The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor
Abstract
:1. Introduction
2. Results and Discussion
2.1. NPBD Shows Broad-Spectrum, Rapid Fungicidal Activity
2.2. NPBD Kills Replicating and Non-Replicating C. albicans Blastospores and A. fumigatus Hyphae and Microconidia
2.3. NPBD Did Not Induce Resistance or Tolerance in Fungal Strains on Long Term Exposure
2.4. Comparison of Activity Profiles and Mechanisms of NPBD, AMB and MCZ
3. Conclusions
4. Materials and Methods
4.1. MIC and MFC Assay
4.2. Time-Kill Assay
4.2.1. Vegetative Cells
4.2.2. Microconidia
4.3. In Vitro Resistance MIC Assay
5. Patents
- Denisenko, P.P.; Sapronov, N.S.; Tarasenko, A.A. Antimicrobial and radioprotective compounds. US Pat 9,045,452, 2 June 2015. [Claim: A method for the treatment of a gastrointestinal infection]
- Denisenko, P.P.; Sapronov, N.S.; Tarasenko, A.A. Antimicrobial and radioprotective compounds. US Pat 8,569,363, 29 October 2013. [Claim: A method for the therapeutic treatment of a skin or soft tissue infection]
- Denisenko, P.P.; Sapronov, N.S.; Tarasenko, A.A. Antimicrobial and radioprotective compounds. US Pat 7,825,145, 2 November 2010. [Claim: A method of treating vulvo-vaginitis]
- Nicoletti, A.; White, K. Protein tyrosine phosphatase modulators. WO/2008/061308, 29 May 2008.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sacco, F.; Perfetto, L.; Castagnoli, L.; Cesareni, G. The human phosphatase interactome: An intricate family portrait. FEBS Lett. 2012, 586, 2732–2739. [Google Scholar] [CrossRef]
- Tonks, N.K. Protein tyrosine phosphatases—From housekeeping enzymes to master regulators of signal transduction. FEBS J. 2013, 280, 346–378. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, A.; Cotter, T.G. Redox regulation of protein kinases. FEBS J. 2013, 280, 1944–1965. [Google Scholar] [CrossRef] [PubMed]
- Dustin, C.M.; Heppner, D.E.; Lin, M.J.; van der Vliet, A. Redox regulation of tyrosine kinase signalling: More than meets the eye. J. Biochem. 2020, 167, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Day, E.K.; Sosale, N.G.; Lazzara, M.J. Cell signaling regulation by protein phosphorylation: A multivariate, heterogeneous, and context-dependent process. Curr. Opin. Biotechnol. 2016, 40, 185–192. [Google Scholar] [CrossRef]
- Beltrao, P.; Bork, P.; Krogan, N.J.; van Noort, V. Evolution and functional cross-talk of protein post-translational modifications. Mol. Syst. Biol. 2013, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Albataineh, M.T.; Kadosh, D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med. Mycol. 2015, 54, 333–352. [Google Scholar] [CrossRef]
- Bahn, Y.-S.; Xue, C.; Idnurm, A.; Rutherford, J.C.; Heitman, J.; Cardenas, M.E. Sensing the environment: Lessons from fungi. Nat. Rev. Microbiol. 2007, 5, 57–69. [Google Scholar] [CrossRef]
- Studer, R.A.; Rodriguez-Mias, R.A.; Haas, K.M.; Hsu, J.I.; Viéitez, C.; Solé, C.; Swaney, D.L.; Stanford, L.B.; Liachko, I.; Böttcher, R.; et al. Evolution of protein phosphorylation across 18 fungal species. Science 2016, 354, 229–232. [Google Scholar] [CrossRef]
- Yun, Y.; Liu, Z.; Yin, Y.; Jiang, J.; Chen, Y.; Xu, J.-R.; Ma, Z. Functional analysis of the Fusarium graminearum phosphatome. New Phytol. 2015, 207, 119–134. [Google Scholar] [CrossRef]
- Jin, J.-H.; Lee, K.-T.; Hong, J.; Lee, D.; Jang, E.-H.; Kim, J.-Y.; Lee, Y.; Lee, S.-H.; So, Y.-S.; Jung, K.-W.; et al. Genome-wide functional analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nat. Commun. 2020, 11, 4212. [Google Scholar] [CrossRef] [PubMed]
- Winkelströter, L.K.; Dolan, S.K.; Fernanda dos Reis, T.; Bom, V.L.P.; Alves de Castro, P.; Hagiwara, D.; Alowni, R.; Jones, G.W.; Doyle, S.; Brown, N.A.; et al. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3 Genes Genomes Genet. 2015, 5, 1525–1539. [Google Scholar] [CrossRef] [PubMed]
- Willger, S.D.; Liu, Z.; Olarte, R.A.; Adamo, M.E.; Stajich, J.E.; Myers, L.C.; Kettenbach, A.N.; Hogan, D.A. Analysis of the Candida albicans Phosphoproteome. Eukaryot. Cell 2015, 14, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jin, Q.; Xu, J.-R.; Liu, H. Identification of a Fungi-Specific Lineage of Protein Kinases Closely Related to Tyrosine Kinases. PLoS ONE 2014, 9, e89813. [Google Scholar] [CrossRef]
- González-Rubio, G.; Fernández-Acero, T.; Martín, H.; Molina, M. Mitogen-Activated Protein Kinase Phosphatases (MKPs) in Fungal Signaling: Conservation, Function, and Regulation. Int. J. Mol. Sci. 2019, 20, 1709. [Google Scholar] [CrossRef]
