Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases
Abstract
:1. Introduction
2. Antibacterial Resistance
2.1. Bacterial Efflux Pumps
2.2. Bacterial Efflux Pump Inhibitors (EPIs)
2.2.1. Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)
2.2.2. Tricyclic Antidepressants (TCA)
2.2.3. Phenothiazines
2.3. Potential Risks: Dysbiosis and Antibiotic Resistance
3. Anticancer Activity of SSRIs, TCAs, and Phenothiazines
3.1. Modulation of Signal Pathways
3.2. Effects on Cellular Metabolism
3.3. Ca2+ Overload
3.4. Drug Efflux Pumps in Cancer
3.5. Targeting Efflux Pumps in Cancer with SSRIs, TCAs, and Phenothiazines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashburn, T.T.; Thor, K.B. Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Dinić, J.; Efferth, T.; García-Sosa, A.T.; Grahovac, J.; Padrón, J.M.; Pajeva, I.; Rizzolio, F.; Saponara, S.; Spengler, G.; Tsakovska, I. Repurposing Old Drugs to Fight Multidrug Resistant Cancers. Drug Resist. Update 2020, 52, 100713. [Google Scholar] [CrossRef] [PubMed]
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug Repurposing: A Promising Tool to Accelerate the Drug Discovery Process. Drug Discov. Today 2019, 24, 2076–2085. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The Challenge of Drug Resistance in Cancer Treatment: A Current Overview. Clin. Exp. Metastasis 2018, 35, 309–318. [Google Scholar] [CrossRef]
- Reygaert, W.C. Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, USA An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Alav, I.; Sutton, J.M.; Rahman, K.M. Role of Bacterial Efflux Pumps in Biofilm Formation. J. Antimicrob. Chemother. 2018, 73, 2003–2020. [Google Scholar] [CrossRef]
- Fletcher, J.I.; Haber, M.; Henderson, M.J.; Norris, M.D. ABC Transporters in Cancer: More than Just Drug Efflux Pumps. Nat. Rev. Cancer 2010, 10, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Thekdi, S.M.; Trinidad, A.; Roth, A. Psychopharmacology in Cancer. Curr. Psychiatry Rep. 2015, 17, 529. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, D.; Liu, Z.; Liu, F. Repurposing Psychiatric Drugs as Anti-Cancer Agents. Cancer Lett. 2018, 419, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Golden, S.R.; Rosenstein, D.L.; Belhorn, T.; Blatt, J. Repurposing Psychotropic Agents for Viral Disorders: Beyond Covid. Assay Drug Dev. Technol. 2021, 19, 373–385. [Google Scholar] [CrossRef]
- Caldara, M.; Marmiroli, N. Antimicrobial Properties of Antidepressants and Antipsychotics—Possibilities and Implications. Pharmaceuticals 2021, 14, 915. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug Resistance: An Emerging Crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, K. The Science of Antibiotic Discovery. Cell 2020, 181, 29–45. [Google Scholar] [CrossRef]
- Seukep, A.J.; Mbuntcha, H.G.; Kuete, V.; Chu, Y.; Fan, E.; Guo, M.-Q. What Approaches to Thwart Bacterial Efflux Pumps-Mediated Resistance? Antibiotics 2022, 11, 1287. [Google Scholar] [CrossRef]
- Mahamoud, A.; Chevalier, J.; Alibert-Franco, S.; Kern, W.V.; Pagès, J.-M. Antibiotic Efflux Pumps in Gram-Negative Bacteria: The Inhibitor Response Strategy. J. Antimicrob. Chemother. 2007, 59, 1223–1229. [Google Scholar] [CrossRef]
- Rangel-Vega, A.; Bernstein, L.R.; Mandujano-Tinoco, E.A.; García-Contreras, S.J.; García-Contreras, R. Drug Repurposing as an Alternative for the Treatment of Recalcitrant Bacterial Infections. Front. Microbiol. 2015, 6, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spengler, G.; Kincses, A.; Gajdács, M.; Amaral, L. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules 2017, 22, 468. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Bellido, J.L.; Munoz-Criado, S.; Garcìa-Rodrìguez, J.A. Antimicrobial Activity of Psychotropic Drugs. Int. J. Antimicrob. Agents 2000, 14, 177–180. [Google Scholar] [CrossRef]
- Kaatz, G. Phenylpiperidine Selective Serotonin Reuptake Inhibitors Interfere with Multidrug Efflux Pump Activity in Staphylococcus Aureus. Int. J. Antimicrob. Agents 2003, 22, 254–261. [Google Scholar] [CrossRef]
