Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria?
Abstract
:1. Introduction
2. Survey Methodology
3. Acinetobacter baumannii
Synthetic Method of the AgNPs | AgNP Size (nm) | Particle Shape | Capping | Antibiotic Added | MIC/MBC (µg/mL) | Proposed Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|
From Acinetobacter calcoaceticus | 8–12 | Spherical | No | AMI, AMP, AMX, CAZ, CHL, CIP CRO, DOX, GEN, KAN, PEN, TET, TMP, VAN | MIC (antibiotics + AgNPs) from <0.015 to 2048, depending on the antibiotic; the lowest MIC for DOX, TET and TMP; CIP (0.125), AMI, GEN, KAN (2); CAZ (512, CRO (2048) | Synergy between AgNPs and antibiotics, except for cephalosporins. No MIC data for CHL and VAN | [57] |
From Cassia fistula fruit | 50–150 | Triangular, hexahedral, amorphous | No | No | 62 µl/mL (in vitro assay) | Mechanism of action was not suggested | [58] |
From Salvia leriifolia leaf | 27 (avg.) | Spherical | No | No | (101.4 ± 2.4)% inhibition vs control | Mechanism of action was not suggested | [59] |
From PVP | 6–10 (TEM) | Spherical | PVP | No. AgNPs were compared with CAR and other antibiotics but not mixed | MIC for IPM: 64 (vs a highly resistant strain), 32, 8, 8. Four resistant strains were assayed. No MIC for PVP-AgNPs was provided, but they were active against 3 of the 4 strains | Mechanism of action was not suggested. Reference to previous work | [60] |
Reduction with PVP, or Na citrate, or SDS, or chitosan (Chit) | 6–10 (PVP); Not indicated (others) | Spherical | PVP, Citrate (CIT), SDS, Chit | AMP, DOR, IPM | 64 (highly resistant strain) | Synergy with IPM and DOR, (CIT-AGNPs: IPM (Chit- and SDS-AgNPs). Synergy with DOR and AMP (PVP-AgNPs) | [61] |
Reduction with Na citrate; then capping with SH-PEG2000-NOTA | 30 (avg.) | Spherical | SH-PEG-NOTA + IPM | IPM | 64 (at conc. of 60–100 µg/mL) | Mechanism of action not suggested. Sinergy between AgNPs and IPM | [62] |
Reduction with NaBH4 + Na citrate | 5–12 8.4 (avg.) | Spherical mainly | Citrate | PMB, RIF, TGC | MIC: 2.5 (AgNPs alone), FIC index: 0.19 (PMB), 0.38 (RIF), 0.75 (TGC) | Sinergy with PMB and RIF; additive effect with TIG | [63] |
Axonnite® prepared by micro-explosion | 2–5 (70–75%); 5–100 (30–25%) | Not indicated | No | No | 0.39–0.78 | Mechanism of action not indicated | [64] |
From Xanthomonas spp. | <10 | Spherical | Xanthan gum | No | Not indicated | Mechanism of action not indicated | [65] |
From Dioscorea bulbifera | 8–20 | Mostly spherical some nanorod, triangle | No | Aminoglycosides, β-lactams, cephalosporins, CAR, PMB, VAN, and others | No MIC was given. Only inhibition diameters on solid phase cultures were provided | Sinergy with β-lactams (mainly PIP) and ERY | [66] |
From bacteria | 8-12 | Variable | NA | DOX, ERY, TET | MIC: 16 (against planktonic cells); MBEC: 2000 (against biofilms) | Synergy with DOX, TET and ERY. Intracellular oxidative stress; interaction with thiol-groups | [69] |
Commercial | 11.12 ± 0.07 | Spherical | PVP | No | MIC: 0.9 (MDRAB) MIC: 2.1 (against a sensitive strain of A. baumannii ATCC 19606) | Photocatalytic induction of massive aggregation of cellular proteins under visible light. This process is not dependent on the bacterial species | [70] |
Reduction with NaBH4. Then mix with 3MPS and TG (variable ratios) or only with 3MPS | 3 ± 1, 6 ± 2 or 10 ± 2 (by DLS)/ 15–20 (by TEM) | Spherical | 3MPS-TG (two patterns) and 3MPS | No | IC90 > 128 for A. baumannii ATCC19606 | Not reported | [71] |
Commercial | 5–10 | Not indicated | No | 15 antibiotics were used for assessing bacterial resistance. They were not mixed with AgNPs. | CFU results showed that 38 MDRAB clinical isolates from hospital patients were sensitive to the AgNPs. MIC and MBC were not given | AgNPs induced apoptosis in MDRAB clinical isolates. This activity increases with increasing AgNP conc. Bacterial DNA synthesis decreases with increasing AgNP level | [73] |
Reduction with PVP | 10–50 | Spherical | Not indicated | No | MIC: 4–25 depending on the ability to produce biofilms more or less strong | AgNPs significantly interrupted bacterial growth and multiplication | [74] |
4. Pseudomonas aeruginosa
5. Enterobacteriaceae
Synthetic Method of the AgNPs | AgNP Size (nm) | Particle Shape | Capping | Antibiotic Added | MIC/MBC (µg/mL) | Proposed Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|
Commercial in a carbon matrix | 16 ± 8 | Cub-octahedral, multiple-twinned icosahedral and decahedral | No | No | Not provided | Disruption of bacterial membrane altering permeability/respiration; damage of S and P containing compounds (DNA); AgNPs release Ag+ | [77] |
From Phoma glomerata | 60–80 | Spherical | Bio-molecules | AMP, GEN, KAN, STR, VAN | Not provided | Synergy with AMP, GEN, VAN, and STR | [78] |
From Pseudomonas aeruginosa | 20–50 | Spherical | Not indicated | No | 50 | Reference to the mechanisms of action given in ref. [77] | [79] |
From Pseudomonas aeruginosa | 25–45 | Spherical | Not indicated | No | MEC: 6.4 pM MBC: 6.4 pM | Reference to previously reported mechanisms. Effect on the membrane: release of Ag+ | [80] |
From Pseudomonas putida | 15–40 | Spherical, truncated triangle, triangle, and hexagonal | Biological corona | No | MIC: 1 | Reference to the same mechanisms given in ref. [77] | [81] |
From Lactococcus lactis 56 | 5–50; avg. 19 ± 2 | Spherical | Organic material from L. lactis | No | 6.25 | No mechanism of action was proposed | [82] |
Reduction with NaBH4 + Na citrate | 4 | Not indicated | Citrate/AMP | AMP linked to AgNP, (AMP-AgNP) | MBC: 1 for AMP-AgNPs, against all the tested bacteria, four times lower than AgNPs alone (MBC: 4) | No mechanism of action was proposed | [83] |
From Bacillus licheniformis | 50 (avg.) | Spherical | Not indicated | No | A concentration of 100 nM inhibits 95–98% biofilm | Biofilm inhibition by arresting the synthesis of the exopolysaccharide matrix | [84] |
Commercial | 20–30 | Not indicated | Not indicated | No | 20 µg/mL inhibits about 56% biofilm of MDR P. aeruginosa and 67% of other strain | Biofilm inhibition. Mechanism of action was not provided | [85] |
Commercial | 10, 20, 40, 60, and 100 | Not provided | Citrate | ATM |
MIC against planktonic cells of AgNPs alone: from 0.234 (10 nm particles) to 7.50 (100 nm particles) | Synergistic effects of AgNP/ATM against biofilms are size-dependent. Optimal size: 10 nm, followed by 20 nm; worst size: 100 nm | [86] |
Commercial | 10 | Not provided | Citrate | No | 5, approx. 99.9% MDR P. aeruginosa death | Suggested mechanisms of action are those proposed in refs. [77,103,113] | [75] |
(1) Reduction with gallic acid; (2) growth of small AgNP nuclei by citrate/ascorbic acid addition at various Ag+/Ag0 ratios | 8 (avg.) before seeding; then up to 66 nm. Sizes used in experiments were 8, 20 and 35 nm | Spherical; pseudo-spherical, cylindrical.Other shapes after growth | Citrate | No | 600 µg AgNPs/mL produced biofilm detachment in 90% (8-nm AgNPs), and lower % (20- and 35-nm AgNps) depending on the media used | Effectiveness is size related. Low sizes are more effective than high sizes against biofilms. The low efficacy of AgNPs in this study may be due to citrate capping. AgNPs are more efficient than silver ions. Attachment of the NPs onto the microbial cell membrane leads to increased permeability, inhibition of cell wall synthesis, plasmolysis, and cell death | [87] |
Commercial | 10, 20, 40, 60, and 100 | Not provided | Citrate | TOB | MIC against planktonic bacteria: 0.156–0.625 (10 nm); 0.312–2.5 (20 nm); 2.50–10 (100 nm). MEBC against biofilms: 1.25–5.0 (10 and 20 nm); 2.5–>10 (40 nm); 5.0–>10 (60 nm) | Synergistic effect (10, 20, 40, 60 nm). Additive effect: 100 nm. The efficacy to inhibit biofilms and planktonic cells is dependent on strain and it is higher for smaller AgNPs either alone or combined with TOB | [88] |
