–326. [Google Scholar] [CrossRef]
- Pardal, P.; Casalta, F.; Godinho, J. Própolis: Avaliação quantitativa da produção de própolis. Rev. Unidade Investig. Inst. Politécnico St. 2014, 2, 182–191. [Google Scholar]
- Dias, L.G.; Pereira, A.P.; Estevinho, L.M. Comparative study of different Portuguese samples of propolis: Pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food Chem. Toxicol. 2012, 50, 4246–4253. [Google Scholar] [CrossRef]
- Peixoto, M.; Freitas, A.S.; Cunha, A.; Oliveira, R.; Almeida-Aguiar, C. Antioxidant and antimicrobial activity of blends of propolis samples collected in different years. LWT Food Sci. Technol. 2021, 145, 111311. [Google Scholar] [CrossRef]
- FNAP. Manual de apicultura em modo de produção biológico. In Lisboa: FNAP—Federação Nacional dos Apicultores de Portugal; FNAP: Lisbon, Portugal, 2008. [Google Scholar]
- FNAP. Manual de Produção de Polén e Própolis; FNAP—Federação Nacional dos Apicultores de Portugal: Lisbon, Portugal, 2010. [Google Scholar]
- Abu Fares, R.; Nazer, I.K.; Darwish, R.M.; Abu Zarqa, M. Honey bee hive modification for propolis collection. Jordan J. Agric. Sci. 2008, 4, 138–147. [Google Scholar]
- Nuru, A.; Hepburn, H.R.; Radloff, S.E. Induction of propolis production by Apis mellifera bandasii in traditional basket and Langstroth movable-frame hives in Ethiopia. J. Apic. Res. 2002, 41, 101–106. [Google Scholar] [CrossRef]
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical diversity and challenges in quality control. Phytochem. Rev. 2022, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Mountford-McAuley, R.; Prior, J.; Clavijo McCormick, A. Factors affecting propolis production. J. Apic. Res. 2021, 1–9. [Google Scholar] [CrossRef]
- Feás, X.; Pacheco, L.; Iglesias, A.; Estevinho, L.M. Use of Propolis in the Sanitization of Lettuce. Int. J. Mol. Sci. 2014, 15, 12243–12257. [Google Scholar] [CrossRef]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid. Based Complementary Altern. Med. 2015, 2015, 1–29. [Google Scholar] [CrossRef]
- Graikou, K.; Popova, M.; Gortzi, O.; Bankova, V.; Chinou, I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT Food Sci. Technol. 2016, 65, 261–267. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef]
- Zulhendri, F.; Chandrasekaran, K.; Kowacz, M.; Ravalia, M.; Kripal, K.; Fearnley, J.; Perera, C.O. Antiviral, Antibacterial, Antifungal, and Antiparasitic Properties of Propolis: A Review. Foods 2021, 10, 1360. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.S.; Cunha, A.; Cardoso, S.M.; Oliveira, R.; Almeida-Aguiar, C. Constancy of the bioactivities of propolis samples collected on the same apiary over four years. Food Res. Int. 2019, 119, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.A.C. Contributos para a Elucidação do Modo de Ação de Própolis Português: O Caso do Própolis do Pereiro. Master’s Thesis, University of Minho, Braga, Portugal, 2015. [Google Scholar]
- Mursu, J.; Voutilainen, S.; Nurmi, T.; Tuomainen, T.P.; Kurl, S.; Salonen, J.T. Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2008, 100, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Agbor, G.A.; Vinson, J.A.; Donnelly, P.E. Folin-Ciocalteau reagent for polyphenolic assay. Int. J. Food Sci. Nutr. Diet. 2014, 3, 147–156. [Google Scholar] [CrossRef]
- Mašek, T.; Perin, N.; Racané, L.; Cindrić, M.; Čipčić Paljetak, H.; Perić, M.; Matijašić, M.; Verbanac, D.; Radić, B.; Šuran, J. Chemical Composition, Antioxidant and Antibacterial Activity of Different Extracts of Poplar Type Propolis. Croat. Chem. Acta 2018, 91, 81–88. [Google Scholar] [CrossRef]