- Saito, H. Regulation of cross-talk in yeast MAPK signaling pathways. Curr. Opin. Microbiol. 2010, 13, 677–683. [Google Scholar] [CrossRef]
- Cargnello, M.; Roux, P.P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef]
- Albataineh, M.T.; Sutton, D.A.; Fothergill, A.W.; Wiederhold, N.P. Update from the Laboratory: Clinical Identification and Susceptibility Testing of Fungi and Trends in Antifungal Resistance. Infect. Dis. Clin. N. Am. 2016, 30, 13–35. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Mohanta, N.; Parida, P.; Panda, S.K.; Ponpandian, L.N.; Bae, H. Genome-Wide Identification of Mitogen-Activated Protein Kinase Gene Family across Fungal Lineage Shows Presence of Novel and Diverse Activation Loop Motifs. PLoS ONE 2016, 11, e0149861. [Google Scholar] [CrossRef]
- Tanner, J.J.; Parsons, Z.D.; Cummings, A.H.; Zhou, H.; Gates, K.S. Redox Regulation of Protein Tyrosine Phosphatases: Structural and Chemical Aspects. Antioxid. Redox Signal. 2011, 15, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Go, Y.-M.; Chandler, J.D.; Jones, D.P. The cysteine proteome. Free Radic. Biol. Med. 2015, 84, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef]
- Klomsiri, C.; Karplus, P.A.; Poole, L.B. Cysteine-Based Redox Switches in Enzymes. Antioxid. Redox Signal. 2011, 14, 1065–1077. [Google Scholar] [CrossRef]
- Paulsen, C.E.; Carroll, K.S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev. 2013, 113, 4633–4679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Y.; Li, B.; Chen, T.; Tian, S. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Comput. Struct. Biotechnol. J. 2020, 18, 3344–3349. [Google Scholar] [CrossRef] [PubMed]
- Breitenbach, M.; Weber, M.; Rinnerthaler, M.; Karl, T.; Breitenbach-Koller, L. Oxidative Stress in Fungi: Its Function in Signal Transduction, Interaction with Plant Hosts, and Lignocellulose Degradation. Biomolecules 2015, 5, 318–342. [Google Scholar] [CrossRef]
- Zhang, L.-B.; Feng, M.-G. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Appl. Microbiol. Biotechnol. 2018, 102, 4995–5004. [Google Scholar] [CrossRef]
- Simaan, H.; Lev, S.; Horwitz, B.A. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front. Microbiol. 2019, 10, 567. [Google Scholar] [CrossRef]
- Belozerskaya, T.A.; Gessler, N.N. Reactive oxygen species and the strategy of antioxidant defense in fungi: A review. Appl. Biochem. Microbiol. 2007, 43, 506–515. [Google Scholar] [CrossRef]
- Sauerland, M.; Mertes, R.; Morozzi, C.; Eggler, A.L.; Gamon, L.F.; Davies, M.J. Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radic. Biol. Med. 2021, 169, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jackson, P.A.; Widen, J.C.; Harki, D.A.; Brummond, K.M. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. J. Med. Chem. 2017, 60, 839–885. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, C.F.; Schuck, D.F. Kinetics of reversible thiolate ion addition to substituted b-nitrostyrenes in water. Radicaloid transition state or principle of nonperfect synchronization? J. Org. Chem. 1992, 57, 2365–2373. [Google Scholar] [CrossRef]
- He, R.-J.; Yu, Z.-H.; Zhang, R.-Y.; Zhang, Z.-Y. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol. Sin. 2014, 35, 1227–1246. [Google Scholar] [CrossRef]
- Scott, L.M.; Lawrence, H.R.; Sebti, S.M.; Lawrence, N.J.; Wu, J. Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery. Curr. Pharm. Des. 2010, 16, 1843–1862. [Google Scholar] [CrossRef]
- Sheehan, D.; McDonagh, B. The clinical potential of thiol redox proteomics. Expert Rev. Proteom. 2020, 17, 41–48. [Google Scholar] [CrossRef]
- Tew, K.D.; Townsend, D.M. Redox platforms in cancer drug discovery and development. Curr. Opin. Chem. Biol. 2011, 15, 156–161. [Google Scholar] [CrossRef]
- Nicoletti, G.; Cornell, H.J.; Hugel, H.M.; White, K.S.; Nguyen, T.; Zalizniak, L.; Nugegoda, D. Synthesis and antimicrobial activity of nitroalkenyl arenes. Anti-Infect. Agents 2013, 11, 179–191. [Google Scholar] [CrossRef]
- White, K.; Nicoletti, G.; Cornell, H. Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets. Antibiotics 2021, 10, 1310. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.H.; Lee, G.E.; Lee, J.E.; Chung, I.K. Potent Inhibition of Human Telomerase by Nitrostyrene Derivatives. Mol. Pharmacol. 2003, 63, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-Y.; Hsieh, P.-W.; Wu, Y.-C.; Wu, C.-C. Synthesis and pharmacological evaluation of novel β-nitrostyrene derivatives as tyrosine kinase inhibitors with potent antiplatelet activity. Biochem. Pharmacol. 2007, 74, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Kaap, S.; Quentin, I.; Tamiru, D.; Shaheen, M.; Eger, K.; Steinfelder, H.J. Structure activity analysis of the pro-apoptotic, antitumor effect of nitrostyrene adducts and related compounds. Biochem. Pharmacol. 2003, 65, 603–610. [Google Scholar] [CrossRef]