Quercetin | 11 | Spherical | Quercetin | No | MIC: 1 | Antibacterial activity due to membrane disruption, generation of malondialdehyde and ROS, and leakage of proteins and sugars in cells. Found in treated cells: downregulated expression of glutathione, upregulation of glutathione S-transferase, downregulation of superoxide dismutase and catalase; inactivation of respiratory chain; low lactate dehydrogenase activity, and low adenosine triphosphate | [46] |
From A. baumannii | 37–168 | Spherical | Not indicated | No | MIC: 1.56 | Not provided | [89] |
Commercial | 100 | Not indicated | No | No | MIC: 83.3 (±16.7) mM MBC: 83.3–100 mM Anti-biofilm activity not reported | It is suggested a mode of action of AgNPs previously reported and similar to that of Ag+, which complex groups containing S, O, or N atoms that are present as thiols or phosphates on amino acids and nucleic acids, ROS production, membrane destabilization, etc. | [90] |
Commercial from cyclodextrin | 5–20, mostly 5–10 (chosen for the experiment) | Near spherical | No indicated | No | MIC: 1.406–5.625; MBC: 2.813–5.625 | The cell wall becomes thin; the cell membrane shrivels and fractures. Production of excessive ROS (oxidative stress); destruction of the redox homeostasis; alteration of the activity of the redox relevant enzymes; apoptosis-like effect. Activity is dose- and time-dependent | [91] |
From protein cell-free extract of Rhizopus oryzae | 9.2 (avg.) | Spherical | Protein corona | No | MIC: 2.25 ± 0.2 MBC: 2.7 ± 0.2 | Excessive ROS production. Cell membrane permeability is affected. Membrane destabilization by ROS can be responsible for surface charge neutralization leading to cellular material leakage and cell death. Damages due to AgNP interaction with intracellular proteins and nucleic acids | [92] |
Commercial from cyclodextrin | 5–20, mostly 5–10 (chosen for the experiment) | Near spherical | No indicated | No | 6.25 prevents biofilm formation | Biofilm damage is dose-dependent. AgNPs may induce downregulation of flagellins, fimbrillins, and other proteins of biofilms. Bacterial adhesion and motility are inhibited. The iron homeostasis is disturbed. Excessive ROS can cause lipid peroxidation, impairment of DNA and ribosomes, reduction in synthesis of macromolecules, and bacterial death. Respiratory enzymes are affected, which conducts to hypoxia. ROS production may influence the QS system and inhibit the expression of the virulent factors | [93] |
High-voltage method | 2–35 | Not indicated | No | AMP, CIP, CTZ, MEM, OXA, RIF, STR, TET | MIC: 1; MBIC: 4 (for AgNPs alone) | Synergistic interaction with AMP, STR, RIF, and TET. No interaction with the remaining antibiotics (planktonic cells). The synergistic interactions depend on the doses. No interaction concerning biofilm formation was observed. AgNPs induced synthesis of bacterial DnaK chaperone, but HtpG chaperone synthesis was unaffected | [94] |
Reduction of [Ag(NH3)2]+ by D-maltose (modified Tollens process) | 26 | Not indicated | No | AMI, ATM, CFP, CIP, CST, CTZ, FEP, GEN, MEM, OFX, PIP, TZP | MIC: 7.5 (AgNPs alone) | Synergistic effect of antibiotics combined with AgNPs | [95] |
From Streptomyces xinghaiensis | 5–20 (TEM) 64 (avg.) (nano tracking analysis) | Spherical | Not provided | AMP, KAN, TET | MIC: 16 and MBC: 32 (AgNPs alone) | No interaction between AgNPs and the tested antibiotics is reported | [97] |
Electrochemical process | 55.6 ± 2.9 | Quasi-spherical | No | TOB | MIC: 1.07–4.25 and MBC: 2.125–4.25 (for AgNPs alone) | AgNPs exhibited a comparable or higher antibacterial activity compared to TOB including anti-biofilm activity. AgNPs showed a dose-dependent effect and caused biofilm eradication at a concentration of 4 × MIC. They deconstructed the exopolysaccharide matrix and produced cell lysis | [98] |
From (a) leaf extract of Citrus latifolia; or (b) from Aspergillus flavus | 5–70, mostly in the range 20–30 | Spherical | No | AMI, CAZ, CIP, KAN, LVX, MEM, TZP | AgNPs alone, MIC: 4–128; for AgNPs from A. flavus: or 8–>128 for AgNPs from C. latifolia | Damage to the cell wall, membrane, and DNA, induction of ROS production. AgNPs derived from A. flavus showed synergistic effects with MEM and LVX | [99] |
Synthetic Method of the AgNPs | AgNP Size (nm) | Particle Shape | Capping | Antibiotic Added | MIC/MEB (µg/mL) | Proposed Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|
Ascorbic acid + Daxad® 19 | 12 (mode) | Not indicated | Not indicated | No | MIC: 50–60 (against E. coli) | Formation of ‘pits’ in the bacterial cell wall. AgNPs accumulate on the cell wall/membrane and in the cells. Leaking of intracellular substances | [103] |
From K. pneumoniae | 5–32, 22.5 (avg.) | Not indicated | Not indicated | Yes | Not determined. Assays on solid media. Inhibition diameters measured | No mechanism of action was proposed. AgNPs + antibiotics increase the inhibition zone more than some antibiotics alone | [105] |
Reduction with NaBH4 | 4–20, 13.4 (avg.) | Not indicated | Not indicated | No | MIC: 3.3–6.6 nM (against E. coli) | Formation of free radicals on the AgNP surface and free radical-induced membrane damage | [106] |
From spent mushroom substrate | 30.5 ± 4.0 | Spherical | Proteins | No | Not determined | No mechanism was proposed. Antibacterial properties against K. pneumoniae increased with AgNP concentration | [107] |
From Fusarium acuminatum | 5–40; 13 (avg.) | Spherical | Not indicated | No | Not determined. E. coli and S. Typhi were inhibited, but the efficacy was low | Reference to mechanisms proposed in ref. [103]. The reaction of silver with SH groups of proteins in the cell inactivates proteins | [108] |
From chitosan solution + NaOH producing chitosan-AgNP composites | 2–4 (90%) | Spherical | Not indicated | No | AgNP-chitosan composite: MIC: 100; MBC: 120 (against E. coli) | Destabilization of the bacterial cell wall by the composite. The binding of AgNPs to thiol-containing proteins present in the cell wall leads to penetration. The composite was more efficient than AgNPs or chitosan alone for inactivating bacteria, possibly due to a synergistic effect | [109] |
From chitosan solution | 4–18, 6–8 (50%) | Not indicated | Not indicated | No | AgNP-chitosan; MIC: 10; MEB: 10 (against E. coli) | Chitosan-based AgNPs have a dual mechanism of action for antibacterial activity, the bactericidal effect of AgNPs, and the cationic effects of chitosan | [110] |
From S. aureus | 160–180 | Not indicated | Not indicated | No | MIC/MBC were not given. S. Typhi and K. pneumoniae showed low susceptibility; V. cholera was not susceptible | No mechanism of action was proposed | [111] |
Commercial | 5 | Not indicated | Not indicated | No | MIC: 10 (against E. coli) | AgNPs accelerate the reducing sugars/protein leakage from the cytoplasm in E. coli. The activity of respiratory chain dehydrogenases decreases with time. Cell membranes were severely damaged | [113] |
From various marine microalgae | Not indicated | Not indicated | Probably proteins from the source | No | MIC was not given. Inhibition against Klebsiella spp., Proteus vulgaris and E. coli. | No mechanism of action was proposed | [114] |
From Streptomyces hygroscopicus | 20–30 | Spherical | Not indicated | No | MIC/MBC not given. The highest antimicrobial activity was against E. coli. Lower activity was found against S. Typhimurium | No mechanism of action was proposed | [115] |
Reduction with: (a) NaBH4, (b) Na citrate, (c) Ethylene glycol + PVP | (a) 75 ± 4.5 (b) 82 ± 5.2 (c) 86 ± 6.7 | Not indicated | (a) Uncapped (b) Citrate (CIT) (c) PVP | No | MIC: 6–6.33 (against S. Typhimurium); 6.33–6.83 (against S. Typhi); 6.67–7 (against Shigella flexneri). | No mechanism was proposed. The antibacterial activity was in the order PVP-AgNPs > CIT-AgNPs >> uncapped AgNPs | [116] |