- Papotti, G.; Bertelli, D.; Bortolotti, L.; Plessi, M. Chemical and functional characterization of Italian propolis obtained by different harvesting methods. J. Agric. Food Chem. 2012, 60, 2852–2862. [Google Scholar] [CrossRef]
- Ozdal, T.; Ceylan, F.D.; Eroglu, N.; Kaplan, M.; Olgun, E.O.; Capanoglu, E. Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis. Food Res. Int. 2019, 122, 528–536. [Google Scholar] [CrossRef]
- Silva, V.; Genta, G.; Möller, M.N.; Masner, M.; Thomson, L.; Romero, N.; Radi, R.; Fernandes, D.C.; Laurindo, F.R.; Heinzen, H. Antioxidant activity of Uruguayan propolis. In vitro and cellular assays. J. Agric. Food Chem. 2011, 59, 6430–6437. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef]
- Falcão, S.I.; Freire, C.; Vilas-Boas, M. A proposal for physicochemical standards and antioxidant activity of Portuguese propolis. J. Am. Oil Chem. Soc. 2013, 90, 1729–1741. [Google Scholar] [CrossRef]
- Miguel, M.G.; Nunes, S.; Dandlen, S.A.; Cavaco, A.M.; Antunes, M.D. Phenols and antioxidant activity of hydro-alcoholic extracts of propolis from Algarve, South of Portugal. Food Chem. Toxicol. 2010, 48, 3418–3423. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants 2022, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, X.; Ping, S.; Wang, K.; Shi, J.; Zhang, C.; Zeng, H.; Hu, F. Comparisons of ethanol extracts of Chinese propolis (poplar type) and poplar gums based on the antioxidant activities and molecular mechanism. Evid. Based Complementary Altern. Med. 2015, 2015, 307594. [Google Scholar] [CrossRef]
- de Figueiredo, S.M.; Binda, N.S.; Vieira-Filho, S.A.; de Moura Almeida, B.; Abreu, S.R.L.; Paulino, N.; Pastore, G.M.; Sato, H.H.; Theodoropoulos, V.C.T.; Tapia, E.V.; et al. Physicochemical Characteristics of Brazilian Green Propolis Evaluated During a Six-Year Period. Curr. Drug Discov. Technol. 2017, 14, 127–134. [Google Scholar] [CrossRef]
- Silva, J.C.; Rodrigues, S.; Feás, X.; Estevinho, L.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem. Toxicol. 2012, 50, 1790–1795. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef]
- Saraiva, A.M.; Castro, R.H.A.; Cordeiro, R.P.; Peixoto Sobrinho, T.J.S.; Castro, V.T.N.A.; Amorim, E.L.C.; Xavier, H.S.; Pisciottano, M.N.C. In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). Afr. J. Pharm. Pharmacol. 2011, 5, 1724–1731. [Google Scholar] [CrossRef]
- Freitas, A.S.; Cunha, A.; Oliveira, R.; Almeida-Aguiar, C. Propolis antibacterial and antioxidant synergisms with gentamicin and honey. J. Appl. Microbiol. 2022, 132, 2733–2745. [Google Scholar] [CrossRef]
- Falcão, S.I.; Vale, N.; Cos, P.; Gomes, P.; Freire, C.; Maes, L.; Vilas-Boas, M. In Vitro Evaluation of Portuguese Propolis and Floral Sources for Antiprotozoal, Antibacterial and Antifungal Activity. Phytother. Res. 2014, 28, 437–443. [Google Scholar] [CrossRef]
- Osés, S.M.; Marcos, P.; Azofra, P.; de Pablo, A.; Fernández-Muíño, M.Á.; Sancho, M.T. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants 2020, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Al-Waili, N. Mixing two different propolis samples potentiates their antimicrobial activity and wound healing property: A novel approach in wound healing and infection. Vet. World 2018, 11, 1188. [Google Scholar] [CrossRef]
- Papp, Z.; Bouchelaghem, S.; Szekeres, A.; Meszéna, R.; Gyöngyi, Z.; Papp, G. The Scent of Antifungal Propolis. Sensors 2021, 21, 2334. [Google Scholar] [CrossRef]
- Bogdanov, S. Propolis: Biological properties and medical applications. In The Propolis Book; Bogdanov, S., Ed.; Bee Hexagon Knowledge Network: Muehlethurnen, Switzerland, 2017; Available online: http://www.bee-hexagon.net/propolis/ (accessed on 15 December 2015).