- Pettit, R.K.; Pettit, G.R.; Hamel, E.; Hogan, F.; Moser, B.R.; Wolf, S.; Pon, S.; Chapuis, J.-C.; Schmidt, J.M. E-Combretastatin and E-resveratrol structural modifications: Antimicrobial and cancer cell growth inhibitory β-E-nitrostyrenes. Bioorganic Med. Chem. 2009, 17, 6606–6612. [Google Scholar] [CrossRef] [PubMed]
- Alfarisi, S.; Santoso, M.; Kristanti, A.N.; Siswanto, I.; Puspaningsih, N.N.T. Synthesis, Antimicrobial Study, and Molecular Docking Simulation of 3,4-Dimethoxy-β-Nitrostyrene Derivatives as Candidate PTP1B Inhibitor. Sci. Pharm. 2020, 88, 37. [Google Scholar] [CrossRef]
- Park, J.; Pei, D. trans-β-nitrostyrene derivatives as slow-binding inhibitors of protein tyrosine phosphatases. Biochemistry 2004, 43, 15014–15021. [Google Scholar] [CrossRef]
- White, K.S.; Nicoletti, G.; Borland, R. Nitropropenyl benzodioxole, an anti-infective agent with action as a protein tyrosine phosphatase inhibitor. Open Med. Chem. J. 2014, 8, 1–16. [Google Scholar] [CrossRef]
- Nicoletti, A.; White, K. Protein Tyrosine Phosphatase Modulators. Patent WO/2008/061308, 29 May 2008. [Google Scholar]
- White, K.S. The Antimicrobial Mechanism of Action of 3,4-methylenedioxy-b-nitropropene. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2008. [Google Scholar]
- Milhazes, N.; Calheiros, R.; Marques, M.P.M.; Garrido, J.; Cordeiro, M.N.D.S.; Rodrigues, C.; Quinteira, S.; Novais, C.; Peixe, L.; Borges, F. β-Nitrostyrene derivatives as potential antibacterial agents: A structure–property–activity relationship study. Bioorganic Med. Chem. 2006, 14, 4078–4088. [Google Scholar] [CrossRef]
- Cornell, H.; Nguyen, T.; Nicoletti, G.; Jackson, N.; Hügel, H. Comparisons of halogenated β-nitrostyrenes as antimicrobial agents. Appl. Sci. 2014, 4, 380–389. [Google Scholar] [CrossRef]
- Boysen, J.M.; Saeed, N.; Wolf, T.; Panagiotou, G.; Hillmann, F. The Peroxiredoxin Asp f3 Acts as Redox Sensor in Aspergillus fumigatus. Genes 2021, 12, 668. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Chen, X.-L. The Redox Proteome of Thiol Proteins in the Rice Blast Fungus Magnaporthe oryzae. Front. Microbiol. 2021, 12, 648894. [Google Scholar] [CrossRef]
- Köhler, J.R.; Casadevall, A.; Perfect, J. The Spectrum of Fungi That Infects Humans. Cold Spring Harb. Perspect. Med. 2015, 5, a019273. [Google Scholar] [CrossRef] [PubMed]
- Scorzoni, L.; de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front. Microbiol. 2017, 8, 36. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Nagl, M.; Speth, C.; Ulmer, H.; Dierich, M.P.; Würzner, R. Studies of In Vitro Activities of Voriconazole and Itraconazole against Aspergillus Hyphae Using Viability Staining. Antimicrob. Agents Chemother. 2001, 45, 124–128. [Google Scholar] [CrossRef]
- Guarro, J.; Llop, C.; Aguilar, C.; Pujol, I. Comparison of in vitro antifungal susceptibilities of conidia and hyphae of filamentous fungi. Antimicrob. Agents Chemother. 1997, 41, 2760–2762. [Google Scholar] [CrossRef] [PubMed]
- CLSI Standard M61; Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi. CLSI: Wayne, PA, USA, 2017.
- CLSI Standard M38; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. CLSI: Wayne, PA, USA, 2008.
- CLSI Standard M27; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. CLSI: Wayne, PA, USA, 2008.
- Fothergill, A.W.; Cushion, M.T.; Collins, M.S.; Kirkpatrick, W.R.; Najvar, L.K.; Patterson, T.F.; Wiederhold, N.P. Antifungal and Antipneumocystis Activity of the Investigational Antimicrobial BDM-I. In Proceedings of the 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Denver, Colorado, 10–13 September 2013. [Google Scholar]
- Yagüe, P.; Gonzalez-Quiñonez, N.; Fernánez-García, G.; Alonso-Fernández, S.; Manteca, A. Goals and Challenges in Bacterial Phosphoproteomics. Int. J. Mol. Sci. 2019, 20, 5678. [Google Scholar] [CrossRef] [PubMed]
- Stanford, S.M.; Ahmed, V.; Barrios, A.M.; Bottini, N. Cellular Biochemistry Methods for Investigating Protein Tyrosine Phosphatases. Antioxid. Redox Signal. 2014, 20, 2160–2178. [Google Scholar] [CrossRef]