NaBH4 + N-acylethanolamine | Not indicated | Spherical | N-acylethanol-amine | No | MIC: 6.67 (against K. pneumoniae); 7.22 (against Shigella sp.); 7.22 (against S. Typhi); 9.06 (against E. coli) | No antibacterial mechanism was proposed | [117] |
From dried powder of Ocimum gratissimum leaf extract | 16 ± 2 (TEM) | Triangular | Proteins from the source | No | MIC: 4; MBC: 8 (against MDR E. coli) | Intracellular ROS generation; membrane was fragmentary. Inhibition of biofilm formation | [118] |
From Phoma glomerata | 60–80 | Spherical | Biomolecules | AMP, GEN, KAN, STR, VAN | Not provided | AgNPs enhanced the antimicrobial activity of antibiotics against E. coli. Synergy with AMP, GEN, KAN, VAN, and STR | [78] |
Reduction of [Ag(NH3)2]+ by D-maltose (modified Tollens process) | 26 | Not indicated | No | CIP, CTX, CTZ, GEN MER | MIC AgNPs alone: 0.8 (ESBL-positive E. coli); 3.4 (AmpC-positive E. coli and KPC-positive K. pneumoniae); 6.8 (ESBL-positive K. pneumoniae) | Synergistic effects of antibiotics combined with AgNPs (< 1 µg/mL) against multi-resistant enterobacteria that produce broad-spectrum -lactamases or carbapenemase | [96] |
Ascorbic acid + Daxad® 19 | 20 | Cubic | AMX linked to AgNPs (supposedly) | AMX | MIC AgNPs alone: 40 (against E. coli) | Synergistic effects that may be caused by (a) bonding between AMX and AgNPs or (b) AgNPs can act as carriers of AMX | [119] |
From Trichoderma viride | 20–40 | Variable, spherical and other shapes | Not indicated | AMP, CHL, ERY, KAN | MIC (AgNPs alone): 30 (against E. coli); 35 (against S. Typhi) | Synergistic effects with all the assayed antibiotics. The effectivity order was AMP > KAN > ERY > CHL | [120] |
Commercial | Not indicated | Not indicated | No | No | MIC: 100 (against E. coli) | Bacterial protein leakage by increasing the membrane permeability. Formation of ROS that inactivate LDH | [122] |
Reduction with Na citrate + PVP | 10–25 | Most spherical, some prismatic | Not indicated (probably citrate/PVP) | No | MIC: 8–16; MBC: 8–16 (against Salmonella spp. and Shigella spp.) | No antibacterial mechanism was proposed | [123] |
Reduction with: NaBH4, addition of Na citrate + PVP | 6.8 ± 2.28 | Spherical | PVP | No | MIC ≤ 0.002–0.313 (MBC: 0.078–1.250 (against Salmonella spp. 7 species, 20 strains) | No antibacterial mechanism was proposed | [124] |
From bacteria Massilia sp. | 15–55, 23.2 (avg.) by TEM; 109.3 (avg.) by DLS | Most spherical | Conjugated molecules not specified | No | MIC: 12.5 (against K. pneumoniae) and 25.0 (against S. Enteritidis); MBC: 50 (against both bacteria) | Morphological damage and distortion of the cell wall of both species. It can be attributed to oxidative stress due to the formation of ROS causing membrane detachment | [125] |
Commercial | 5 to > 500, mostly 6–20. Two populations within the range | Most spherical, but also polygonal | No | No | Not determined against 3 Salmonella serovars: Senftenberg, Hadar, and Enteritidis. Best conc. 200 µg/mL. AgNPs were most effective against S. Enteritidis, and not effective against S. Senftenberg | The surface area of AgNPs is important for their activity, as Ag+ release, the determining factor for antimicrobial activity, might be dependent on the surface area (importance of the AgNP shape) | [126] |
Reduction with NaBH4 and Na citrate. Further conjugation with peptides | 10 (avg.) | Not indicated | Citrate. Then conjugation with peptides AY1 and two AY1 cysteine derivatives at the two terminal positions (C and N) of AY1: AY1C and CAY1 | No | MIC80%: ~50 µM (AY1-NP), 12 µM (AY1C-NP), 10 µM (CAY1-NP) against E. coli; 10 µM (AY1C-NP), 5 µM (CAY1-NP) against K. pneumoniae; 15 µM (AY1C-NP and CAY1-NP) against S. Typhi | Cell membrane rupture by nano-conjugates. It is suggested that there exists an interaction of peptides with negatively charged phosphate head groups of lipid moieties as well as with water molecules. Interaction with the hydrophobic tails of the membrane produces pores. Then, AgNPs attach the DNA | [127] |
From Fusarium oxysporum. Ag/AgCl-NP produced | 55 ± 18 (TEM); 89 (DLS) | Pseudo-spherical | Proteins | IPM | MIC of Ag/AgCl-NPs: 10.52 for all the bacteria tested (ESBL and K. pneumoniae carbapenemase-KPC | Ag/AgCl-NPs + IPM were more active than IPM alone, but no synergistic effect is deduced from the inhibition diameters | [128] |
According to refs. [95,96] | 26 | Not indicated | No | No | MIC increased for E. coli CCM 3954 from 3.38 to > 54 after 9 successive cultures and for E. coli 013 from 13.5 to > 54 after 14 successive cultures | The increasing MIC values show the gradual development of bacterial resistance against AgNPs, not against Ag+. Bacteria repeatedly exposed to sub-inhibitory concentrations of AgNPs can rapidly develop resistance to their antibiotic activity. Resistance is due production of flagellin, a protein of the bacterial flagellum, which causes AgNP aggregation | [129] |
6. Staphylococcus aureus
Synthetic Method of the AgNPs | AgNP Size (nm) | Particle Shape | Capping | Antibiotic Added | MIC/MBC (µg/mL) | Proposed Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|
Microwave AgNO3 solution, 1000 W, 15 s | 0.5–24, 1 (avg.) | Not indicated | Not indicated | No | MIC: 12.5 (against MSSA and MRSA) | Unequal AgNP distribution on the exterior (9.5–33 nm) and interior (5–9 nm) of the bacteria. Reduction of the PG layer generates destabilization and permeabilization of the bacterial cell membrane and causes osmotic rupture and lysis | [132] |
Reduction with NaBH4 | 4–20, 13.4 (avg.) | Not indicated | Not indicated | No | MIC > 33 nM | Formation of free radicals on the AgNP surface and free radical-induced membrane damage | [106] |
From plant Gynura procumbens aqueous extract. Then, AgNPs were mixed with fungal chitosan (FCS) | 10–100 | Spherical, triangle, and hexagonal | Chitosan encapsulating AgNP | No | MIC: 4.08 ± 0.47 | No mechanism of action was suggested | [133] |
Commercial (two sources, a and b) | (a) ~100; (b) 10, 30–40 | Not indicated | No | No | 10 nm, MIC99: 1800; MBC: 2700; 30–40 nm, MIC99: 10790; MBC: 10790; ~100 nm, MIC99: 2250; MBC: 8990 (against MRSA) | No mechanism of action was suggested | [134] |
Reduction with NaBH4, + polyvinyl alcohol (PVA) | 9 | Not indicated | Not indicated | No | MIC: 1.95; MBC: 3.91 (against MRSA and S. aureus) | No mechanism of action was suggested | [135] |
From leaves of Ricinus communis | 7.25 | Spherical or oval | Conjugated with STR | STR | MIC of STR-AgNPs: 3.12 ± 0.9 (S. aureus) | Synergistic effect of AgNPs and STR | [138] |
Reduction with Na citrate, + polyvinyl alcohol (PVA) | 17 (avg.) | Spherical | Not indicated | No | MIC: 2; MBC: 4 | AgNPs changed the secondary structure (a-helix) of the bacterial cell wall and destroyed its primary structure with the formation of pits, the release of Ag+, PG fragmentation with the release of muramic acid in the medium | [140] |
Commercial | 5 | Not indicated | Not indicated | No | MIC: 5; MBC: 20 | AgNPs over pass cell wall and act on the cell membrane to damage the relative enzymes and interfere with cell metabolism. AgNPs enter bacteria cells and condensed DNA to prevent DNA from replicating and cells from reproducing. Simultaneously, AgNPs continuously act on the cell wall and cell membrane to destroy them | [141] |
From B. cereus and glucose | 32 | Spherical | Not indicated | GEN, CHL | MIC and MEB were not indicated | Synergistic effect of AgNPs along with antibiotics in biofilm quenching, but the mechanism of action was not suggested | [142] |