- Schmidt, E.M.; Stock, D.; Chada, F.J.G.; Finger, D.; Sawaya, A.C.H.F.; Eberlin, M.N.; Felsner, M.L.; Quináia, S.P.; Monteiro, M.C.; Torres, Y.R. A comparison between characterization and biological properties of Brazilian fresh and aged propolis. BioMed Res. Int. 2014, 2014, 257617. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Cunha, A.; Almeida-Aguiar, C. Portuguese propolis from Caramulo as a biocontrol agent of the apple blue mold. Food Control 2022, 139, 109071. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Mitra, K.; Uddin, N. Total phenolics, flavonoids, proanthrocyanidins, ascorbic acid contents and in-vitro antioxidant activities of newly developed isolated soya protein. Discourse J. Agric. Food Sci. 2014, 2, 160–168. Available online: careproducts.htm (accessed on 12 December 2015).
- Vilas-Boas, M. Própolis: Um negócio por explorar. Rev. Raízes; Escola Superior Agrária—Instituto Politécnico de Bragança, 2015. Available online: http://esa.ipb.pt/blogs/noticiasesa/2015/propolis-um-negocio-por-explorar/ (accessed on 12 December 2015).
- Galeotti, F.; Capitani, F.; Fachini, A.; Volpi, N. Recent advances in analytical approaches for the standardization and quality of polyphenols of propolis. J. Med. Plants Res. 2019, 13, 487–500. [Google Scholar]
- Cardinault, N.; Tourniaire, F.; Astier, J.; Couturier, C.; Perrin, E.; Dalifard, J.; Karkeni, E. Poplar Propolis Ethanolic Extract Reduces Body Weight Gain and Glucose Metabolism Disruption in High-fat Diet-fed Mice. Mol. Nutr. Food Res. 2020, 64, e2000275. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, A. Evidence on the health benefits of supplemental propolis. Nutrients 2019, 11, 2705. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Kunugi, H. Propolis, bee honey, and their components protect against coronavirus disease 2019 (COVID-19): A review of in silico, in vitro, and clinical studies. Molecules 2021, 26, 1232. [Google Scholar] [CrossRef] [PubMed]
Samples | TPC (mg GAE/ g Extract) | TFC (mg QE/ g Extract) |
---|---|---|
P11.EE | 224.6 ± 11.5a | 43.4 ± 0.7a |
P12.EE | 173.2 ± 10.1c | 32.4 ± 1.5b |
mP(P11.EE+P12.EE) | 206.6 ± 4.5b; A | 43.9 ± 2.0a; C |
P11.EE | 224.6 ± 11.5a | 43.4 ± 0.7a |
P13.EE | 217.6 ± 6.6a | 38.1 ± 2.0b |
mP(P11.EE+P13.EE) | 200.3 ± 6.3b; A | 46.2 ± 0.8a; C |
P11.EE | 224.6 ± 11.5a | 43.4 ± 0.7b |
P14.EE | 174.4 ± 4.2c | 33.4 ± 2.0c |
