Influence of Probiotic Strains Bifidobacterium, Lactobacillus, and Enterococcus on the Health Status and Weight Gain of Calves, and the Utilization of Nitrogenous Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals and Basic Feed Ration
2.3. Treatment of Newborn Calves and Veterinary Care
2.4. Experimental Design
2.5. Feed Intake Measurement
2.6. Weighing Calves
2.7. Fecal Sampling
2.8. Blood Sampling
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Svensson, C.; Lundborg, K.; Emanuelson, U.; Olsson, S. Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases. Prev. Veter.-Med. 2003, 58, 179–197. [Google Scholar] [CrossRef]
- Cho, Y.-I.; Yoon, K.-J. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Veter.-Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Smulski, S.; Turlewicz-Podbielska, H.; Wylandowska, A.; Włodarek, J. Non-antibiotic possibilities in prevention and treatment of calf diarrhoea. J. Veter.-Res. 2020, 64, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Katsoulos, P.; Karatzia, M.; Dedousi, A.; Camo, D.; Boscos, C. Milk consumption monitoring as a farmer friendly indicator for advanced treatment in limited fed calves with neonatal diarrhoea syndrome. Vet. Med. 2020, 65, 104–110. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Simon, O.; Jadamus, A.; Vahjen, W. Probiotic feed additives-effectiveness and expected modes of action. J. Anim. Feed Sci. 2001, 10, 51–67. [Google Scholar] [CrossRef]
- Gaggìa, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010, 141, S15–S28. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Verstegen, M.; Tamminga, S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 2001, 14, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y.; Ushida, K. Health-beneficial effects of probiotics: Its mode of action. Anim. Sci. J. 2009, 80, 361–371. [Google Scholar] [CrossRef]
- Uyeno, Y.; Shigemori, S.; Shimosato, T. Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes Environ. 2015, 30, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollowski, I.; Rechkemmer, G.; Pool-Zobel, B.L. Protective role of probiotics and prebiotics in colon cancer. Am. J. Clin. Nutr. 2001, 73, 451s–455s. [Google Scholar] [CrossRef] [PubMed]
- Ülger, I. Effects of pre-weaning probiotic treatments on growth performance and biochemical blood parameters of Holstein calves. Indian J. Anim. Res. 2019, 53, 644–647. [Google Scholar] [CrossRef]
- Kaur, I.P.; Chopra, K.; Saini, A. Probiotics: Potential pharmaceutical applications. Eur. J. Pharm. Sci. 2001, 15, 1–9. [Google Scholar] [CrossRef]
- Eisler, M.C.; Lee, M.R.F.; Tarlton, J.F.; Martin, G.B.; Beddington, J.; Dungait, J.A.J.; Greathead, H.; Liu, J.; Mathew, S.; Miller, H.; et al. Agriculture: Steps to sustainable livestock. Nature 2014, 507, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, A.; Clark, H. How much do direct livestock emissions actually contribute to global warming? Glob. Chang. Biol. 2017, 24, 1749–1761. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Special Topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Jeyanathan, J.; Martin, C.; Eugène, M.; Ferlay, A.; Popova, M.; Morgavi, D.P. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol. 2019, 10, 41. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Varnava, K.G.; Ronimus, R.S.; Sarojini, V. A review on comparative mechanistic studies of antimicrobial peptides against archaea. Biotechnol. Bioeng. 2017, 114, 2457–2473. [Google Scholar] [CrossRef]