From Streptomyces coelicolor pigments by photo-irradiation within 20 min | 28–50 | Irregular | Not indicated | GEN, OXA | Only inhibition zones on solid cultures were measured. GEN: 14 mm; AgNPs + GEN: 22 mm; OXA: 10 mm; AgNPs + OXA: 20 mm | The synergistic activity of AgNPs with both antibiotics was attributed to the interaction of the AgNPs with hydroxyl and amide groups in the antibiotics | [143] |
From Alysicarpus monilifer leaf extract | 5–45 15 ± 2 (avg.) | Spherical deriving in nanoprisms | No indicated | No | MIC: 60; MBC: 80 (against coagulase-negative staphylococci): MIC: 80; MBC: 100 (against MRSA) | AgNPs are capable of affecting the integrity of cell membranes and interacting with disulfide bonds of intracellular enzymes, disturbing metabolic processes and inhibiting the major functions of bacterial cells, including cellular uptake and respiration | [144] |
From chitosan solution | 4–18, 6–8 (50% of the AgNPs) | Not indicated | Not indicated | No | AgNP-chitosan MIC: 10; MBC: 10 (S. aureus) | Chitosan-based AgNPs have a dual mechanism of action for antibacterial activity, the bactericidal effect of AgNPs, and the cationic effects of chitosan | [110] |
From Pseudomonas aeruginosa | 25–45 | Spherical | Not indicated | No | MIC (pM): 0.4–3.2 (against MSSA –MRSA clinical strains). 3.2 (against S. epidermidis) MBC (pM): 0.8–3.2 (against MSSA -MRSA clinical strains) 6.2 (S. epidermidis) | Reference to previously reported mechanisms. Effect on the membrane: release of Ag+ | [80] |
Commercial | Not indicated | Not indicated | No | No | MIC: 100 (S. aureus) | Bacterial protein leakage by increasing the membrane permeability. Formation of ROS that inactivate LDH | [122] |
Reduction with NaBH4 + Na citrate | 4 | Not indicated | Citrate/AMP | AMP linked to AgNP (AMP-AgNP) | MBC: 1 for AMP-AgNPs, MBC: 4 for AgNPs alone | No mechanism of action was proposed | [83] |
7. Toxicity of AgNPs
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Antimicrobial Resistance in the European Union and the World. 2012. Available online: https://www.who.int/director-general/speeches/detail/antimicrobial-resistance-in-the-european-union-and-the-world (accessed on 15 June 2022).
- WHO. Antimicrobial Resistance Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; p. 2014257. Available online: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf?sequence=1&isAllowed=y (accessed on 16 June 2022).
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health. 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, S.; Serpone, N. Introduction to nanoparticles. In Microwaves in Nanoparticle Synthesis: Fundamentals and Applications; Horikoshi, S., Serpone, N., Eds.; Wiley-VCH Verlag GmbH and Co. KGaA: Weinheim, Germany, 2013; pp. 1–24. [Google Scholar]
- Singh, L.P.; Bhattacharyya, S.K.; Kumar, R.; Mishra, G.; Sharma, U.; Singh, G.; Ahalawat, S. Sol-gel processing of silica nanoparticles and their applications. Adv. Colloid Interface Sci. 2014, 214, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Vichery, C.; Nedelec, J.M. Bioactive glass nanoparticles: From synthesis to materials design for biomedical applications. Materials 2016, 9, 288. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.M.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Zain, M.; Yasmeen, H.; Yadav, S.S.; Amir, S.; Bilal, M.; Shahid, A.; Khurshid, M. Applications of nanotechnology in biological systems and medicine. In Micro and Nano Technologies, Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood; Chapter 10; Denizli, A., Nguyen, T.A., Rajan, M., Alam, M.F., Rahman, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 215–235. [Google Scholar] [CrossRef]
- Palao-Suay, R.; Gómez-Mascaraque, L.G.; Aguilar, M.R.; Vázquez-Lasa, B.; Román, J.S. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog. Polym. Sci. 2016, 53, 207–248. [Google Scholar] [CrossRef]
- Gao, W.; Chen, Y.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-based local antimicrobial drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 45–57. [Google Scholar] [CrossRef]
- Lam, S.J.; Wong, E.H.H.; Boyer, C.; Qiao, G.G. Antimicrobial polymeric nanoparticles. Progr. Polym. Sci. 2018, 76, 40–64. [Google Scholar] [CrossRef]
- Rai, M.K.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Gupta, I.; Chaud, M.V.; Dos Santos, C.A. Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. Int. J. Pharm. 2017, 532, 139–148. [Google Scholar] [CrossRef]
- Hoseinzadeh, E.; Makhdoumi, P.; Taha, P.; Hossini, H.; Stelling, J.; Kamal, M.A.; Ashraf, G.M. A review on nano-antimicrobials: Metal nanoparticles, methods, and mechanisms. Curr. Drug Metab. 2016, 18, 120–128. [Google Scholar] [CrossRef]
- Tripathi, N.; Goshisht, M.K. Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl. Bio Mater. 2022, 5, 1391–1463. [Google Scholar] [CrossRef]
- Merrifield, R.C.; Stephan, C.; Lead, J.R. Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles. Talanta 2017, 162, 130–134. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles-A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact. 2017, 273, 219–227. [Google Scholar] [CrossRef]
- Kaushik, A.; Jayant, R.D.; Bhardwaj, V.; Nair, M. Personalized nanomedicine for CNS diseases. Drug Discov. Today 2018, 23, 1007–1015. [Google Scholar] [CrossRef]
- Jiang, W.; Rutherford, D.; Vuong, T.; Liu, H. Nanomaterials for treating cardiovascular diseases: A review. Bioact. Mat. 2017, 2, 185–198. [Google Scholar] [CrossRef]
- Reimondez-Troitiño, S.; Csaba, N.; Alonso, M.J.; de la Fuente, M. Nanotherapies for the treatment of ocular diseases. Eur. J. Pharm. Biopharm. 2015, 95, 279–293. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, C.; Guo, Q.; Wan, X.; Zhang, Q. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety. Int. J. Pharm. 2017, 525, 237–248. [Google Scholar] [CrossRef]
- Wong, C.Y.; Al-Salami, H.; Dass, C.R. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J. Control. Release 2017, 264, 247–275. [Google Scholar] [CrossRef]
- Zang, X.; Zhao, X.; Hu, H.; Qiao, M.; Chen, D. Nanoparticles for tumor immunotherapy. Review. Eur. J. Pharm. Biopharm. 2017, 115, 243–256. [Google Scholar] [CrossRef]
- Li, R.; Liu, B.; Gao, J. The application of nanoparticles in diagnosis and theranostics of gastric cancer. Cancer Lett. 2017, 386, 123–130. [Google Scholar] [CrossRef]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022, 1–23. [Google Scholar] [CrossRef]
- Singh, R.; Smitha, M.S.; Singh, S.P. The role of nanotechnology in combating multidrug resistant bacteria. J. Nanosci. Nanotechnol. 2014, 14, 4745–4756. [Google Scholar] [CrossRef]
- Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release 2016, 224, 86–102. [Google Scholar] [CrossRef]
- Ma, Z.; Garrido-Maestu, A.; Jeong, K.C. Application, mode of action, and in vivo activity of chitosan and its micro and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 2017, 176, 257–265. [Google Scholar] [CrossRef]
- Mba, E.I.; Nweze, E.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World J. Microbiol. Biotechnol. 2021, 37, 108. [Google Scholar] [CrossRef]
- Cheeseman, S.; Christofferson, A.J.; Kariuki, R.; Cozzolino, D.; Daeneke, T.; Crawford, R.J.; Truong, V.K.; Chapman, J.; Elbourne, A. Antimicrobial metal nanomaterials: From passive to stimuli-activated applications. Adv. Sci. 2020, 7, 1902913. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Hochvaldová, L.; Večeřová, R.; Kolář, M.; Prucek, R.; Kvítek, L.; Lapčík, L.; Panáček, A. Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis. Nanotechnol. Rev. 2022, 11, 1115–1142. [Google Scholar] [CrossRef]
- Darabdhara, G.; Boruah, P.K.; Hussain, N.; Borthakur, P.; Sharma, B.; Sengupta, P.; Das, M.R. Magnetic nanoparticles towards efficient adsorption of gram positive and gram negative bacteria: An investigation of adsorption parameters and interaction mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 161–170. [Google Scholar] [CrossRef]