- German, N.; Kaatz, G.W.; Kerns, R.J. Synthesis and Evaluation of PSSRI-Based Inhibitors of Staphylococcus Aureus Multidrug Efflux Pumps. Bioorg. Med. Chem. Lett. 2008, 18, 1368–1373. [Google Scholar] [CrossRef]
- Bohnert, J.A.; Szymaniak-Vits, M.; Schuster, S.; Kern, W.V. Efflux Inhibition by Selective Serotonin Reuptake Inhibitors in Escherichia Coli. J. Antimicrob. Chemother. 2011, 66, 2057–2060. [Google Scholar] [CrossRef] [Green Version]
- Nzakizwanayo, J.; Scavone, P.; Jamshidi, S.; Hawthorne, J.A.; Pelling, H.; Dedi, C.; Salvage, J.P.; Hind, C.K.; Guppy, F.M.; Barnes, L.M.; et al. Fluoxetine and Thioridazine Inhibit Efflux and Attenuate Crystalline Biofilm Formation by Proteus Mirabilis. Sci. Rep. 2017, 7, 12222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, A.; Fazal, S.; Jawad, A.; Arif, K.; Farhat, U.; Abdul, S.; Nawazish-i-Husain, S.; Ihsan, U.; Sajid, H. Citalopram and venlafaxine differentially augments antimicrobial properties of antibiotics. Acta Pol. Pharm. 2015, 72, 1269–1278. [Google Scholar]
- Kalaycı, S.; Demirci, S.; Sahin, F. Antimicrobial Properties of Various Psychotropic Drugs Against Broad Range Microorganisms. Curr. Psychopharmacol. 2015, 3, 195–202. [Google Scholar] [CrossRef]
- Cussotto, S.; Strain, C.R.; Fouhy, F.; Strain, R.G.; Peterson, V.L.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Differential Effects of Psychotropic Drugs on Microbiome Composition and Gastrointestinal Function. Psychopharmacology 2019, 236, 1671–1685. [Google Scholar] [CrossRef]
- Shi, D.; Hao, H.; Wei, Z.; Yang, D.; Yin, J.; Li, H.; Chen, Z.; Yang, Z.; Chen, T.; Zhou, S.; et al. Combined Exposure to Non-Antibiotic Pharmaceutics and Antibiotics in the Gut Synergistically Promote the Development of Multi-Drug-Resistance in Escherichia Coli. Gut Microbes 2022, 14, 2018901. [Google Scholar] [CrossRef]
- Bailey, A.M.; Paulsen, I.T.; Piddock, L.J.V. RamA Confers Multidrug Resistance in Salmonella Enterica via Increased Expression of AcrB, Which Is Inhibited by Chlorpromazine. Antimicrob. Agents Chemother. 2008, 52, 3604–3611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimsey, E.M.; Fais, C.; Marshall, R.L.; Ricci, V.; Ciusa, M.L.; Stone, J.W.; Ivens, A.; Malloci, G.; Ruggerone, P.; Vargiu, A.V.; et al. Chlorpromazine and Amitriptyline Are Substrates and Inhibitors of the AcrB Multidrug Efflux Pump. mBio 2020, 11, e00465-20. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, O. The In-Vitro Antimicrobial Effect of Non-Antibiotics and Putative Inhibitors of Efflux Pumps on Pseudomonas Aeruginosa and Staphylococcus Aureus. Int. J. Antimicrob. Agents 2003, 22, 262–264. [Google Scholar] [CrossRef]
- Spengler, G.; Molnar, A.; Schelz, Z.; Amaral, L.; Sharples, D.; Molnar, J. The Mechanism of Plasmid Curing in Bacteria. Curr. Drug Targets 2006, 7, 823–841. [Google Scholar] [CrossRef]
- Grimsey, E.M.; Piddock, L.J.V. Do Phenothiazines Possess Antimicrobial and Efflux Inhibitory Properties? FEMS Microbiol. Rev. 2019, 43, 577–590. [Google Scholar] [CrossRef]
- Adkin, P.; Hitchcock, A.; Smith, L.J.; Walsh, S.E. Priming with Biocides: A Pathway to Antibiotic Resistance? J. Appl. Microbiol. 2022, 133, 830–841. [Google Scholar] [CrossRef]
- Kaatz, G.W.; Moudgal, V.V.; Seo, S.M.; Kristiansen, J.E. Phenothiazines and Thioxanthenes Inhibit Multidrug Efflux Pump Activity in Staphylococcus Aureus. Antimicrob. Agents Chemother. 2003, 47, 719–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristiansen, M. Phenothiazines Alter Resistance of Methicillin-Resistant Strains of Staphylococcus Aureus (MRSA) to Oxacillin in Vitro. Int. J. Antimicrob. Agents 2003, 22, 250–253. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Tan, T.M.C.; Ong, Y.M.; Chua, K.L. BpeAB-OprB, a Multidrug Efflux Pump in Burkholderia Pseudomallei. Antimicrob. Agents Chemother. 2004, 48, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.Y.; Ong, Y.M.; Chua, K.L. Synergistic Interaction between Phenothiazines and Antimicrobial Agents against Burkholderia Pseudomallei. Antimicrob. Agents Chemother. 2007, 51, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Wagner, D.; Viveiros, M.; Sampaio, D.; Couto, I.; Vavra, M.; Kern, W.V.; Amaral, L. Thioridazine and Chlorpromazine Inhibition of Ethidium Bromide Efflux in Mycobacterium Avium and Mycobacterium Smegmatis. J. Antimicrob. Chemother. 2008, 61, 1076–1082. [Google Scholar] [CrossRef]