- Larson, L.L.; Owen, F.G.; Albright, J.L.; Appleman, R.D.; Lamb, R.C.; Muller, L.D. Guidelines Toward More Uniformity in Measuring and Reporting Calf Experimental Data. J. Dairy Sci. 1977, 60, 989–991. [Google Scholar] [CrossRef]
- Knowles, T.; Edwards, J.E.; Bazeley, K.J.; Brown, S.N.; Butterworth, A.; Warriss, P.D. Changes in the blood biochemical and haematological profile of neonatal calves with age. Veter. Rec. 2000, 147, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Bayatkouhsar, J.; Tahmasebi, A.M.; Naserian, A.A.; Mokarram, R.R.; Valizadeh, R. Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves. Anim. Feed Sci. Technol. 2013, 186, 1–11. [Google Scholar] [CrossRef]
- Soto, L.P.; Zbruna, M.V.; Frizzo, L.S.; Signorinia, M.L.; Sequeira, G.J.; Rosmini, M.R. Effects of bacterial inoculants in milk on the performance of intensively reared calves. Anim. Feed Sci. Technol. 2014, 189, 117–122. [Google Scholar] [CrossRef]
- Frizzo, L.S.; Soto, L.P.; Bertozzi, E.; Zbrun, M.V.; Signorini, M.L.; Sequeira, G.; Armesto, R.R.; Rosmini, M.R. Intestinal populations of Lactobacilli and coliforms after in vivo Salmonella dublin challenge and their relationship with microbial translocation in calves supplemented with lactic acid bacteria and lactose. Anim. Feed Sci. Technol. 2011, 170, 12–20. [Google Scholar] [CrossRef]
- Timmerman, H.M.; Mulder, L.; Everts, H.; Van Espen, D.C.; Van Der Wal, E.; Klaassen, G.; Rouwers, S.M.G.; Hartemink, R.; Rombouts, F.M.; Beynen, A.C. Health and Growth of Veal Calves Fed Milk Replacers With or Without Probiotics. J. Dairy Sci. 2005, 88, 2154–2165. [Google Scholar] [CrossRef]
- Renaud, D.L.; Kelton, D.F.; Weese, J.S.; Noble, C.; Duffiel, T.F. Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: A randomized clinical trial. J. Dairy Sci. 2019, 102, 4498–4505. [Google Scholar] [CrossRef]
- He, Z.X.; Ferlisi, B.; Eckert, E.; Brown, H.E.; Aguilar, A.; Steele, M.E. Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health. Anim. Feed Sci. Technol. 2017, 226, 81–87. [Google Scholar] [CrossRef]
- Soto, L.P.; Frizzo, L.S.; Avataneo, E.; Zbrun, M.V.; Bertozzi, E.; Sequeira, G.; Signorini, M.L.; Rosmini, M.R. Design of macrocapsules to improve bacterial viability and supplementation with a probiotic for young calves. Anim. Feed Sci. Technol. 2011, 165, 176–183. [Google Scholar] [CrossRef]
- Martín, M.-J.; Martín-Sosa, S.; Alonso, J.M.; Hueso, P. Enterotoxigenic Escherichia coli strains bind bovine milk gangliosides in a ceramide-dependent process. Lipids 2003, 38, 761–768. [Google Scholar] [CrossRef]
- Nagy, B.; Fekete, P. Enterotoxigenic Escherichia coli in veterinary medicine. Int. J. Med Microbiol. 2005, 295, 443–454. [Google Scholar] [CrossRef]