- Lee, K.J.; Browning, L.M.; Nallathamby, P.D.; Xu, X.H.N. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem. Res. Toxicol. 2013, 26, 904–917. [Google Scholar] [CrossRef]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, B.; Hemmateenejad, A.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J. Nanomater. 2015, 2015, 720654. [Google Scholar] [CrossRef]
- Kawish, M.; Ullah, F.; Ali, H.S.; Saifullah, S.; Ali, I.; Rehman, J.U.; Imran, M. Bactericidal potentials of silver nanoparticles: Novel aspects against multidrug resistance bacteria Chapter 10. In Micro and Nano Technologies, Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Shah, M.R., Imran, M., Ullah, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 175–188. [Google Scholar] [CrossRef]
- Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.B.A.; Raman, T.; Veerappan, A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater. Sci. Eng. C 2016, 68, 939–947. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Häffner, S.M.; Malmsten, M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv. Colloid Interface Sci. 2017, 248, 105–128. [Google Scholar] [CrossRef]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef]
- Hsueh, Y.H.; Lin, K.S.; Ke, W.J.; Hsieh, C.T.; Chiang, C.L.; Tzou, D.Y.; Liu, S.T. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS ONE 2015, 10, e0144306. [Google Scholar] [CrossRef] [Green Version]
- Tamayo, L.A.; Zapata, P.A.; Vejar, N.D.; Azocar, M.I.; Gulppi, M.A.; Zhou, X.; Thompson, G.E.; Rabagliati, F.M.; Paez, M.A. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria Monocytogenes. Mater. Sci. Eng. 2014, 40, 24–31. [Google Scholar] [CrossRef]
- Dayma, P.B.; Mangrola, A.V.; Suriyaraj, S.P.; Dudhagara, P.; Patel, R.K. Synthesis of bio-silver nanoparticles using desert isolated Streptomyces intermedius and its antimicrobial activity. J. Pharm. Chem. Biol. Sci. 2019, 7, 94–101. [Google Scholar]
- Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 2017, 18, 569. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Chang, T.Y.; Chen, C.C.; Cheng, K.M.; Chin, C.Y.; Chen, Y.H.; Chen, X.A.; Sun, J.R.; Young, J.J.; Chiueh, T.S. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Colloids Surf. B Biointerfaces 2017, 155, 61–70. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Hussein, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 14. [Google Scholar] [CrossRef]
- Chopra, H.; Bibi, S.; Singh, I.; Hasan, M.M.; Khan, M.S.; Yousafi, Q.; Baig, A.A.; Rahman, M.M.; Islam, F.; Emran, T.B.; et al. Green metallic nanoparticles: Biosynthesis to applications. Front. Bioeng. Biotechnol. 2022, 10, 874742. [Google Scholar] [CrossRef]
- Wacker, M.G.; Proykova, A.; Mendes, G.; Santos, L. Dealing with nanosafety around the globe regulation vs. innovation. Int. J. Pharma. 2016, 509, 95–106. [Google Scholar] [CrossRef]
- García-Quintanilla, M.; Pulido, M.R.; López-Rojas, R.; Pachón, J.; McConnell, M.J. Emerging therapies for multidrug resistant Acinetobacter baumannii. Trends Microbiol. 2013, 21, 157–163. [Google Scholar] [CrossRef]
- Srikanth, D.; Joshi, S.V.; Shaik, M.G.; Pawar, G.; Bujji, S.; Kanchupalli, V.; Chopra, S.; Nanduri, S. A comprehensive review on potential therapeutic inhibitors of nosocomial Acinetobacter baumannii superbugs. Bioorg. Chem. 2022, 124, 105849. [Google Scholar] [CrossRef]
- Taccone, F.S.; Rodríguez-Villalobos, H.; De Backer, D.; De Moor, V.; Deviere, J.; Vincent, J.L.; Jacobs, F. Successful treatment of septic shock due to pan-resistant Acinetobacter baumannii using combined antimicrobial therapy including tigecycline. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 257–260. [Google Scholar] [CrossRef]
- Maragakis, L.L.; Perl, T.M. Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis. 2008, 46, 1254–1263. [Google Scholar] [CrossRef]
- Valencia, R.; Arroyo, L.A.; Conde, M.; Aldana, J.M.; Torres, M.J.; Fernández-Cuenca, F.; Garnacho-Montero, J.; Cisneros, J.M.; Ortíz, C.; Pachón, J.; et al. Nosocomial outbreak of infection with pandrug-resistant Acinetobacter baumannii in a tertiary care university hospital. Infect. Control Hosp. Epidemiol. 2009, 30, 57–263. [Google Scholar] [CrossRef]
- Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 2013, 8, 4277–4290. [Google Scholar]
- Ghafoori, S.M.; Entezari, M.; Taghva, M.E.A.; Tayebi, Z. Biosynthesis and evaluation of the characteristics of silver nanoparticles using Cassia fistula fruit aqueous extract and its antibacterial activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 045019. [Google Scholar] [CrossRef]
- Baghayeri, M.; Mahdavi, B.; Hosseinpor-Mohsen Abadi, Z.; Farhadi, S. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl. Organomet. Chem. 2018, 32, e4057. [Google Scholar] [CrossRef]
- Tiwari, V.; Khokar, M.K.; Tiwari, M.; Barala, S.; Kumar, M. Anti-bacterial activity of polyvinyl pyrrolidone capped silver nanoparticles on the carbapenem resistant strain of Acinetobacter baumannii. J. Nanomed. Nanotechnol. 2014, 5, 1000246. [Google Scholar] [CrossRef]
- Tiwari, M.; Raghav, R.; Tiwari, V. Comparative anti-bacterial activity of differently capped silver nanomaterial on the carbapenem sensitive and resistant strains of Acinetobacter baumannii. J. Nanomed. Nanotechnol. 2015, 6, 1000314. [Google Scholar] [CrossRef]
- Tiwari, V.; Tiwari, M.; Solanki, M. Polyvinylpyrrolidone-capped silver nanoparticle inhibits infection of carbapenem-resistant strain of Acinetobacter baumannii in the human pulmonary epithelial cell. Front. Immunol. 2017, 8, 973. [Google Scholar] [CrossRef]
- Li, X.; Gui, R.; Li, J.; Huang, R.; Shang, Y.; Zhao, Q.; Liu, H.; Jiang, H.; Shang, X.; Wu, X.; et al. Novel multifunctional silver nanocomposite serves as a resistance-reversal agent to synergistically combat carbapenem-resistant Acinetobacter baumannii. ACS Appl. Mater. Interfaces 2021, 13, 30434–30457. [Google Scholar] [CrossRef]
- Wan, G.; Ruan, L.; Yin, Y.; Yang, T.; Ge, M.; Cheng, X. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int. J. Nanomed. 2016, 11, 3789–3800. [Google Scholar] [CrossRef]
- Łysakowska, M.E.; Ciebiada-Adamiec, A.; Klimek, L.; Sienkiewicz, M. The activity of silver nanoparticles (Axonnite) on clinical and environmental strains of Acinetobacter spp. Burns 2015, 41, 364–371. [Google Scholar] [CrossRef]
- Silva Santos, K.; Mendonça Barbosa, A.; da Costa, L.P.; Santos Pinheiro, M.; Prior Pinto Oliveira, M.B.; Pad, F.F. Silver nanocomposite biosynthesis: Antibacterial activity against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Molecules 2016, 21, 1255. [Google Scholar] [CrossRef]
- Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi Swaranjit, K.; Cameotra, S.; Bellare, J.; Dhavale, D.D.; Jabgunde, A.; et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 2012, 7, 483–496. [Google Scholar]
- Maunders, E.; Welch, M. Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiol. Lett. 2017, 364, fnx120. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Vora, J.; Nadhe, S.; Wadhwani, S.A.; Shedbalkar, U.U.; Chopade, B.A. Antibacterial activities of bacteriagenic silver nanoparticles against nosocomial Acinetobacter baumannii. J. Nanosci. Nanotechnol. 2018, 18, 3806–3815. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Wei, Q.; Wang, Z.; Zhang, G.; Sun, X.; He, Q.Y. Photocatalytic protein damage by silver nanoparticles circumvents bacterial stress response and multidrug resistance. mSphere 2019, 4, e00175-19. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, F.; Carlini, L.; Ugolini, A.; Visaggio, D.; Visca, P.; Fratoddi, I.; Venditti, I.; Meneghini, C.; Simonelli, L.; Marini, C.; et al. Synthesis and structural characterization of silver nanoparticles stabilized with 3-mercapto-1-propansulfonate and 1-thioglucose mixed thiols for antibacterial applications. Materials 2016, 9, 1028. [Google Scholar] [CrossRef] [PubMed]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yu, X.; Huo, Q.; Yuan, Q.; Li, X.; Xu, C.; Bao, H. Biomedical potentialities of silver nanoparticles for clinical multiple drug-resistant Acinetobacter baumannii. J. Nanomater. 2019, 2019, 3754018. [Google Scholar] [CrossRef]