- Moura, M.; Conde, C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019, 9, 55. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, M.; Lu, R.; Du, J.; Zhao, Q.; Li, Z.; Li, Y.; Zhang, S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: A systematic review. Cancer Cell Int. 2020, 20, 213. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.; Rudolph, J. Catalytic and Chemical Competence of Regulation of Cdc25 Phosphatase by Oxidation/Reduction. Biochemistry 2003, 42, 10060–10070. [Google Scholar] [CrossRef]
- Powers, B.L.; Hall, M.C. Re-examining the role of Cdc14 phosphatase in reversal of Cdk phosphorylation during mitotic exit. J. Cell Sci. 2017, 130, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Kabakci, Z.; Käppeli, S.; Cantù, C.; Jensen, L.D.; König, C.; Toggweiler, J.; Gentili, C.; Ribaudo, G.; Zagotto, G.; Basler, K.; et al. Pharmacophore-guided discovery of CDC25 inhibitors causing cell cycle arrest and tumor regression. Sci. Rep. 2019, 9, 1335. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Blanco, A.; González-Novo, A.; Machín, F.; Caballero-Lima, D.; Aragón, L.; Sánchez, M.; de Aldana, C.R.V.; Jiménez, J.; Correa-Bordes, J. The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans. J. Cell Sci. 2006, 119, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Manzano-López, J.; Monje-Casas, F. The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control. Int. J. Mol. Sci. 2020, 21, 709. [Google Scholar] [CrossRef]
- Mocciaro, A.; Schiebel, E. Cdc14: A highly conserved family of phosphatases with non-conserved functions? J. Cell Sci. 2010, 123, 2867–2876. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, A.G.; Milholland, K.L.; Pendleton, A.L.; Whitney, J.J.; Zhu, P.; Wesenberg, D.T.; Nambiar, M.; Pepe, A.; Paula, S.; Chmielewski, J.; et al. Conservation of Cdc14 phosphatase specificity in plant fungal pathogens: Implications for antifungal development. Sci. Rep. 2020, 10, 12073. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Hu, Y.; Fasoyin, O.E.; Yue, Y.; Chen, L.; Qiu, Y.; Wang, X.; Zhuang, Z.; Wang, S. The Aspergillus flavus Phosphatase CDC14 Regulates Development, Aflatoxin Biosynthesis and Pathogenicity. Front. Cell. Infect. Microbiol. 2018, 8, 141. [Google Scholar] [CrossRef]
- Altwasser, R.; Baldin, C.; Weber, J.; Guthke, R.; Kniemeyer, O.; Brakhage, A.A.; Linde, J.; Valiante, V. Network Modeling Reveals Cross Talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus. PLoS ONE 2015, 10, e0136932. [Google Scholar] [CrossRef]
- Fuchs, B.B.; Mylonakis, E. Our Paths Might Cross: The Role of the Fungal Cell Wall Integrity Pathway in Stress Response and Cross Talk with Other Stress Response Pathways. Eukaryot. Cell 2009, 8, 1616–1625. [Google Scholar] [CrossRef]
- Gandía, M.; Garrigues, S.; Hernanz-Koers, M.; Manzanares, P.; Marcos, J.F. Differential roles, crosstalk and response to the Antifungal Protein AfpB in the three Mitogen-Activated Protein Kinases (MAPK) pathways of the citrus postharvest pathogen Penicillium digitatum. Fungal Genet. Biol. 2019, 124, 17–28. [Google Scholar] [CrossRef]
- Day, A.M.; Quinn, J. Stress-Activated Protein Kinases in Human Fungal Pathogens. Front. Cell. Infect. Microbiol. 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Valiante, V.; Macheleidt, J.; Föge, M.; Brakhage, A.A. The Aspergillus fumigatus cell wall integrity signaling pathway: Drug target, compensatory pathways, and virulence. Front. Microbiol. 2015, 6, 325. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Monge, R.; Román, E.; Arana, D.M.; Pla, J.; Nombela, C. Fungi sensing environmental stress. Clin. Microbiol. Infect. 2009, 15, 17–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-T.; Byun, H.-J.; Jung, K.-W.; Hong, J.; Cheong, E.; Bahn, Y.-S. Distinct and Redundant Roles of Protein Tyrosine Phosphatases Ptp1 and Ptp2 in Governing the Differentiation and Pathogenicity of Cryptococcus neoformans. Eukaryot. Cell 2014, 13, 796–812. [Google Scholar] [CrossRef]
- Eisman, B.; Alonso-Monge, R.; Román, E.; Arana, D.; Nombela, C.; Pla, J. The Cek1 and Hog1 Mitogen-Activated Protein Kinases Play Complementary Roles in Cell Wall Biogenesis and Chlamydospore Formation in the Fungal Pathogen Candida albicans. Eukaryot. Cell 2006, 5, 347–358. [Google Scholar] [CrossRef]
- Brewster, J.L.; Gustin, M.C. Hog1: 20 years of discovery and impact. Sci. Signal. 2014, 7, re7. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhang, X.; Liu, H.; Xu, J.-R. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog. 2018, 14, e1006875. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.-S.; Lin, C.-H. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans. Med. Mycol. 2018, 56, 242–252. [Google Scholar] [CrossRef]