- Luginbühl, A.; Reitt, K.; Metzler, A.; Kollbrunner, M.; Corboz, L.; Deplazes, P. Field study of the prevalence and diagnosis of diarrhea-causing agents in the newborn calf in a Swiss veterinary practice area. Schweiz. Arch. Tierheilkd. 2005, 147, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Barrington, G.M.; Gay, J.M.; Evermann, J.F. Biosecurity for neonatal gastrointestinal diseases. Veter. Clin. N. Am. Food Anim. Pract. 2002, 18, 7–34. [Google Scholar] [CrossRef]
- Younis, E.E.; Ahmed, A.M.; El-Khodery, S.A.; Osman, S.A.; El-Naker, Y.F. Molecular screening and risk factors of enterotoxigenic Escherichia coli and Salmonella spp. in diarrheic neonatal calves in Egypt. Res. Veter.-Sci. 2009, 87, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Alispahic, M.; Sofka, D.; Iwersen, M.; Drillich, M.; Hilbert, F. Prevalence and risk factors for shedding of thermophilic Campylobacter in calves with and without diarrhea in Austrian dairy herds. J. Dairy Sci. 2013, 96, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; LeJeune, J.T.; Rice, D.H.; Berg, J.; Stilborn, R.P.; Kaya, K.; Bae, W.; Hancock, D.D. Increasing Prevalence of Campylobacter jejuni in Feedlot Cattle through the Feeding Period. Appl. Environ. Microbiol. 2005, 71, 5752–5758. [Google Scholar] [CrossRef]
- Sato, K.; Bartlett, P.C.; Kaneene, J.B.; Downes, F.P. Comparison of Prevalence and Antimicrobial Susceptibilities of Campylobacter spp. Isolates from Organic and Conventional Dairy Herds in Wisconsin. Appl. Environ. Microbiol. 2004, 70, 1442–1447. [Google Scholar] [CrossRef]
- Windeyer, M.C.; Leslie, K.E.; Godden, S.M.; Hodgins, D.C.; Lissemore, K.D.; LeBlanc, S.J. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014, 113, 231–240. [Google Scholar] [CrossRef]
- Fecteau, G.; Smith, B.P.; George, L.W. Septicemia and Meningitis in the Newborn Calf. Veter- Clin. North Am. Food Anim. Pr. 2009, 25, 195–208. [Google Scholar] [CrossRef]
- Godden, S. Colostrum Management for Dairy Calves. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 19–39. [Google Scholar] [CrossRef]
- Vogels, Z.; Chuck, G.; Morton, J. Failure of transfer of passive immunity and agammaglobulinaemia in calves in south-west Victorian dairy herds: Prevalence and risk factors. Aust. Veter.-J. 2013, 91, 150–158. [Google Scholar] [CrossRef]
- Komine, M.; Massa, A.; Moon, L.; Mullaney, T. Citrobacter koseri Septicaemia in a Holstein Calf. J. Comp. Pathol. 2014, 151, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Mohri, M.; Sharifi, K.; Eidi, S. Hematology and serum biochemistry of Holstein dairy calves: Age related changes and comparison with blood composition in adults. Res. Veter.-Sci. 2007, 83, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, P.; Hunt, A.; Slepetis, R.; Finnerty, K.; Alston, C.; Beermann, D.; Bell, A. Effect of birth weight and postnatal nutrition on neonatal sheep. III. Regulation if energy metabolism. J. Anim. Sci. 2002, 129, 2850–2861. [Google Scholar] [CrossRef]