mP(P11.EE+P14.EE) | 198.5 ± 9.3b; A | 47.7 ± 0.5a; C |
P12.EE | 173.2 ± 10.1b | 32.4 ± 1.5c |
P13.EE | 217.6 ± 6.6a | 38.1 ± 2.0b |
mP(P12.EE+P13.EE) | 194.9 ± 12.2b; A | 44.6 ± 2.7a; C |
P13.EE | 217.6 ± 6.6a | 38.1 ± 2.0b |
P14.EE | 174.4 ± 4.2b | 33.4 ± 2.0b |
mP(P13.EE+P14.EE) | 202.5 ± 10.5a; A | 47.8 ± 2.1a; C |
P13.EE | 217.6 ± 6.6b | 38.1 ± 2.0c |
P15.EE | 262.2 ± 4.3a | 78.4 ± 1.7a |
mP(P13.EE+P15.EE) | 204.6 ± 15.5b; A | 67.9 ± 2.0b; A |
P14.EE | 174.4 ± 4.2c | 33.4 ± 2.0c |
P15.EE | 262.2 ± 4.3a | 78.4 ± 1.7a |
mP(P14.EE+P15.EE) | 209.2 ± 16.5b; A | 67.0 ± 2.2b; A |
P11.EE | 224.6 ± 11.5a | 43.4 ± 0.7a |
P12.EE | 173.2 ± 10.1b | 32.4 ± 1.5c |
P13.EE | 217.6 ± 6.6a | 38.1 ± 2.0b |
mP(P11.EE−P13.EE) | 202.6 ± 12.4a; A | 46.5 ± 2.6a; C |
P11.EE | 224.6 ± 11.5b | 43.4 ± 0.7c |
P12.EE | 173.2 ± 10.1c | 32.4 ± 1.5e |
P13.EE | 217.6 ± 6.6b | 38.1 ± 2.0d |
P14.EE | 174.4 ± 4.2c | 33.4 ± 2.0e |
P15.EE | 262.2 ± 4.3a | 78.4 ± 1.7a |
mP(P11.EE−P15.EE) | 215.1 ± 11.3b; A | 55.3 ± 1.7b; B |
Samples | EC50 (µg/mL) |
---|---|
P11.EE | 14.7 ± 2.7a |
P12.EE | 22.0 ± 0.4b |
mP(P11.EE+P12.EE) | 13.5 ± 0.3a; A,B,C |
P11.EE | 14.7 ± 2.7a |
P13.EE | 15.2 ± 2.3a |
mP(P11.EE+P13.EE) | 12.5 ± 0.2a; A,B,C |
P11.EE | 14.7 ± 2.7b |
P14.EE | 20.3 ± 0.3a |
mP(P11.EE+P14.EE) | 12.8 ± 0.3b; A,B,C |
P12.EE | 22.0 ± 0.4a |
P13.EE | 15.2 ± 2.3b |
mP(P12.EE+P13.EE) | 14.1 ± 0.7b; A,B |
P13.EE | 15.2 ± 2.3b |
P14.EE | 20.3 ± 0.3a |
mP(P13.EE+P14.EE) | 14.9 ± 0.4b; A |
P13.EE | 15.2 ± 2.3a |
P15.EE | 10.3 ± 1.7b |
mP(P13.EE+P15.EE) | 12.3 ± 0.2a,b; C |
P14.EE | 20.3 ± 0.3a |
P15.EE | 10.3 ± 1.7c |
mP(P14.EE+P15.EE) | 13.8 ± 0.6b; A,B |
P11.EE | 14.7 ± 2.7b |
P12.EE | 22.0 ± 0.4a |
P13.EE | 15.2 ± 2.3b |
mP(P11.EE−P13.EE) | 13.8 ± 0.7b; A,B |
P11.EE | 14.7 ± 2.7c |
P12.EE | 22.0 ± 0.4a |
P13.EE | 15.2 ± 2.3c,b |
P14.EE | 20.3 ± 0.3a,b |
P15.EE | 10.3 ± 1.7d |
mP(P11.EE−P15.EE) | 13.7 ± 0.4c; B |
Gram-Positive | Gram-Negative | ||||
---|---|---|---|---|---|
Samples | B. subtilis | P. acnes | S. aureus | MRSA | E. coli |
P11.EE | 500 | ----- | >750 | ----- | ----- |
P12.EE | 500 | ----- | 500 | ----- | >1000 |
mP(P11.EE+P12.EE) | 200 | 500 | 500 | 1500 | 1500 |
P11.EE | 500 | ----- | >750 | ----- | ----- |
P13.EE | 200 | ----- | 750 | ----- | ----- |
mP(P11.EE+P13.EE) | 200 | 500 | 750 | 1500 | 1500 |
P11.EE | 500 | ----- | >750 | ----- | ----- |