- Boshoff, H.I.M.; Myers, T.G.; Copp, B.R.; McNeil, M.R.; Wilson, M.A.; Barry, C.E. The Transcriptional Responses of Mycobacterium Tuberculosis to Inhibitors of Metabolism. J. Biol. Chem. 2004, 279, 40174–40184. [Google Scholar] [CrossRef] [Green Version]
- Dutta, N.K.; Mehra, S.; Kaushal, D. A Mycobacterium Tuberculosis Sigma Factor Network Responds to Cell-Envelope Damage by the Promising Anti-Mycobacterial Thioridazine. PLoS ONE 2010, 5, e10069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCusker, M.P.; Ferreira, D.A.; Cooney, D.; Alves, B.M.; Fanning, S.; Pagès, J.-M.; Martins, M.; Davin-Regli, A. Modulation of Antimicrobial Resistance in Clinical Isolates of Enterobacter Aerogenes: A Strategy Combining Antibiotics and Chemosensitisers. J. Glob. Antimicrob. Resist. 2019, 16, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Nové, M.; Kincses, A.; Molnár, J.; Amaral, L.; Spengler, G. The Role of Efflux Pumps and Environmental PH in Bacterial Multidrug Resistance. In Vivo 2020, 34, 65–71. [Google Scholar] [CrossRef]
- Sidrim, J.J.C.; Vasconcelos, D.C.; Riello, G.B.; Guedes, G.M.d.M.; Serpa, R.; Bandeira, T.d.J.P.G.; Monteiro, A.J.; Cordeiro, R.d.A.; Castelo-Branco, D.d.S.C.M.; Rocha, M.F.G.; et al. Promethazine Improves Antibiotic Efficacy and Disrupts Biofilms of Burkholderia Pseudomallei. Biofouling 2017, 33, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Sjöstedt, P.; Enander, J.; Isung, J. Serotonin Reuptake Inhibitors and the Gut Microbiome: Significance of the Gut Microbiome in Relation to Mechanism of Action, Treatment Response, Side Effects, and Tachyphylaxis. Front. Psychiatry 2021, 12, 682868. [Google Scholar] [CrossRef]
- McGovern, A.S.; Hamlin, A.S.; Winter, G. A Review of the Antimicrobial Side of Antidepressants and Its Putative Implications on the Gut Microbiome. Aust. N. Zeal. J. Psychiatry 2019, 53, 1151–1166. [Google Scholar] [CrossRef]
- Crane, J.K.; Salehi, M.; Alvarado, C.L. Psychoactive Drugs Induce the SOS Response and Shiga Toxin Production in Escherichia Coli. Toxins 2021, 13, 437. [Google Scholar] [CrossRef]
- Vasskog, T.; Anderssen, T.; Pedersen-Bjergaard, S.; Kallenborn, R.; Jensen, E. Occurrence of Selective Serotonin Reuptake Inhibitors in Sewage and Receiving Waters at Spitsbergen and in Norway. J. Chromatogr. A 2008, 1185, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Arnnok, P.; Singh, R.R.; Burakham, R.; Pérez-Fuentetaja, A.; Aga, D.S. Selective Uptake and Bioaccumulation of Antidepressants in Fish from Effluent-Impacted Niagara River. Environ. Sci. Technol. 2017, 51, 10652–10662. [Google Scholar] [CrossRef]
- Ahmadian, E.; Eftekhari, A.; Babaei, H.; Nayebi, A.M.; Eghbal, M.A. Anti-Cancer Effects of Citalopram on Hepatocellular Carcinoma Cells Occur via Cytochrome C Release and the Activation of NF-κB. Anticancer Agents Med. Chem. 2017, 17, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Yuan, I.; Horng, C.; Chen, V.; Chen, C.; Chen, L.; Hsu, T.; Tzang, B. Escitalopram Oxalate Inhibits Proliferation and Migration and Induces Apoptosis in Non-Small Cell Lung Cancer Cells. Oncol. Lett. 2017, 15, 3376–3382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serafeim, A.; Holder, M.J.; Grafton, G.; Chamba, A.; Drayson, M.T.; Luong, Q.T.; Bunce, C.M.; Gregory, C.D.; Barnes, N.M.; Gordon, J. Selective Serotonin Reuptake Inhibitors Directly Signal for Apoptosis in Biopsy-like Burkitt Lymphoma Cells. Blood 2003, 101, 3212–3219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.-Y.; Lin, S.-S.; Hsu, F.-T.; Chung, J.-G. Fluoxetine Inhibits DNA Repair and NF-ĸB-Modulated Metastatic Potential in Non-Small Cell Lung Cancer. Anticancer Res. 2018, 38, 5201–5210. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Kim, Y.J.; Jang, E.R.; Kim, W.; Myung, S.C. Fluoxetine Induces Apoptosis in Ovarian Carcinoma Cell Line OVCAR-3 Through Reactive Oxygen Species-Dependent Activation of Nuclear Factor-κB. Basic Clin. Pharmacol. Toxicol. 2009, 106, 446–453. [Google Scholar] [CrossRef]