- Abeni, F.; Federici, C.; Speroni, M.; Petrera, F.; Pisacane, V.; Terzano, G.; Capelletti, M.; Pirlo, G.; Aleandri, R. Body growth, hematological profile, and clinical biochemistry of heifer calves sired by a bull or its clone. Theriogenology 2012, 78, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Ballou, M.; Cobb, C.; Hulbert, L.; Carroll, J. Effects of intravenous Escherichia coli dose on the pathophysiological response of colostrum-fed Jersey calves. Veter.-Immunol. Immunopathol. 2011, 141, 76–83. [Google Scholar] [CrossRef]
- Hammon, H.M.; Schiessler, G.; Nussbaum, A.; Blum, J.W. Feed Intake Patterns, Growth Performance, and Metabolic and Endocrine Traits in Calves Fed Unlimited Amounts of Colostrum and Milk by Automate, Starting in the Neonatal Period. J. Dairy Sci. 2002, 85, 3352–3362. [Google Scholar] [CrossRef]
- Steinhoff-Wagner, J.; Görs, S.; Junghans, P.; Bruckmaier, R.M.; Kanitz, E.; Metges, C.C.; Hammon, H.M. Intestinal Glucose Absorption but Not Endogenous Glucose Production Differs between Colostrum- and Formula-Fed Neonatal Calves. J. Nutr. 2010, 141, 48–55. [Google Scholar] [CrossRef]
- Rauprich, A.B.E.; Hammon, H.M.; Blum, J.W. Influence of feeding different amounts of first colostrum on metabolic, endocrine, and health status and on growth performance in neonatal calves. J. Anim. Sci. 2000, 78, 896–908. [Google Scholar] [CrossRef]
- Hammon, H.M.; Steinhoff-Wagner, J.; Flor, J.; Schönhusen, U.; Metges, C.C. Lactation biology symposium: Role of colostrum and colostrum components on glucose metabolism in neonatal calves. J. Anim. Sci. 2013, 91, 685–695. [Google Scholar] [CrossRef] [Green Version]
Variables | n | Treatment Groups | p | Significance | ||
---|---|---|---|---|---|---|
BB | LEB | C | ||||
± SD | ± SD | ± SD | ||||
Birth BW (kg) | 90 | 47.81 ± 5.21 | 47.63 ± 5.08 | 47.76 ± 4.82 | 0.4642 | |
BW on 56th day (kg) | 90 | 84.72 ± 6.22 | 86.23 ± 5.49 | 82.86 ± 5.35 | 0.0012 ** | 2:3 **, 2:1 *, 3:1 * |
ADG from birth to 56th day (g) | 90 | 369.1 ± 64.0 | 386.6 ± 75.0 | 351.0 ± 85.6 | 0.0012 ** | 2:3 **, 2:1 *, 3:1 * |
Duration of diarrhea (in days) | 90 | 1.69 ± 3.38 | 1.56 ± 3.28 | 1.89 ± 3.49 | 0.1957 | |
Total number of diarrheas | 90 | 0.21 ± 0.37 | 0.18 ± 0.33 | 0.24 ± 0.39 | 0.0725 |
Treatment Groups | ||||||
---|---|---|---|---|---|---|
Bacteria | BB | LEB | C | |||
on 5th Day | on 56th Day | on 5th Day | on 56th Day | on 5th Day | on 56th Day | |
Campylobacter jejuni | + | ++ | + | ++ | + | ++ |
Citrobacter amalonaticus | 0 | + | 0 | 0 | 0 | + |
Citrobacter freundii | + | + | + | 0 | ++ | + |
Citrobacter koseri | + | 0 | 0 | 0 | 0 | + |
Enterobacter kobei | 0 | 0 | 0 | 0 | 0 | + |
Escherichia coli | +++ | +++ | +++ | +++ | +++ | +++ |
Escherichia fergusonii | 0 | 0 | + | 0 | 0 | 0 |
Morganella morganii | ++ | 0 | ++ | 0 | ++ | 0 |
Klebsiella pneumoniae | ++ | + | ++ | + | ++ | + |
Proteus miriabilis | + | 0 | 0 | 0 | + | + |
Providencia stuartii | + | 0 | 0 | 0 | 0 | 0 |
Proteus vulgaris | + | 0 | 0 | 0 | + | 0 |
Attributes | n | Treatment Groups | p | Significance | ||
---|---|---|---|---|---|---|
BB | LEB | C | ||||
Nitrogen excretion in feces on 4th day (g/day) | 90 | 18.55 | 18.79 | 18.63 | 0.089 | NS |
Nitrogen excretion in feces on 21st day (g/day) | 90 | 23.21 | 23.88 | 24.12 | 0.059 | NS |