P14.EE | 100 | ----- | 500 | ----- | ----- |
mP(P11.EE+P14.EE) | 200 | 500 | 500 | 1500 | 1500 |
P12.EE | 500 | ----- | 500 | ----- | >1000 |
P13.EE | 200 | ----- | 750 | ----- | ----- |
mP(P12.EE+P13.EE) | 200 | 500 | 500 | 1000 | 1000 |
P13.EE | 200 | ----- | 750 | ----- | ----- |
P14.EE | 100 | ----- | 500 | ----- | ----- |
mP(P13.EE+P14.EE) | 200 | 500 | 500 | 1500 | 1500 |
P13.EE | 200 | ----- | 750 | ----- | ----- |
P15.EE | 500 | 200 | 750 | >1250 | >1250 |
mP(P13.EE+P15.EE) | 200 | 500 | 500 | 1000 | 1000 |
P14.EE | 100 | ----- | 500 | ----- | ----- |
P15.EE | 500 | 200 | 750 | >1250 | >1250 |
mP(P14.EE+P15.EE) | 200 | 500 | 500 | >1500 | >1500 |
P11.EE | 500 | ----- | >750 | ----- | ----- |
P12.EE | 500 | ----- | 500 | ----- | >1000 |
P13.EE | 200 | ----- | 750 | ----- | ----- |
mP(P11.EE−P13.EE) | 200 | 500 | 500 | 1500 | 1500 |
P11.EE | 500 | ----- | >750 | ----- | ----- |
P12.EE | 500 | ----- | 500 | ----- | >1000 |
P13.EE | 200 | ----- | 750 | ----- | ----- |
P14.EE | 100 | ----- | 500 | ----- | ----- |
P15.EE | 500 | 200 | 750 | >1250 | >1250 |
mP(P11.EE−P15.EE) | 200 | 500 | 500 | 1500 | 1500 |
Samples | S. cerevisiae | C. albicans |
---|---|---|
P11.EE | 750 | 500 |
P12.EE | >1000 | 750 |
mP(P11.EE+P12.EE) | 750 | 750 |
P11.EE | 750 | 500 |
P13.EE | 750 | 750 |
mP(P11.EE+P13.EE) | 500 | 750 |
P11.EE | 750 | 500 |
P14.EE | 750 | >750 |
mP(P11.EE+P14.EE) | 750 | 750 |
P12.EE | >1000 | 750 |
P13.EE | 750 | 750 |
mP(P12.EE+P13.EE) | 750 | 750 |
P13.EE | 750 | 750 |
P14.EE | 750 | >750 |
mP(P13.EE+P14.EE) | 750 | 750 |
P13.EE | 750 | 750 |
P15.EE | 500 | 500 |
mP(P13.EE+P15.EE) | 500 | 500 |
P14.EE | 750 | >750 |
P15.EE | 500 | 500 |
mP(P14.EE+P15.EE) | 500 | 750 |
P11.EE | 750 | 500 |
P12.EE | >1000 | 750 |
P13.EE | 750 | 750 |
mP(P11.EE−P13.EE) | 750 | 750 |
P11.EE | 750 | 500 |
P12.EE | >1000 | 750 |
P13.EE | 750 | 750 |
P14.EE | 750 | >750 |
P15.EE | 500 | 500 |
mP(P11.EE−P15.EE) | 500 | 750 |
Samples | TPC (mg GAE/ g Extract) | TFC (mg QE/ g Extract) |
---|---|---|
P14.EE | 174.4 ± 4.2b | 33.4 ± 2.0b |
G15.EE | 207.9 ± 7.5a | 51.7 ± 0.9a |
mP + G(P14.EE+G15.EE) | 207.2 ± 6.8a; A | 38.5 ± 3.7b; B |
P15.EE | 262.2 ± 4.3a | 78.4 ± 1.7a |
G13.EE | 205.8 ± 3.5b | 32.6 ± 0.8c |
mP + G(P15.EE+G13.EE) | 217.1 ± 9.1b; A | 53.7 ± 4.1b; A |
Samples | EC50 (µg/ mL) |
---|---|
P14.EE | 20.3 ± 0.3a |
G15.EE | 19.7 ± 8.8a |
mP + G(P14.EE+G15.EE) | 15.4 ± 1.5b; A |