- Bahn, Y.-S.; Jung, K.-W. Stress Signaling Pathways for the Pathogenicity of Cryptococcus. Eukaryot. Cell 2013, 12, 1564–1577. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, S.; Zhou, X.; Wang, C.; Xiang, P.; Zheng, Q.; Xu, J.-R. The FgHOG1 Pathway Regulates Hyphal Growth, Stress Responses, and Plant Infection in Fusarium graminearum. PLoS ONE 2012, 7, e49495. [Google Scholar] [CrossRef]
- Kojima, K.; Bahn, Y.S.; Heitman, J. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology 2006, 152, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Bohnert, S.; Heck, L.; Gruber, C.; Neumann, H.; Distler, U.; Tenzer, S.; Yemelin, A.; Thines, E.; Jacob, S. Fungicide resistance toward fludioxonil conferred by overexpression of the phosphatase gene MoPTP2 in Magnaporthe oryzae. Mol. Microbiol. 2019, 111, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Belenky, P.; Camacho, D.; Collins, J.J. Fungicidal Drugs Induce a Common Oxidative-Damage Cellular Death Pathway. Cell Rep. 2013, 3, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Bowyer, P.; Mosquera, J.; Anderson, M.; Birch, M.; Bromley, M.; Denning, D.W. Identification of novel genes conferring altered azole susceptibility in Aspergillus fumigatus. FEMS Microbiol. Lett. 2012, 332, 10–19. [Google Scholar] [CrossRef]
- Ferreira, G.F.; Baltazar Lde, M.; Santos, J.R.; Monteiro, A.S.; Fraga, L.A.; Resende-Stoianoff, M.A.; Santos, D.A. The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii. J. Antimicrob. Chemother. 2013, 68, 1801–1811. [Google Scholar] [CrossRef]
- Kim, J.H.; Tam, C.C.; Chan, K.L.; Cheng, L.W.; Land, K.M.; Friedman, M.; Chang, P.-K. Antifungal Efficacy of Redox-Active Natamycin against Some Foodborne Fungi—Comparison with Aspergillus fumigatus. Foods 2021, 10, 2073. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Arango, A.C.; Trevijano-Contador, N.; Román, E.; Sánchez-Fresneda, R.; Casas, C.; Herrero, E.; Argüelles, J.C.; Pla, J.; Cuenca-Estrella, M.; Zaragoza, O. The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug. Antimicrob. Agents Chemother. 2014, 58, 6627–6638. [Google Scholar] [CrossRef]
- Shekhova, E.; Kniemeyer, O.; Brakhage, A.A. Induction of Mitochondrial Reactive Oxygen Species Production by Itraconazole, Terbinafine, and Amphotericin B as a Mode of Action against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2017, 61, e00978-00917. [Google Scholar] [CrossRef]
- Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 2020, 18, 319–331. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Sheehan, D.J.; Rex, J.H. Determination of Fungicidal Activities against Yeasts and Molds: Lessons Learned from Bactericidal Testing and the Need for Standardization. Clin. Microbiol. Rev. 2004, 17, 268–280. [Google Scholar] [CrossRef]
- Cantón, E.; Pemán, J.; Gobernado, M.; Viudes, A.; Espinel-Ingroff, A. Patterns of Amphotericin B Killing Kinetics against Seven Candida Species. Antimicrob. Agents Chemother. 2004, 48, 2477–2482. [Google Scholar] [CrossRef] [Green Version]
- Klepser, M.E.; Ernst, E.J.; Lewis, R.E.; Ernst, M.E.; Pfaller, M.A. Influence of Test Conditions on Antifungal Time-Kill Curve Results: Proposal for Standardized Methods. Antimicrob. Agents Chemother. 1998, 42, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.S.; Rennie, R.P.; Talbot, J.A. Sublethal Injury and Resuscitation of Candida albicans after Amphotericin B Treatment. Antimicrob. Agents Chemother. 2003, 47, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Kiraz, N.; Oz, Y.; Dag, I. The evaluation of in vitro pharmacodynamic properties of amphotericin B, voriconazole and caspofungin against A. fumigatus isolates by the conventional and colorimetric time-kill assays. Med. Mycol. 2011, 49, 594–601. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, A.; Fedorova, N.D.; Crabtree, J.; Yu, Y.; Kim, S.; Chen, D.; Loss, O.; Cairns, T.; Goldman, G.; Armstrong-James, D.; et al. Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis. PLoS Pathog. 2008, 4, e1000154. [Google Scholar] [CrossRef]
- Kwon-Chung, K.J.; Sugui, J.A. Aspergillus fumigatus—What Makes the Species a Ubiquitous Human Fungal Pathogen? PLoS Pathog. 2013, 9, e1003743. [Google Scholar] [CrossRef]
- Parente-Rocha, J.A.; Bailão, A.M.; Amaral, A.C.; Taborda, C.P.; Paccez, J.D.; Borges, C.L.; Pereira, M. Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediat. Inflamm. 2017, 2017, 9870679. [Google Scholar] [CrossRef]