- Shao, S.; Zhuang, X.; Zhang, L.; Qiao, T. Antidepressants Fluoxetine Mediates Endoplasmic Reticulum Stress and Autophagy of Non–Small Cell Lung Cancer Cells Through the ATF4-AKT-MTOR Signaling Pathway. Front. Pharmacol. 2022, 13, 904701. [Google Scholar] [CrossRef]
- Kannen, V.; Garcia, S.B.; Silva, W.A.; Gasser, M.; Mönch, R.; Alho, E.J.L.; Heinsen, H.; Scholz, C.-J.; Friedrich, M.; Heinze, K.G.; et al. Oncostatic Effects of Fluoxetine in Experimental Colon Cancer Models. Cell. Signal. 2015, 27, 1781–1788. [Google Scholar] [CrossRef]
- Charles, E.; Hammadi, M.; Kischel, P.; Delcroix, V.; Demaurex, N.; Castelbou, C.; Vacher, A.-M.; Devin, A.; Ducret, T.; Nunes, P.; et al. The Antidepressant Fluoxetine Induces Necrosis by Energy Depletion and Mitochondrial Calcium Overload. Oncotarget 2017, 8, 3181–3196. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.-J.; Jung, S.K.; Vo, T.T.L.; Jeong, C.-H. Anticancer Activity of Paroxetine in Human Colon Cancer Cells: Involvement of MET and ERBB3. J. Cell Mol. Med. 2019, 23, 1106–1115. [Google Scholar] [CrossRef]
- Lin, C.-J.; Robert, F.; Sukarieh, R.; Michnick, S.; Pelletier, J. The Antidepressant Sertraline Inhibits Translation Initiation by Curtailing Mammalian Target of Rapamycin Signaling. Cancer Res. 2010, 70, 3199–3208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, C.; Peng, R.-K.; Guo, C.-L.; Li, A.; Yang, X.-M.; Zeng, R.; Li, Y.-L.; Gu, J.; Ouyang, Q. Discovery of Sertraline and Its Derivatives Able to Combat Drug-Resistant Gastric Cancer Cell via Inducing Apoptosis. Bioorg. Med. Chem. Lett. 2021, 41, 127997. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.K.; Lefkove, B.; Chen, L.B.; Govindarajan, B.; Carracedo, A.; Velasco, G.; Carrillo, C.O.; Bhandarkar, S.S.; Owens, M.J.; Mechta-Grigoriou, F.; et al. The Antidepressant Sertraline Downregulates Akt and Has Activity against Melanoma Cells. Pigment. Cell Melanoma Res. 2008, 21, 451–456. [Google Scholar] [CrossRef]
- Huang, J.-K.; Chang, H.-T.; Chou, C.-T.; Shu, S.-S.; Kuo, C.-C.; Tsai, J.-Y.; Liao, W.-C.; Wang, J.-L.; Lin, K.-L.; Lu, Y.-C.; et al. The Mechanism of Sertraline-Induced [Ca2+]i Rise in Human PC3 Prostate Cancer Cells. Basic Clin. Pharmacol. Toxicol. 2011, 109, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Chinnapaka, S.; Bakthavachalam, V.; Munirathinam, G. Repurposing Antidepressant Sertraline as a Pharmacological Drug to Target Prostate Cancer Stem Cells: Dual Activation of Apoptosis and Autophagy Signaling by Deregulating Redox Balance. Am. J. Cancer Res. 2020, 10, 2043–2065. [Google Scholar] [PubMed]
- Lin, K.-L.; Chi, C.-C.; Lu, T.; Tseng, L.-L.; Wang, J.-L.; Lu, Y.-C.; Jan, C.-R. Effect of Sertraline on [Ca 2+]i and Viability of Human MG63 Osteosarcoma Cells. Drug Chem. Toxicol. 2013, 36, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Wajdman, A.M.; Ludyga, T.; Machnik, G.; Gołyszny, M.; Obuchowicz, E. Tricyclic Antidepressants Modulate Stressed Mitochondria in Glioblastoma Multiforme Cells. Cancer Control 2018, 25, 107327481879859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, S.C.; Pilkington, G.J. The in Vitro Effects of Tricyclic Drugs and Dexamethasone on Cellular Respiration of Malignant Glioma. Anticancer Res. 2010, 30, 391–397. [Google Scholar]