P15.EE | 10.3 ± 1.7c |
G13.EE | 25.2 ± 2.5a |
mP + G(P15.EE+G13.EE) | 15.3 ± 2.0b; A |
Gram-Positive | Gram-Negative | ||||
---|---|---|---|---|---|
Samples | B. subtilis | P. acnes | S. aureus | MRSA | E. coli |
P14.EE | 100 | ----- | 500 | ----- | ----- |
G15.EE | 50 | 50 | >750 | >1250 | >1250 |
mP + G(P14.EE+G15.EE) | 50 | 500 | 500 | 1000 | 1000 |
P15.EE | 500 | 200 | 750 | >1250 | >1250 |
G13.EE | 50 | ----- | 200 | >2000 | >2000 |
mP + G(P15.EE+G13.EE) | 200 | 500 | 750 | 1000 | 1500 |
Samples | S. cerevisiae | C. albicans |
---|---|---|
P14.EE | 750 | >750 |
G15.EE | >1500 | 1000 |
mP + G(P14.EE+G15.EE) | 1500 | 1000 |
P15.EE | 500 | 500 |
G13.EE | >2000 | >2000 |
mP + G(P15.EE+G13.EE) | 1500 | 1500 |
Criteria used in P.EEs Mixtures | Antioxidant Activity | Antifungal Activity | Antibacterial Activity |
---|---|---|---|
Most active + least active | mP(P15.EE + P14.EE) | mP(P11.EE+P12.EE) | mP(P14.EE+P11.EE) |
Intermediate + least active | mP(P13.EE+P14.EE)β | mP(P13.EE+P12.EE)γ | mP(P13.EE+P11.EE)α |
Most active + intermediate | mP(P13.EE+P15.EE) | mP(P13.EE+P11.EE)α | mP(P13.EE+P14.EE)β |
Mixture of intermediates | mP(P11.EE−P13.EE) | mP(P13.EE+P14.EE)β | mP(P13.EE+P12.EE) γ |
Mixture of all the extracts | mP(P11.EE−P15.EE) |
Criteria Underlying the Mixtures | Mixtures |
---|---|
Most active (G) + least active (P) | mP + G(P14.EE+G15.EE) |
Most active (P) + least active (G) | mP + G(P15.EE+G13.EE) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peixoto, M.; Freitas, A.S.; Cunha, A.; Oliveira, R.; Almeida-Aguiar, C. Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization? Antibiotics 2022, 11, 1181. https://doi.org/10.3390/antibiotics11091181
Peixoto M, Freitas AS, Cunha A, Oliveira R, Almeida-Aguiar C. Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization? Antibiotics. 2022; 11(9):1181. https://doi.org/10.3390/antibiotics11091181
Chicago/Turabian StylePeixoto, Marta, Ana Sofia Freitas, Ana Cunha, Rui Oliveira, and Cristina Almeida-Aguiar. 2022. "Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization?" Antibiotics 11, no. 9: 1181. https://doi.org/10.3390/antibiotics11091181
APA StylePeixoto, M., Freitas, A. S., Cunha, A., Oliveira, R., & Almeida-Aguiar, C. (2022). Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization? Antibiotics, 11(9), 1181. https://doi.org/10.3390/antibiotics11091181