- Hetta, H.F.; Al-Kadmy, I.M.S.; Khazaal, S.S.; Abbas, S.; Suhail, A.; El-Mokhtar, M.A.; Abd Ellah, N.H.; Ahmed, E.A.; Abd-ellatief, R.B.; El-Masry, E.A.; et al. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci. Rep. 2021, 11, 10751. [Google Scholar] [CrossRef]
- Salomoni, R.; Léo, P.; Montemor, A.; Rinaldi, B.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 2017, 10, 115–121. [Google Scholar] [CrossRef]
- Kerr, K.G.; Snelling, A.M. Pseudomonas aeruginosa: A formidable and ever-present adversary. J. Hospital Infect. 2009, 73, 338–344. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef]
- Birla, S.S.; Tiwari, V.V.; Gade, A.K.; Ingle, A.P.; Yadav, A.P.; Rai, M.K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 2009, 48, 173–179. [Google Scholar] [CrossRef]
- Oza, G.; Pandey, S.; Shah, R.; Sharon, M. Extracellular fabrication of silver nanoparticles using Pseudomonas aeruginosa and its antimicrobial assay. Adv. Appl. Sci. Res. 2012, 3, 1776–1783. [Google Scholar]
- Quinteros, M.A.; Aiassa Martínez, I.M.; Dalmasso, P.R.; Páez, P.L. Silver nanoparticles: Biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. Int. J. Biomater. 2016, 2016, 5971047. [Google Scholar] [CrossRef]
- Singh, P.; Mijakovic, I. Antibacterial effect of silver nanoparticles is stronger if the production host and the targeted pathogen are closely related. Biomedicines 2022, 10, 628. [Google Scholar] [CrossRef]
- Viorica, R.P.; Pawel, P.; Kinga, M.; Michal, Z.; Katarzyna, R.; Boguslaw, B. Lactococcus lactis as a safe and inexpensive source of bioactive silver composites. Appl. Microbiol. Biotechnol. 2017, 101, 7141–7153. [Google Scholar] [CrossRef]
- Brown, A.N.; Smith, K.; Samuels, T.A.; Lu, J.; Obare, S.O.; Scotta, M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 2012, 78, 2768–2774. [Google Scholar] [CrossRef]
- Kalishwaralal, K.; BarathManiKanth, S.; Pandian, S.R.K.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces 2010, 79, 340–344. [Google Scholar] [CrossRef]
- Palanisamy, N.K.; Ferina, N.; Amirulhusni, A.N.; Mohd-Zain, Z.; Hussaini, J.; Ping, L.J.; Durairaj, R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J. Nanobiotechnol. 2014, 12, 2. [Google Scholar] [CrossRef]
- Habash, M.B.; Park, A.J.; Vis, E.C.; Harris, R.J.; Khursigara, C.M. Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa AO1 Biofilms. Antimicrob. Agents Chemother. 2014, 58, 5818–5830. [Google Scholar] [CrossRef]
- Loo, C.Y.; Young, P.M.; Cavaliere, R.; Whitchurch, C.B.; Lee, W.H.; Rohanizadeh, R. Silver nanoparticles enhance Pseudomonas aeruginosa PAO1 biofilm detachment. Drug Dev. Ind. Pharm. 2014, 40, 719–729. [Google Scholar] [CrossRef]
- Habash, M.B.; Goodyear, M.C.; Park, A.J.; Surette, M.D.; Vis, E.C.; Harris, R.J.; Khursigara, C.M. Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2017, 61, e00415-17. [Google Scholar] [CrossRef]
- Shaker, M.A.; Shaaban, M.I. Synthesis of silver nanoparticles with antimicrobial and anti-adherence activities against multidrug-resistant isolates from Acinetobacter baumannii. J. Taibah Univ. Sci. 2017, 12, 291–297. [Google Scholar] [CrossRef]
- Lara, H.H.; Ayala-Núñez, N.V.; del Carmen Ixtepan Turrent, L.; Rodríguez Padilla, C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010, 26, 615–621. [Google Scholar] [CrossRef]
- Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 2019, 14, 1469–1487. [Google Scholar] [CrossRef]
- Ramalingam, B.; Parandhaman, T.; Das, S.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016, 8, 4963–4976. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, X.; Liao, S.; Jiang, C.; Wang, L.; Tang, Y.; Wu, G.; Dai, G.; Chen, L. Quantitative proteomics reveals the mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa biofilms. J. Proteome Res. 2020, 19, 3109–3312. [Google Scholar] [CrossRef]
- Markowska, K.; Grudniak, A.M.; Krawczyk, K.; Wrobel, I.; Wolska, K.I. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeruginosa by silver nanoparticles. J. Med. Microbiol. 2014, 63, 849–854. [Google Scholar] [CrossRef]
- Panáček, A.; Smékalová, M.; Kilianová, M.; Prucek, R.; Bogdanová, K.; Večeřová, R.; Kolář, M.; Havrdová, M.; Płaza, G.A.; Chojniak, J.; et al. Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules 2016, 21, 26. [Google Scholar] [CrossRef]
- Panáček, A.; Smékalová, M.; Večeřová, R.; Bogdanová, K.; Röderová, M.; Kolář, M.; Kilianová, M.; Hradilová, S.; Froninga, J.P.; Havrdová, M.; et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B Biointerfaces 2016, 142, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Wypij, M.; Czarnecka, J.; Świecimska, M.; Dahm, H.; Rai, M.; Golinska, P. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J. Microbiol. Biotechnol. 2018, 34, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pompilio, A.; Germiniani, C.; Bosco, D.; Rana, R.; Aceto, A.; Bucciarelli, T.; Scotti, L.; Bonaventura, G.D. Electrochemically synthesized silver nanoparticles are active against planktonic and biofilm cells of Pseudomonas aeruginosa and other cystic fibrosis-associated bacterial pathogens. Front. Microbiol. 2018, 9, 1349. [Google Scholar] [CrossRef] [PubMed]
- Campos-Beleño, C.; Villamizar-Gallardo, R.A.; López-Jacome, L.E.; González, E.E.; Muñoz-Carranza, S.; Franco, B.; Morales-Espinosa, R.; Coria-Jiménez, R.; Franco-Cendejas, R.; Hernández-Durán, M.; et al. Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett. Appl. Microbiol. 2022. [Google Scholar] [CrossRef]
- Huang, Y.; Bai, L.; Yang, Y.; Yin, Z.; Guo, B. Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J. Colloid Interface Sci. 2022, 608, 2278–2289. [Google Scholar] [CrossRef]
- Jenkins, C.; Rentenaar, R.; Landraud, L.; Brisse, S. Enterobacteriaceae. In Infectious Diseases, 4th ed.; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, Section 8, Clinical Microbiology: Bacteria; pp. 1565–1578.e2. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Baker, C.; Pradhan, A.; Pakstis, L.; Pochan, D.J.; Shah, S.I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 2005, 5, 244–249. [Google Scholar] [CrossRef]
- Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 168–171. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Hwang, Y.H.; Lee, Y.S.; et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Vigneshwaran, N.; Kathe, A.A.; Varadarajan, P.V.; Nachane, R.P.; Balasubramanya, R.H. Silver−protein (core−shell) nanoparticle production using spent mushroom substrate. Langmuir 2007, 23, 7113–7117. [Google Scholar] [CrossRef]
- Ingle, A.; Gade, A.; Pierrat, S.; Sonnichsen, C.; Rai, M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 2008, 4, 141–144. [Google Scholar] [CrossRef]
- Sanpui, P.; Murugadoss, A.; Durga Prasad, P.V.; Sankar Ghosh, S.; Chattopadhyay, A. The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. Int. J. Food Microbiol. 2008, 124, 142–146. [Google Scholar] [CrossRef]
- Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 2009, 344, 2375–2382. [Google Scholar] [CrossRef]
- Nanda, A.; Saravanan, M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 452–456. [Google Scholar] [CrossRef]
- Inbaneson, S.J.; Ravikumar, S.; Manikandan, N. Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens. Appl. Nanosci. 2011, 1, 231–236. [Google Scholar] [CrossRef]
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122. [Google Scholar] [CrossRef]