- Parker, K.A.; Glaysher, S.; Hurren, J.; Knight, L.A.; McCormick, D.; Suovouri, A.; Amberger-Murphy, V.; Pilkington, G.J.; Cree, I.A. The Effect of Tricyclic Antidepressants on Cutaneous Melanoma Cell Lines and Primary Cell Cultures. Anti-Cancer Drugs 2012, 23, 65–69. [Google Scholar] [CrossRef]
- Yueh, P.-F.; Lee, Y.-H.; Chiang, I.-T.; Chen, W.-T.; Lan, K.-L.; Chen, C.-H.; Hsu, F.-T. Suppression of EGFR/PKC-δ/NF-ΚB Signaling Associated with Imipramine-Inhibited Progression of Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 735183. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.-H.; Kim, S.H.; Kim, Y.; Kim, Y.S.; Lim, Y.; Lee, Y.H.; Shin, S.Y. The Tricyclic Antidepressant Imipramine Induces Autophagic Cell Death in U-87MG Glioma Cells. Biochem. Biophys. Res. Commun. 2011, 413, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.Y.; Park, J.; Kim, Y.T.; Kim, M.J. Imipramine Inhibits Migration and Invasion in Metastatic Castration-Resistant Prostate Cancer PC-3 Cells via AKT-Mediated NF-ΚB Signaling Pathway. Molecules 2020, 25, 4619. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.K.; Kim, S.-J. Desipramine Induces Apoptosis in Hepatocellular Carcinoma Cells. Oncol. Rep. 2017, 38, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Jan, C.-R.; Lu, Y.-C.; Tseng, L.-L.; Jiann, B.-P.; Chang, H.-T.; Wang, J.-L.; Chen, W.-C.; Huang, J.-K. Effect of the Antidepressant Desipramine on Cytosolic Ca2+ Movement and Proliferation in Human Osteosarcoma Cells. Pharmacology 2003, 69, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Juan, L.; Xia, L.; Wang, Y.; Bao, Y.; Sun, G. Thioridazine Sensitizes Esophageal Carcinoma Cell Lines to Radiotherapy-Induced Apoptosis In Vitro and In Vivo. Med. Sci. Monit. 2016, 22, 2624–2634. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Dong, S.M.; Kim, B.-R.; Park, M.S.; Trink, B.; Byun, H.-J.; Rho, S.B. Thioridazine Induces Apoptosis by Targeting the PI3K/Akt/MTOR Pathway in Cervical and Endometrial Cancer Cells. Apoptosis 2012, 17, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Ma, B.; Zhang, X.; Sun, X.; Han, J.; Wang, Y.; Chu, L.; Xu, H.; Yang, Y. Thioridazine Has Potent Antitumor Effects on Lung Cancer Stem-like Cells. Oncol. Lett. 2017, 13, 1563–1568. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.E.-S.; Morsy, H.; Abdelgwad, M. The Comparative Effect of Nisin and Thioridazine as Potential Anticancer Agents on Hepatocellular Carcinoma. Rep. Biochem. Mol. Biol. 2021, 9, 452–462. [Google Scholar] [CrossRef]
- Min, K.; Seo, B.R.; Bae, Y.C.; Yoo, Y.H.; Kwon, T.K. Antipsychotic Agent Thioridazine Sensitizes Renal Carcinoma Caki Cells to TRAIL-Induced Apoptosis through Reactive Oxygen Species-Mediated Inhibition of Akt Signaling and Downregulation of Mcl-1 and c-FLIP(L). Cell Death Dis. 2014, 5, e1063. [Google Scholar] [CrossRef] [Green Version]
- Yong, M.; Yu, T.; Tian, S.; Liu, S.; Xu, J.; Hu, J.; Hu, L. DR2 Blocker Thioridazine: A Promising Drug for Ovarian Cancer Therapy. Oncol. Lett. 2017, 14, 8171–8177. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, L.; Chen, J.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Zhang, Q.; Xia, Y.; Luo, M. Thioridazine Hydrochloride: An Antipsychotic Agent That Inhibits Tumor Growth and Lung Metastasis in Triple-Negative Breast Cancer via Inducing G0/G1 Arrest and Apoptosis. Cell Cycle 2020, 19, 3521–3533. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Dai, L.; Yu, T. Thioridazine Sensitizes Cisplatin Against Chemoresistant Human Lung and Ovary Cancer Cells. DNA Cell Biol. 2019, 38, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Seervi, M.; Rani, A.; Sharma, A.K.; Santhosh Kumar, T.R. ROS Mediated ER Stress Induces Bax-Bak Dependent and Independent Apoptosis in Response to Thioridazine. Biomed. Pharmacother. 2018, 106, 200–209. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, P.; Liu, P.; Zhou, N.; Zhou, Y.; Wang, Y. Thioridazine Elicits Potent Antitumor Effects in Colorectal Cancer Stem Cells. Oncol. Rep. 2017, 37, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.; Xu, H.; Yang, Y.; Huang, W.; Xiao, J.; Li, M.; Tan, Z.; Ding, Q.; Zhang, L.; Lu, J.; et al. Thioridazine, an Antipsychotic Drug, Elicits Potent Antitumor Effects in Gastric Cancer. Oncol. Rep. 2014, 31, 2107–2114. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.-S.; Liang, W.-Z.; Wang, J.-L.; Kuo, C.-C.; Hao, L.-J.; Chou, C.-T.; Jan, C.-R. Exploration of Thioridazine-Induced Ca 2+ Signaling and Non-Ca 2+ -Triggered Cell Death in HepG2 Human Hepatocellular Carcinoma Cells. Chin. J. Physiol. 2020, 63, 187. [Google Scholar] [CrossRef] [PubMed]