- Vincent, B.M.; Lancaster, A.K.; Scherz-Shouval, R.; Whitesell, L.; Lindquist, S. Fitness Trade-offs Restrict the Evolution of Resistance to Amphotericin B. PLoS Biol. 2013, 11, e1001692. [Google Scholar] [CrossRef]
- Wuyts, J.; Van Dijck, P.; Holtappels, M. Fungal persister cells: The basis for recalcitrant infections? PLoS Pathog. 2018, 14, e1007301. [Google Scholar] [CrossRef]
- Jukic, E.; Blatzer, M.; Posch, W.; Steger, M.; Binder, U.; Lass-Flörl, C.; Wilflingseder, D. Oxidative Stress Response Tips the Balance in Aspergillus terreus Amphotericin B Resistance. Antimicrob. Agents Chemother. 2017, 61, e00670-00617. [Google Scholar] [CrossRef]
- Scheven, M.; Schwegler, F. Antagonistic interactions between azoles and amphotericin B with yeasts depend on azole lipophilia for special test conditions in vitro. Antimicrob. Agents Chemother. 1995, 39, 1779–1783. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, C.; Tobudic, S.; Schmoll, M.; Graninger, W.; Georgopoulos, A. In vitro activity and synergism of amphotericin B, azoles and cationic antimicrobials against the emerging pathogen Trichoderma spp. J. Antimicrob. Chemother. 2006, 58, 1058–1061. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Pérez, S.; García, M.E.; Blanco, J.L. In vitro activity of amphotericin B-azole combinations against Malassezia pachydermatis strains. Med. Mycol. 2019, 57, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Chudzik, B.; Bonio, K.; Dabrowski, W.; Pietrzak, D.; Niewiadomy, A.; Olender, A.; Pawlikowska-Pawlęga, B.; Gagoś, M. Antifungal effects of a 1,3,4-thiadiazole derivative determined by cytochemical and vibrational spectroscopic studies. PLoS ONE 2019, 14, e0222775. [Google Scholar] [CrossRef]
- Mijakovic, I.; Grangeasse, C.; Turgay, K. Exploring the diversity of protein modifications: Special bacterial phosphorylation systems. FEMS Microbiol. Rev. 2016, 40, 398–417. [Google Scholar] [CrossRef]
- Nenoff, P.; Koch, D.; Krüger, C.; Drechsel, C.; Mayser, P. New insights on the antibacterial efficacy of miconazole in vitro. Mycoses 2017, 60, 552–557. [Google Scholar] [CrossRef]
- Lepesheva, G.I.; Friggeri, L.; Waterman, M.R. CYP51 as drug targets for fungi and protozoan parasites: Past, present and future. Parasitology 2018, 145, 1820–1836. [Google Scholar] [CrossRef]
- Sangalli-Leite, F.; Scorzoni, L.; Mesa-Arango, A.C.; Casas, C.; Herrero, E.; Gianinni, M.J.S.M.; Rodríguez-Tudela, J.L.; Cuenca-Estrella, M.; Zaragoza, O. Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes Infect. 2011, 13, 457–467. [Google Scholar] [CrossRef]
- Kobayashi, D.; Kondo, K.; Uehara, N.; Otokozawa, S.; Tsuji, N.; Yagihashi, A.; Watanabe, N. Endogenous Reactive Oxygen Species Is an Important Mediator of Miconazole Antifungal Effect. Antimicrob. Agents Chemother. 2002, 46, 3113–3117. [Google Scholar] [CrossRef]
- Tavangar, F.; Sepehri, H.; Saghaeian Jazi, M.; Asadi, J. Amphotericin B potentiates the anticancer activity of doxorubicin on the MCF-7 breast cancer cells. J. Chem. Biol. 2017, 10, 143–150. [Google Scholar] [CrossRef]
- Wu, C.-H.; Jeng, J.-H.; Wang, Y.-J.; Tseng, C.-J.; Liang, Y.-C.; Chen, C.-H.; Lee, H.-M.; Lin, J.-K.; Lin, C.-H.; Lin, S.-Y.; et al. Antitumor Effects of Miconazole on Human Colon Carcinoma Xenografts in Nude Mice through Induction of Apoptosis and G0/G1 Cell Cycle Arrest. Toxicol. Appl. Pharmacol. 2002, 180, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Chengzhu, W.U.; Gao, M.; Shen, L.; Bohan, L.I.; Bai, X.; Gui, J.; Hongmei, L.I.; Huo, Q.; Tao, M.A. Miconazole triggers various forms of cell death in human breast cancer MDA-MB-231 cells. Die Pharm.-Int. J. Pharm. Sci. 2019, 74, 290–294. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. JNCI J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Messerschmitt, P.J.; Rettew, A.N.; Schroeder, N.O.; Brookover, R.E.; Jakatdar, A.P.; Getty, P.J.; Greenfield, E.M. Osteosarcoma Phenotype Is Inhibited by 3,4-Methylenedioxy-β-nitrostyrene. Sarcoma 2012, 2012, 479712. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.C.; Tsai, C.-H.; Hou, M.-F.; Chang, W.-L.; Wang, C.-H.; Lee, Y.-C.; Ko, A.; Hu, S.C.-S.; Chang, F.-R.; Hsieh, P.-W.; et al. The synthetic β-nitrostyrene derivative CYT-Rx20 induces breast cancer cell death and autophagy via ROS-mediated MEK/ERK pathway. Cancer Lett. 2016, 371, 251–261. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Hsieh, P.-W.; Lee, Y.-C.; Wang, C.-H.; Chiu, W.-C.; Lu, C.-W.; Wang, Y.-Y.; Hu, S.C.-S.; Cheng, T.-L.; Yuan, S.-S.F. 3′-Hydroxy-4′-methoxy-β-methyl-β-nitrostyrene inhibits tumor growth through ROS generation and GSH depletion in lung cancer cells. Life Sci. 2017, 172, 19–26. [Google Scholar] [CrossRef]