Urea concentration in blood on 4th day (mmol/L) | 90 | 3.96 | 4.31 | 3.43 | 0.044 | 2:3 * |
Range of urea in blood 21st day (mmol/L) | 90 | 2.97 | 3.27 | 3.12 | 0.092 | NS |
Treatment Groups | |||||||
---|---|---|---|---|---|---|---|
Reference Value Units | BB 4. | LEB 4. | C 4. | BB 21. | LEB 21. | C 21. | |
Hemoglobin | g L−1 (94.6–130.8) | 107.35 | 107.58 | 107.69 | 106.42 | 106.9 | 106.19 |
Hematocrit | L L−1 (0.27–0.37) | 0.22 | 0.25 | 0.24 | 0.23 | 0.27 | 0.25 |
Erythrocytes | T L−1 (5.61–7.75) | 5.3 | 5.21 | 5.01 | 5.36 | 5.65 | 5.48 |
Leukocytes | L L−1 (5.3–12.7) | 6.66 | 6.29 | 6.09 | 8.35 | 8.18 | 8.14 |
Glycemia | mmol L−1 (3.4–6.1) | 6.85 | 7.22 | 7.38 | 6.41 | 6.53 | 6.54 |
Urea | mmol L−1 (5.2–12.7) | 3.96 | 4.31 | 3.43 | 2.97 | 3.27 | 3.12 |
Alkaline phosphatase | μkat L−1 (1.7–3.9) | 5.78 | 5.31 | 5.69 | 4.39 | 4.17 | 4.19 |
Gamma-glutamyl transferase | μkat L−1 (0.67–8.29) | 15.06 | 14.9 | 14.67 | 0.69 | 0.71 | 0.74 |
Total protein | g L−1 (51.9–67.3) | 66.41 | 67.04 | 66.43 | 66.17 | 66.23 | 66.06 |
Cholesterol | mmol L−1 (2.6–4.6) | 1.92 | 2.16 | 2.15 | 2.97 | 2.24 | 2.43 |
Zinc | mg L−1 (5.97–18.86) | 28.78 | 29.02 | 29.08 | 24.5 | 24.75 | 23.9 |
Copper | mg L−1 (5.97–18.86) | 13.93 | 13,72 | 13.55 | 14.98 | 15.08 | 15.05 |
Phosphorus | mmol L−1 (2.39–2.79) | 3.00 | 3.2 | 3.2 | 3.33 | 3.49 | 3.39 |
Calcium | mmol L−1 (2.48–3.0) | 3.16 | 3.10 | 3.14 | 2.94 | 2.8 | 2.91 |
Magnesium | mmol L−1 (0.72–0.94) | 0.8 | 0.8 | 0.8 | 0.86 | 0.85 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zábranský, L.; Poborská, A.; Gálik, B.; Šoch, M.; Brož, P.; Kantor, M.; Kernerová, N.; Řezáč, I.; Rolinec, M.; Hanušovský, O.; et al. Influence of Probiotic Strains Bifidobacterium, Lactobacillus, and Enterococcus on the Health Status and Weight Gain of Calves, and the Utilization of Nitrogenous Compounds. Antibiotics 2022, 11, 1273. https://doi.org/10.3390/antibiotics11091273
Zábranský L, Poborská A, Gálik B, Šoch M, Brož P, Kantor M, Kernerová N, Řezáč I, Rolinec M, Hanušovský O, et al. Influence of Probiotic Strains Bifidobacterium, Lactobacillus, and Enterococcus on the Health Status and Weight Gain of Calves, and the Utilization of Nitrogenous Compounds. Antibiotics. 2022; 11(9):1273. https://doi.org/10.3390/antibiotics11091273
Chicago/Turabian StyleZábranský, Luboš, Anna Poborská, Branislav Gálik, Miloslav Šoch, Petr Brož, Martin Kantor, Naděžda Kernerová, Ivan Řezáč, Michal Rolinec, Ondrej Hanušovský, and et al. 2022. "Influence of Probiotic Strains Bifidobacterium, Lactobacillus, and Enterococcus on the Health Status and Weight Gain of Calves, and the Utilization of Nitrogenous Compounds" Antibiotics 11, no. 9: 1273. https://doi.org/10.3390/antibiotics11091273
APA StyleZábranský, L., Poborská, A., Gálik, B., Šoch, M., Brož, P., Kantor, M., Kernerová, N., Řezáč, I., Rolinec, M., Hanušovský, O., Strnad, L., & Havrdová, N. (2022). Influence of Probiotic Strains Bifidobacterium, Lactobacillus, and Enterococcus on the Health Status and Weight Gain of Calves, and the Utilization of Nitrogenous Compounds. Antibiotics, 11(9), 1273. https://doi.org/10.3390/antibiotics11091273