- Moraes, V.W.R.; Santos, V.M.; Suarez, E.R.; Ferraz, L.S.; Lopes, R.d.M.; Mognol, G.P.; Campeiro, J.D.; Machado-Neto, J.A.; Nascimento, F.D.; Hayashi, M.A.F.; et al. Targeting Ca2+ and Mitochondrial Homeostasis by Antipsychotic Thioridazine in Leukemia Cells. Life 2022, 12, 1477. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Lee, K.S.; Choi, Y.-K.; Lim, H.J.; Lee, H.G.; Lim, Y.; Lee, Y.H. The Antipsychotic Agent Chlorpromazine Induces Autophagic Cell Death by Inhibiting the Akt/MTOR Pathway in Human U-87MG Glioma Cells. Carcinogenesis 2013, 34, 2080–2089. [Google Scholar] [CrossRef] [Green Version]
- Jhou, A.-J.; Chang, H.-C.; Hung, C.-C.; Lin, H.-C.; Lee, Y.-C.; Liu, W.; Han, K.-F.; Lai, Y.-W.; Lin, M.-Y.; Lee, C.-H. Chlorpromazine, an Antipsychotic Agent, Induces G2/M Phase Arrest and Apoptosis via Regulation of the PI3K/AKT/MTOR-Mediated Autophagy Pathways in Human Oral Cancer. Biochem. Pharmacol. 2021, 184, 114403. [Google Scholar] [CrossRef]
- Tan, X.; Gong, L.; Li, X.; Zhang, X.; Sun, J.; Luo, X.; Wang, Q.; Chen, J.; Xie, L.; Han, S. Promethazine Inhibits Proliferation and Promotes Apoptosis in Colorectal Cancer Cells by Suppressing the PI3K/AKT Pathway. Biomed. Pharmacother. 2021, 143, 112174. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, H.C.D.; Colturato-Kido, C.; Ferraz, L.S.; Costa, C.A.; Moraes, V.W.R.; Paredes-Gamero, E.J.; Tersariol, I.L.S.; Rodrigues, T. AMPK Activation Induced by Promethazine Increases NOXA Expression and Beclin-1 Phosphorylation and Drives Autophagy-Associated Apoptosis in Chronic Myeloid Leukemia. Chem. Biol. Interact. 2020, 315, 108888. [Google Scholar] [CrossRef] [PubMed]
- Goyette, M.-A.; Cusseddu, R.; Elkholi, I.; Abu-Thuraia, A.; El-Hachem, N.; Haibe-Kains, B.; Gratton, J.-P.; Côté, J.-F. AXL Knockdown Gene Signature Reveals a Drug Repurposing Opportunity for a Class of Antipsychotics to Reduce Growth and Metastasis of Triple-Negative Breast Cancer. Oncotarget 2019, 10, 2055–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.H.; Yang, Y.R.; Lee, S.K.; Kim, S.-H.; Kim, Y.-H.; Cha, J.-Y.; Oh, S.-W.; Ha, J.-R.; Ryu, S.H.; Suh, P.-G. Potential Inhibition of PDK1/Akt Signaling by Phenothiazines Suppresses Cancer Cell Proliferation and Survival. Ann. N. Y. Acad. Sci. 2008, 1138, 393–403. [Google Scholar] [CrossRef]
- Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; et al. Role of the NFκB-Signaling Pathway in Cancer. Onco Targets Ther. 2018, 11, 2063–2073. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Bode, A.M.; Dong, Z.; Lee, M.-H. AKT as a Therapeutic Target for Cancer. Cancer Res. 2019, 79, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Hua, H.; Kong, Q.; Zhang, H.; Wang, J.; Luo, T.; Jiang, Y. Targeting MTOR for Cancer Therapy. J. Hematol. Oncol. 2019, 12, 71. [Google Scholar] [CrossRef]
- Koziol, M.J.; Gurdon, J.B. TCTP in Development and Cancer. Biochem. Res. Int. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Boia-Ferreira, M.; Basílio, A.B.; Hamasaki, A.E.; Matsubara, F.H.; Appel, M.H.; da Costa, C.R.V.; Amson, R.; Telerman, A.; Chaim, O.M.; Veiga, S.S.; et al. TCTP as a Therapeutic Target in Melanoma Treatment. Br. J. Cancer 2017, 117, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Amson, R.; Auclair, C.; André, F.; Karp, J.; Telerman, A. Targeting TCTP with sertraline and thioridazine in cancer treatment. In TCTP/tpt1—Remodeling Signaling from Stem Cell to Disease; Results and Problems in Cell Differentiation; Telerman, A., Amson, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 64, pp. 283–290. ISBN 978-3-319-67590-9. [Google Scholar]