- Chiu, W.-C.; Lee, Y.-C.; Su, Y.-H.; Wang, Y.-Y.; Tsai, C.-H.; Hou, Y.-A.; Wang, C.-H.; Huang, Y.-F.; Huang, C.-J.; Chou, S.-H.; et al. The Synthetic β-Nitrostyrene Derivative CYT-Rx20 Inhibits Esophageal Tumor Growth and Metastasis via PI3K/AKT and STAT3 Pathways. PLoS ONE 2016, 11, e0166453. [Google Scholar] [CrossRef]
- Guengerich, F.P. Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catal. 2018, 8, 10964–10976. [Google Scholar] [CrossRef]
- Bae, Y.S.; Oh, H.; Rhee, S.G.; Yoo, Y.D. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 2011, 32, 491–509. [Google Scholar] [CrossRef]
- Crešnar, B.; Petrič, S. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2011, 1814, 29–35. [Google Scholar] [CrossRef]
- Chen, W.; Lee, M.-K.; Jefcoate, C.; Kim, S.-C.; Chen, F.; Yu, J.-H. Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin. Genome Biol. Evol. 2014, 6, 1620–1634. [Google Scholar] [CrossRef] [Green Version]
- Niwa, T.; Shiraga, T.; Takagi, A. Effect of Antifungal Drugs on Cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 Activities in Human Liver Microsomes. Biol. Pharm. Bull. 2005, 28, 1805–1808. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Inoue-Yamamoto, S.; Shiraga, T.; Takagi, A. Effect of Antifungal Drugs on Cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 Activities in Human Liver Microsomes. Biol. Pharm. Bull. 2005, 28, 1813–1816. [Google Scholar] [CrossRef] [PubMed]
- Obach, R.S.; Walsky, R.L.; Venkatakrishnan, K. Mechanism-Based Inactivation of Human Cytochrome P450 Enzymes and the Prediction of Drug-Drug Interactions. Drug Metab. Dispos. 2007, 35, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Walsky, R.L.; Obach, R.S. Validated assays for human cytochrome P450 activities. Drug Metab. Dispos. 2004, 32, 647–660. [Google Scholar] [CrossRef]
- Hamill, R.J. Amphotericin B Formulations: A Comparative Review of Efficacy and Toxicity. Drugs 2013, 73, 919–934. [Google Scholar] [CrossRef]
- Barasch, A.; Griffin, A.V. Miconazole revisited: New evidence of antifungal efficacy from laboratory and clinical trials. Future Microbiol. 2008, 3, 265–269. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Zhang, J.-P.; Chang, Y.; Hu, C.-Q. A newly identified derivative of amphotericin B: Isolation, structure determination and primary evaluation of the activity and toxicity. J. Antibiot. 2010, 63, 553–557. [Google Scholar] [CrossRef]
- Won, K.-J.; Lin, H.Y.; Jung, S.; Cho, S.M.; Shin, H.-C.; Bae, Y.M.; Lee, S.H.; Kim, H.-J.; Jeon, B.H.; Kim, B. Antifungal Miconazole Induces Cardiotoxicity Via Inhibition of APE/Ref-1-Related Pathway in Rat Neonatal Cardiomyocytes. Toxicol. Sci. 2012, 126, 298–305. [Google Scholar] [CrossRef]
- Kikuchi, K.; Nagatomo, T.; Abe, H.; Kawakami, K.; Duff, H.J.; Makielski, J.C.; January, C.T.; Nakashima, Y. Blockade of HERG cardiac K+ current by antifungal drug miconazole. Br. J. Pharmacol. 2005, 144, 840–848. [Google Scholar] [CrossRef]
- Clark, J.M.; Whitney, R.R.; Olsen, S.J.; George, R.J.; Swerdel, M.R.; Kunselman, L.; Bonner, D.P. Amphotericin B lipid complex therapy of experimental fungal infections in mice. Antimicrob. Agents Chemother. 1991, 35, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Bahn, Y.-S. Exploiting Fungal Virulence-Regulating Transcription Factors As Novel Antifungal Drug Targets. PLoS Pathog. 2015, 11, e1004936. [Google Scholar] [CrossRef]
- McCarthy, M.W.; Kontoyiannis, D.P.; Cornely, O.A.; Perfect, J.R.; Walsh, T.J. Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. J. Infect. Dis. 2017, 216, S474–S483. [Google Scholar] [PubMed]
- Marshall, A.C.; Kidd, S.E.; Lamont-Friedrich, S.J.; Arentz, G.; Hoffmann, P.; Coad, B.R.; Bruning, J.B. Structure, mechanism, and inhibition of Aspergillus fumigatus thioredoxin reductase. Antimicrob. Agents Chemother. 2019, 63, e02281-18. [Google Scholar] [CrossRef] [PubMed]
- Mota Fernandes, C.; Dasilva, D.; Haranahalli, K.; McCarthy, J.B.; Mallamo, J.; Ojima, I.; Del Poeta, M. The Future of Antifungal Drug Therapy: Novel Compounds and Targets. Antimicrob. Agents Chemother. 2021, 20, e01719-20. [Google Scholar] [CrossRef]
- Wondrak, G.T. Redox-Directed Cancer Therapeutics: Molecular Mechanisms and Opportunities. Antioxid. Redox Signal. 2009, 11, 3013–3069. [Google Scholar] [CrossRef]
- Narayanan, D.; Ma, S.; Özcelik, D. Targeting the Redox Landscape in Cancer Therapy. Cancers 2020, 12, 1706. [Google Scholar] [CrossRef]