- Devina Merin, D.; Prakash, S.; Valentine Bhimba, B. Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac. J. Trop. Med. 2010, 3, 797–799. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Shanmugam, P.; Yun, K. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf. B Biointerfaces 2010, 81, 358–362. [Google Scholar] [CrossRef]
- Gnanadhas, D.P.; Thomas, M.B.; Thomas, R.; Raichur, A.M.; Chakravortty, D. Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob. Agents Chemother. 2013, 57, 4945–4955. [Google Scholar] [CrossRef]
- Anbazhagan, V.; Ahmed, K.B.A.; Janani, S. Synthesis of catalytically active silver nanoparticles using lipid derived signaling molecule, N-steroylethanolamine: Promising antibacterial agent and selective colorimetric sensor for mercury ion. Sens. Actuators B Chem. 2014, 200, 92–100. [Google Scholar] [CrossRef]
- Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Somenath, R. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian J. Chem. 2017, 10, 862–876. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Wu, C.Z.; Wu, Q.S.; Li, J. Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology 2005, 16, 1912–1917. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine 2010, 6, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Cheng, H.; Xu, J.W.; Li, F.; Gao, B.; Li, Z.; Gao, C.; Huo, K.F.; Fu, J.J.; Xiong, W. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo. Int. J. Nanomed. 2017, 12, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, H.S.; Ryu, D.S.; Choi, S.J.; Lee, D.S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 2011, 39, 77–85. [Google Scholar]
- Omara, S.T.; Zawrah, M.F.; Samy, A.A. Minimum bactericidal concentration of chemically synthesized silver nanoparticles against pathogenic Salmonella and Shigella strains isolated from layer poultry farms. J. Appl. Pharm. Sci. 2017, 7, 214–221. [Google Scholar]
- Farouk, M.M.; El-Molla, A.; Salib, F.A.; Soliman, Y.A.; Shaalan, M. The role of silver nanoparticles in a treatment approach for multidrug-resistant Salmonella species isolates. Int. J. Nanomed. 2020, 15, 6993–7011. [Google Scholar] [CrossRef]
- Huq, M.A.; Akter, S. Biosynthesis, characterization and antibacterial application of novel silver nanoparticles against drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Molecules 2021, 26, 5996. [Google Scholar] [CrossRef]
- Losasso, C.; Belluco, S.; Cibin, V.; Zavagnin, P.; Mičetić, I.; Gallocchio, F.; Zanella, M.; Bregoli, L.; Biancotto, G.; Ricci, A. Antibacterial activity of silver nanoparticles: Sensitivity of different Salmonella serovars. Front. Microbiol. 2014, 5, 227. [Google Scholar] [CrossRef]
- Pal, I.; Bhattacharyya, D.; Kumar Kar, R.; Zarena, D.; Bhunia, A.; Atreya, H.S. A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria. Sci. Rep. 2019, 9, 4485. [Google Scholar] [CrossRef]
- Picoli, S.U.; Durán, M.; Andrade, P.F.; Duran, N. Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against Klebsiella pneumoniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL). Front. Nanosci. Nanotech. 2016, 2, 107–110. [Google Scholar] [CrossRef]
- Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnol. 2018, 13, 65–71. [Google Scholar] [CrossRef]
- Stapleton, P.D.; Taylor, P.W. Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci. Prog. 2002, 85 Pt 1, 57–72. [Google Scholar] [CrossRef]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef]
- Romero-Urbina, D.G.; Lara, H.H.; Velázquez-Salazar, J.J.; Arellano-Jiménez, M.J.; Larios, E.; Srinivasan, A.; López-Ribot, J.L.; Yacamán, M.J. Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 2396–2405. [Google Scholar] [CrossRef]
- Sathiyaseelan, A.; Saravanakumar, K.; Mariadoss, A.V.A.; Wang, M.H. Biocompatible fungal chitosan encapsulated phytogenic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity. Int. J. Biol. Macromol. 2020, 153, 63–71. [Google Scholar] [CrossRef]
- Ayala-Núñez, N.V.; Lara Villegas, H.H.; Turrent, L.; Padilla, C.R. Silver nanoparticles toxicity and bactericidal effect against Methicillin-Resistant Staphylococcus aureus: Nanoscale does matter. Nanobiotechnology 2009, 5, 2–9. [Google Scholar] [CrossRef]
- Wady, A.F.; Machado, A.L.; Foggi, C.C.; Zamperini, C.A.; Zucolotto, V.; Moffa, E.B.; Vergani, C.E. Effect of a silver nanoparticles solution on Staphylococcus aureus and Candida spp. J. Nanomater. 2014, 2014, 545279. [Google Scholar] [CrossRef]
- Surwade, P.; Ghildyal, C.; Weikel, C.; Luxton, T.; Peloquin, D.; Fan, X.; Shah, V. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J. Antibiot. 2019, 72, 50–53. [Google Scholar] [CrossRef]
- Masimen, M.A.A.; Harun, N.A.; Maulidiani, M.; Ismail, W.I.W. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics 2022, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, N.; Javad, S.; Farrukh, M.A.; Shah, A.A.; Gatasheh, M.K.; AL-Munqedhi, B.M.A.; Chaudhry, O. Metal nanoparticles assisted revival of streptomycin against MDRS Staphylococcus aureus. PLoS ONE 2022, 17, e0264588. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Bowler, P.G.; Dolman, J. Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. Int. Wound J. 2007, 4, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, F.; Ghassempour, A.; Aliahmadi, A.; Esmaeili, M.A. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res. Microbiol. 2011, 162, 542–549. [Google Scholar] [CrossRef]
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 2011, 24, 135–141. [Google Scholar] [CrossRef]
- Chaudhari, P.R.; Masurkar, S.A.; Shidore, V.B.; Kamble, S.P. Effect of biosynthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano-Micro Lett. 2012, 4, 34–39. [Google Scholar] [CrossRef]
- Manikprabhu, D.; Lingappa, K. Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J. Pharm. Res. 2013, 6, 255–260. [Google Scholar] [CrossRef]
- Kasithevar, M.; Saravanan, M.; Prakash, P.; Kumar, H.; Ovais, M.; Barabadi, H.; Khan Shinwari, Z. Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J. Interdiscip. Nanomed. 2017, 2, 131–141. [Google Scholar] [CrossRef]
- Eleftheriadou, M.; Pyrgiotakis, G.; Demokritou, P. Nanotechnology to the rescue: Using nano-enabled approaches in microbiological food safety and quality. Curr. Opin. Biotechnol. 2017, 44, 87–93. [Google Scholar] [CrossRef]
- Greulich, C.; Diendorf, J.; Simon, T.; Eggeler, G.; Epple, M.; Köller, M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater. 2011, 7, 347–354. [Google Scholar] [CrossRef]
- Liz, R.; Simard, J.C.; Leonardi, L.B.; Girard, D. Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion. Int. Immunopharmacol. 2015, 28, 616–625. [Google Scholar] [CrossRef]
- Akter, M.; Sikder, M.T.; Rahmana, M.M.; Ullahe, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Sund, P.; Zhang, N.; Zhaoa, Y.; Qin, S.; Zhao, Y. Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy. RSC Adv. 2020, 10, 38746–38754. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Wang, H.; Zhu, M.; Feng, W.; Liang, G. Enhanced antibacterial and anti-biofilm activities of antimicrobial peptides modified silver nanoparticles. Int. J. Nanomed. 2021, 16, 4831–4846. [Google Scholar] [CrossRef]
- Hussain, S.M.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.; Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 2005, 19, 975–983. [Google Scholar] [CrossRef]
- Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M. Cellular responses induced by silver nanoparticles. Toxicol. Lett. 2008, 179, 93–100. [Google Scholar] [CrossRef]
- Chairuangkitti, P.; Lawanprasert, S.; Roytrakul, S.; Aueviriyavit, S.; Phummiratch, D.; Kulthong, K.; Chanvorachote, P.; Maniratanachote, R. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol. Vitr. 2013, 27, 330–338. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014, 55, 283–291. [Google Scholar] [CrossRef]
- Składanowski, M.; Golinska, P.; Rudnicka, K.; Dahm, H.; Rai, M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med. Microbiol. Immunol. 2016, 205, 603–613. [Google Scholar] [CrossRef]