- Duarte, D.; Rêma, A.; Amorim, I.; Vale, N. Drug Combinations: A New Strategy to Extend Drug Repurposing and Epithelial-Mesenchymal Transition in Breast and Colon Cancer Cells. Biomolecules 2022, 12, 190. [Google Scholar] [CrossRef]
- Evason, K.J.; Francisco, M.T.; Juric, V.; Balakrishnan, S.; Lopez Pazmino, M.d.P.; Gordan, J.D.; Kakar, S.; Spitsbergen, J.; Goga, A.; Stainier, D.Y.R. Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish. PLoS Genet. 2015, 11, e1005305. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-W.; Liang, Y.-H.; Kuo, Y.-L.; Chuu, C.-P.; Lin, C.-Y.; Lee, M.-H.; Wu, A.T.H.; Yeh, C.-T.; Chen, E.I.-T.; Whang-Peng, J.; et al. Identification of Thioridazine, an Antipsychotic Drug, as an Antiglioblastoma and Anticancer Stem Cell Agent Using Public Gene Expression Data. Cell Death Dis. 2015, 6, e1753. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Khan, A.; Tang, J.; Armando, A.M.; Wu, S.; Zhang, W.; Gimple, R.C.; Reed, A.; Jing, H.; Koga, T.; et al. Targeting Glioblastoma Signaling and Metabolism with a Re-Purposed Brain-Penetrant Drug. Cell Rep. 2021, 37, 109957. [Google Scholar] [CrossRef]
- Shen, S.; Faouzi, S.; Souquere, S.; Roy, S.; Routier, E.; Libenciuc, C.; André, F.; Pierron, G.; Scoazec, J.-Y.; Robert, C. Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation. Cell Rep. 2020, 33, 108421. [Google Scholar] [CrossRef] [PubMed]
- Kosić, M.; Nešić, Z.; Glumac, S.; Vasić, M.; Pajović, V.; Savić, B.; Japundžić-Žigon, N. Paroxetine Mitigates Cardiac Remodelling by Doxorubicin and Increases Survival. Biomed. Pharmacother. 2022, 145, 112411. [Google Scholar] [CrossRef] [PubMed]
- Bruce, J.I.E.; James, A.D. Targeting the Calcium Signalling Machinery in Cancer. Cancers 2020, 12, 2351. [Google Scholar] [CrossRef]
- Vasiliou, V.; Vasiliou, K.; Nebert, D.W. Human ATP-Binding Cassette (ABC) Transporter Family. Hum. Genom. 2008, 3, 281. [Google Scholar] [CrossRef]
- Zu, Y.; Yang, Z.; Tang, S.; Han, Y.; Ma, J. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells. Molecules 2014, 19, 13061–13075. [Google Scholar] [CrossRef] [PubMed]
- Nanayakkara, A.K.; Follit, C.A.; Chen, G.; Williams, N.S.; Vogel, P.D.; Wise, J.G. Targeted Inhibitors of P-Glycoprotein Increase Chemotherapeutic-Induced Mortality of Multidrug Resistant Tumor Cells. Sci. Rep. 2018, 8, 967. [Google Scholar] [CrossRef] [Green Version]
- Dean, M.; Rzhetsky, A.; Allikmets, R. The Human ATP-Binding Cassette (ABC) Transporter Superfamily. Genome Res. 2001, 11, 1156–1166. [Google Scholar] [CrossRef]
- Mohammad, I.S.; He, W.; Yin, L. Understanding of Human ATP Binding Cassette Superfamily and Novel Multidrug Resistance Modulators to Overcome MDR. Biomed. Pharmacother. 2018, 100, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Dean, M.; Fojo, T.; Bates, S. Tumour Stem Cells and Drug Resistance. Nat. Rev. Cancer 2005, 5, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Katayama, K.; Noguchi, K.; Sugimoto, Y. Regulations of P-Glycoprotein/ABCB1/ MDR1 in Human Cancer Cells. New J. Sci. 2014, 2014, 476974. [Google Scholar] [CrossRef] [Green Version]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of Cancer Metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [Green Version]
- Liou, G.-Y.; Storz, P. Reactive Oxygen Species in Cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Lu, J.; Miao, Z.; Lin, L.; Ding, J. Reactive Oxygen Species Contribute to Cell Killing and P-Glycoprotein Downregulation by Salvicine in Multidrug Resistant K562/A02 Cells. Cancer Biol. Ther. 2007, 6, 1794–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, F.E.; Dinan, T.G.; Griffin, B.T.; Cryan, J.F. Interactions between Antidepressants and P-Glycoprotein at the Blood-Brain Barrier: Clinical Significance of in Vitro and in Vivo Findings: Antidepressant-P-Gp Interactions at the BBB. Br. J. Pharmacol. 2012, 165, 289–312. [Google Scholar] [CrossRef] [Green Version]