PHYLUM | NPBD | Amphotericin B | Miconazole | ||||
---|---|---|---|---|---|---|---|
Fungal group description | |||||||
Order, Familyb | |||||||
Species | MIC | MFC | MIC | MFC | MIC | MFC | |
ASCOMYCOTA | |||||||
Saprophytic filamentous species | |||||||
Eurotiales, Aspergillaceae | |||||||
Aspergillus flavus RMIT 312 | 16 | 32 | 8 | 8 | ND | ND | |
A. niger RMIT 582 | 8 | 16 | 2 | 2 | ND | ND | |
A. fumigatus RMIT 702/1-1 | 6.2 ± 4 | 16 ± 12 | 1 | 8 | 0.3 | 2.0 | |
Penicillium chrysogenum | 1.3 ± 0.6 | 2.0 | ND | ND | ND | ND | |
Eurotiales, Thermoascaceae | |||||||
Paecilomyces variotiic | 1 | 2 | 1 | 1 | ND | ND | |
Hypocreales, Nectriaceae | |||||||
Fusarium graminearum RMIT 790/1 | 2.8 ± 1 | 5.2 ± 2 | 5.2 ± 2 | 12 ± 2 | 1 | 8 | |
Fusarium chlamydosporum RMIT 603 | 8 | 8 | 2 | 8 | |||
Dimorphic filamentous species | |||||||
Chaetothyriales, Herpotrichiellaceae | |||||||
Fonsecaea pedrosoi | 2.8 ± 3 | 3.4 ± 7 | 5.7 ± 3 | 9.5 ± 7 | ND | ND | |
Phialophora verrucosa RMIT 142 | 16 | 32 | 2 | 4 | ND | ND | |
Capnodiales, Teratosphaeriaceae | |||||||
Hortaea werneckii RMIT 115 (Cladosporium werneckii) | 8 | 8 | ND | ND | 4 | 4 | |
Microascales, Microascaceae | |||||||
Scedosporium apiospermum (S. boydii) RMIT 141 | 2 | 4 | 4 | >16 d | 8 | 8 | |
MUCOROMYCOTA/ZYGOMYCOTA | |||||||
Saprophytic filamentous species | |||||||
Mucorales, Rhizopodaceae | |||||||
Rhizopus stolonifer RMIT 905/2-1 | 4 | 11 ± 5 | >16 d | >16 d | 8 | 16 | |
Rhizopus oryzae | 64 | 64 | 4 | 4 | ND | ND | |
Mucorales, Lichtheimiaceae | |||||||
Rhizomucor pusillis | 4 | 8 | 1 | 1 | ND | ND | |
Filamentous species (n = 14) Average ± SDd | 10.2 ± 16.2 | 15.1 ± 17.2 | 5.7 ± 8.6 | 10.1 ± 10.8 | 4.3 ± 3.7 | 7.6 ± 5.4 | |
ASCOMYCOTA | |||||||
Parasitic dermatophytic species | |||||||
Onygenales, Arthrodermataceae | |||||||
Epidermophyton floccosum | 0.5 | 16 | ND | ND | 0.25 | 0.25 | |
Trichophyton rubrum S1 | 1.4 ± 5 | 256 | 1 | 256 | 1.7 ± 0.5 | 64 | |
Trichophyton rubrum S2 | 1 | 128 | 4 | 16 | 1 | 8 | |
Microsporum canis | 0.7 ± 0.7 | 13.5 ± 4 | 0.5 | 16 | ND | ND | |
Microsporum gypseum | 1.3 ± 0.5 | 9.2 ± 3.6 | 1 | 8 | 5.7 ± 2.3 | ≥64 | |
Saccharomycetales, Debaryomyceaceae | |||||||
Candida albicans ATCC 10231 | 9 ± 4 | 9.5 ± 3.6 | 0.25 | 2 | 0.5 | 0.5 | |
Candida glabrata RMIT 157 | 2 ± 1 | 2 | 0.5 | 1 | 0.25 | 0.5 | |
Candida guilliermondii (Pichia) RMIT 176 | 2.4 ± 1 | 2.4 ± 1 | 0.03 | 0.06 | 1.2 ± 0.5 | 1.2 ± 0.5 | |
Candida krusei (Pichia kudriavzeuii) anamorph RMIT 177 | 3.4 ± 1 | 3.4 ± 1 | 0.25 ± 0.2 | 0.3 ± 0.2 | 1.7 ± 0.5 | 1.7 ± 0.5 | |
Candida parapsilopsis RMIT 178 | 2.4 ± 1 | 2.4 ± 1 | 0.3 ± 0.14 | 0.4 ± 0.35 | 0.7 ± 0.75 | 0.7 ± 0.75 | |
Candida tropicalis RMIT 181 | 4 | 4 | 0.25 | 0.4 ± 0.14 | 0.8 ± 0.3 | 1.3 ± 0.8 | |
BASIDIOMYCOTA | |||||||
Saprophytic yeasts | |||||||
Tremellales, Cryptococcaceae | |||||||
Cryptococcus neoformans | 1 | 1 | 0.5 | 0.5 | 2.8 ± 1.1 | 4 | |
Sporidiobolales, Sporidiobolaceae | |||||||
Rhodotorula rubra (mucilaginosa) | 9.2 ± 3.6 | 9.2 ± 3.6 | ND | ND | 8 | 18.4 ± 7 | |
‘Yeasts’ Average (n = 8) ± SD | 3.9 ± 1.5 | 4.2 ± 3.3 | 0.3 ± 0.2 | 0.7 ± 0.7 | 2.0 ± 2.6 | 3.5 ± 6.1 | |
All Fungi (n = 27)-Average ± SD | 7.0 ± 1.8 | 25.6 ± 2.2 | 3.3 ± 0.16 | 18.4 ± 0.22 | 2.7 ± 0.8 | 11.9 ± 0.59 |
Test Compound | NPBD | AMB | MCZ | ||||||
---|---|---|---|---|---|---|---|---|---|
Fungal Group b (n) | MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC |
All Saprophytic opportunistic filamentous species (13) c | 11.4 | 16.4 | 1.4 | 6.2 | 8.4 | 1.4 | 3.1 | 8.7 | 2.8 |
Endemic dimorphic species (4) | 7.2 | 11.9 | 1.7 | 3.9 | 15.2 | 3.9 | 6 | 6 | 1 |
Parasitic dermatophytic species (5) | 1 | 84.5 | 84.5 | 1.6 | 74 | 46.3 | 2.2 | 34.1 | 15.5 |
Saprophytic/commensal Candida species (6) | 3.9 | 4 | 1 | 0.3 | 0.7 | 2.3 | 0.9 | 1 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, G.; White, K. The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics 2022, 11, 1188. https://doi.org/10.3390/antibiotics11091188
Nicoletti G, White K. The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics. 2022; 11(9):1188. https://doi.org/10.3390/antibiotics11091188
Chicago/Turabian StyleNicoletti, Gina, and Kylie White. 2022. "The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor" Antibiotics 11, no. 9: 1188. https://doi.org/10.3390/antibiotics11091188
APA StyleNicoletti, G., & White, K. (2022). The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics, 11(9), 1188. https://doi.org/10.3390/antibiotics11091188