- Asharani, P.V.; Hande, M.P.; Valiyaveettil, S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009, 10, 65. [Google Scholar] [CrossRef]
- Luther, E.M.; Koehler, Y.; Diendorf, J.; Epple, M.; Dringen, R. Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 2011, 22, 375101. [Google Scholar] [CrossRef] [PubMed]
- Asharani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.J.; Kim, S.; Kim, J.S.; Choi, I.H. Inflammasome formation and IL-1b release by human blood monocytes in response to silver nanoparticles. Biomaterials 2012, 33, 6858–6867. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Foldbjerg, R.; Miclaus, T.; Wang, L.; Singh, R.; Hayashi, Y.; Sutherland, D.; Chen, C.; Autrup, H.; Beer, C. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol. Lett. 2013, 222, 55–63. [Google Scholar] [CrossRef]
- Hackenberg, S.; Scherzed, A.; Kessler, M.; Hummel, S.; Technau, A.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 2011, 201, 27–33. [Google Scholar] [CrossRef]
- Gurunathan, S.; Jeong, J.K.; Han, J.W.; Zhang, X.F.; Park, J.H.; Kim, J.H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett. 2015, 10, 35. [Google Scholar] [CrossRef]
- Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Bio. Med. Res. Int. 2013, 2013, 287638. [Google Scholar] [CrossRef]
- Rathod, D.; Golinska, P.; Wypij, M.; Dahm, H.; Rai, M. A new report of Nocardiopsis valliformisstrain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med. Microbiol. Immunol. 2016, 205, 435–447. [Google Scholar] [CrossRef]
- Barbasz, A.; O’cwieja, M.; Romanc, M. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids Surf. B Biointerfaces 2017, 156, 397–404. [Google Scholar] [CrossRef]
- Kvítek, L.; Vanickova, M.; Panáček, A.; Soukupova, J.; Dittrich, M.; Valentova, E.; Prucek, R.; Bancirova, M.; Milde, D.; Zbořil, R. Initial study on the toxicity of silver nanoparticles (nps) against Paramecium caudatum. J. Phys. Chem. C 2009, 113, 4296–4300. [Google Scholar] [CrossRef]
- Panáček, A.; Kolar, M.; Večeřová, R.; Prucek, R.; Soukupova, J.; Krystof, V.; Hamal, P.; Zbořil, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [Google Scholar] [CrossRef]
- Panáček, A.; Prucek, R.; Safarova, D.; Dittrich, M.; Richtrova, J.; Benickova, K.; Zbořil, R.; Kvítek, L. Acute and chronic toxicity effects of silver nanoparticles (nps) on Drosophila melanogaster. Environ. Sci. Technol. 2011, 45, 4974–4979. [Google Scholar] [CrossRef]
- Krajewski, S.; Prucek, R.; Panáček, A.; Avci-Adali, M.; Nolte, A.; Straub, A.; Zbořil, R.; Wendel, H.P.; Kvítek, L. Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified chandler-loop in vitro assay on human blood. Acta Biomater. 2013, 9, 7460–7468. [Google Scholar] [CrossRef]
- Munger, M.A.; Radwanski, P.; Hadlock, G.C.; Stoddard, G.; Shaaban, A.; Falconer, J.; Grainger, D.W.; Deering-Rice, C.E. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine 2014, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.; Hong, H.W.; Choi, Y.G.; Lee, M.J.; Park, J.H.; Chae, H.K.; Ryu, G.; Myung, H. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett. 2008, 30, 1893–1899. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.S.; Cho, H.S.; Rha, D.S.; Kim, J.M.; Park, J.D.; Choi, B.S.; Lim, R.; Chang, H.K.; Chung, Y.H.; et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2008, 20, 575–583. [Google Scholar] [CrossRef]
- Kim, Y.S.; Song, M.Y.; Park, J.D.; Song, K.S.; Ryu, H.R.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Oh, K.H.; Kelman, B.J.; et al. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 2010, 7, 20. [Google Scholar] [CrossRef]
- Park, E.J.; Bae, E.; Yi, J.; Kim, Y.; Choi, K.; Lee, S.H.; Yoon, J.; Lee, B.C.; Park, K. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 2010, 30, 162–168. [Google Scholar] [CrossRef]
- Loeschner, K.; Hadrup, N.; Qvortrup, K.; Larsen, A.; Gao, X.Y.; Vogel, U.; Mortensen, A.; Lam, H.R.; Larsen, E.H. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre Toxicol. 2011, 8, 18. [Google Scholar] [CrossRef]
- Hadrup, N.; Loeschner, K.; Mortensen, A.; Sharma, A.K.; Qvortrup, K.; Larsen, E.H.; Lam, H.R. The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro. Neurotoxicology 2012, 33, 416–423. [Google Scholar] [CrossRef]
- Van der Zande, M.; Vandebriel, R.J.; van Doren, E.; Kramer, E.; Rivera, Z.H.; Serrano-Rojero, C.S.; Gremmer, E.R.; Mast, J.; Peters, R.J.B.; Hollman, P.C.H.; et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 2012, 6, 7427–7442. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Song, K.S.; Sung, J.H.; Ryu, H.R.; Choi, B.G.; Cho, H.S.; Lee, J.K.; Yu, I.J. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology 2013, 7, 953–960. [Google Scholar] [CrossRef]
- Park, K. Toxicokinetic differences and toxicities of silver nanoparticles and silver ions in rats after single oral administration. J. Toxicol. Environ. Health Part A 2013, 76, 1246–1260. [Google Scholar] [CrossRef] [PubMed]
- Korani, M.; Rezayat, S.M.; Gilani, K.; Bidgoli, S.A.; Adeli, S. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int. J. Nanomed. 2011, 6, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.L.; Xiong, L.; Wang, S.; Wang, J.Y.; Liu, L.; Li, J.A.; Wan, Z.Y.; Xi, T.F. Influence of silver nanoparticles on neurons and blood–brain barrier via subcutaneous injection in rats. Appl. Surf. Sci. 2008, 255, 502–504. [Google Scholar] [CrossRef]
- Tang, J.L.; Xiong, L.; Wang, S.; Wang, J.Y.; Liu, L.; Li, J.G.; Yuan, F.Q.; Xi, T.F. Distribution, translocation and accumulation of silver nanoparticles in rats. J. Nanosci. Nanotechnol. 2009, 9, 4924–4932. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Camberos, E.; Juárez-Navarro, K.J.; Sánchez-Hernández, I.M.; Torres-González, O.R.; Flores-Fernández, J.M. Toxicological Evaluation of Silver Nanoparticles Synthesized with Peel Extract of Stenocereus queretaroensis. Materials 2022, 15, 5700. [Google Scholar] [CrossRef]
- Cho, Y.M.; Mizuta, Y.; Akagi, J.I.; Toyoda, T.; Sone, M.; Ogawa, K. Size-dependent acute toxicity of silver nanoparticles in mice. J. Toxicol. Pathol. 2018, 31, 73–80. [Google Scholar] [CrossRef]
- Recordati, C.; De Maglie, M.; Bianchessi, S.; Argentiere, S.; Silvana, C.; Mattiello, C.; Cubadda, F.; Aureli, F.; D’Amato, M.; Raggi, A.; et al. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Part. Fibre Toxicol. 2016, 13, 12. [Google Scholar] [CrossRef]
- Yildirimer, L.; Thanh, N.T.K.; Loizidou, M.; Seifalian, A.M. Toxicological considerations of clinically applicable nanoparticles. Nano Today 2012, 6, 585–607. [Google Scholar] [CrossRef]
- Emond, C. Kinetic behaviour of nanoparticles across the biological physiology. J. Phys. Conf. Ser. 2011, 304, 12089. [Google Scholar] [CrossRef]
- Smock, K.J.; Schmidt, R.L.; Hadlock, G.; Stoddard, G.; Grainger, D.W.; Munger, M.A. Assessment of orally dosed commercial silver nanoparticles on human ex vivo platelet aggregation. Nanotoxicology 2014, 8, 328–333. [Google Scholar] [CrossRef]
- Li, N.Y.; Ko, W.C.; Hsueh, P.R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019, 10, 11533. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateo, E.M.; Jiménez, M. Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics 2022, 11, 1205. https://doi.org/10.3390/antibiotics11091205
Mateo EM, Jiménez M. Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics. 2022; 11(9):1205. https://doi.org/10.3390/antibiotics11091205
Chicago/Turabian StyleMateo, Eva M., and Misericordia Jiménez. 2022. "Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria?" Antibiotics 11, no. 9: 1205. https://doi.org/10.3390/antibiotics11091205
APA StyleMateo, E. M., & Jiménez, M. (2022). Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics, 11(9), 1205. https://doi.org/10.3390/antibiotics11091205