- El Ela, A.A.; Härtter, S.; Schmitt, U.; Hiemke, C.; Spahn-Langguth, H.; Langguth, P. Identification of P-Glycoprotein Substrates and Inhibitors among Psychoactive Compounds—Implications for Pharmacokinetics of Selected Substrates. J. Pharm. Pharmacol. 2010, 56, 967–975. [Google Scholar] [CrossRef]
- Mishra, R.; Sareen, S.; Sharma, B.; Goyal, S.; Kaur, G.; Bhardwaj, S.; Siddiqui, A.A.; Husain, A.; Singla, R.K.; Rashid, M.; et al. Phenothiazines and Related Drugs as Multi Drug Resistance Reversal Agents in Cancer Chemotherapy Mediated by P-Glycoprotein. Curr. Cancer Ther. Rev. 2017, 13, 28–42. [Google Scholar] [CrossRef]
- Peer, D.; Dekel, Y.; Melikhov, D.; Margalit, R. Fluoxetine Inhibits Multidrug Resistance Extrusion Pumps and Enhances Responses to Chemotherapy in Syngeneic and in Human Xenograft Mouse Tumor Models. Cancer Res. 2004, 64, 7562–7569. [Google Scholar] [CrossRef] [Green Version]
- Argov, M.; Kashi, R.; Peer, D.; Margalit, R. Treatment of Resistant Human Colon Cancer Xenografts by a Fluoxetine–Doxorubicin Combination Enhances Therapeutic Responses Comparable to an Aggressive Bevacizumab Regimen. Cancer Lett. 2009, 274, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, T.; Duan, J.; Xiao, Z.; Li, G.; Xu, F. Inhibition of P-Glycoprotein and Glutathione S-Transferase-Pi Mediated Resistance by Fluoxetine in MCF-7/ADM Cells. Biomed. Pharmacother. 2013, 67, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Nunes, M.; Ricardo, S.; Vale, N. Combination of Antimalarial and CNS Drugs with Antineoplastic Agents in MCF-7 Breast and HT-29 Colon Cancer Cells: Biosafety Evaluation and Mechanism of Action. Biomolecules 2022, 12, 1490. [Google Scholar] [CrossRef] [PubMed]
- Drinberg, V.; Bitcover, R.; Rajchenbach, W.; Peer, D. Modulating Cancer Multidrug Resistance by Sertraline in Combination with a Nanomedicine. Cancer Lett. 2014, 354, 290–298. [Google Scholar] [CrossRef]
- Choi, A.-R.; Kim, J.-H.; Yoon, S. Thioridazine Specifically Sensitizes Drug-Resistant Cancer Cells through Highly Increase in Apoptosis and P-gp Inhibition. Tumor Biol. 2014, 35, 9831–9838. [Google Scholar] [CrossRef]
- Salvo, F.; Pariente, A.; Shakir, S.; Robinson, P.; Arnaud, M.; Thomas, S.; Raschi, E.; Fourrier-Réglat, A.; Moore, N.; Sturkenboom, M.; et al. Sudden Cardiac and Sudden Unexpected Death Related to Antipsychotics: A Meta-Analysis of Observational Studies. Clin. Pharmacol. Ther. 2016, 99, 306–314. [Google Scholar] [CrossRef]
- WHO. World Health Organization Model List of Essential Medicines—22nd List; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Cheon, J.H.; Lee, B.M.; Kim, H.S.; Yoon, S. Highly Halaven-Resistant KBV20C Cancer Cells Can Be Sensitized by Co-Treatment with Fluphenazine. Anticancer Res. 2016, 36, 5867–5874. [Google Scholar] [CrossRef] [Green Version]
- Środa-Pomianek, K.; Michalak, K.; Palko-Łabuz, A.; Uryga, A.; Świątek, P.; Majkowski, M.; Wesołowska, O. The Combined Use of Phenothiazines and Statins Strongly Affects Doxorubicin-Resistance, Apoptosis, and Cox-2 Activity in Colon Cancer Cells. Int. J. Mol. Sci. 2019, 20, 955. [Google Scholar] [CrossRef] [Green Version]
- Kars, M.D.; İşeri, O.D.; Gunduz, U.; Molnar, J. Reversal of Multidrug Resistance by Synthetic and Natural Compounds in Drug-Resistant MCF-7 Cell Lines. Chemotherapy 2008, 54, 194–200. [Google Scholar] [CrossRef]
- Dönmez, Y.; Akhmetova, L.; İşeri, Ö.D.; Kars, M.D.; Gündüz, U. Effect of MDR Modulators Verapamil and Promethazine on Gene Expression Levels of MDR1 and MRP1 in Doxorubicin-Resistant MCF-7 Cells. Cancer Chemother. Pharm. 2011, 67, 823–828. [Google Scholar] [CrossRef]
- WHO. World Mental Health Report: Transforming Mental Health for All; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Moreno-Agostino, D.; Wu, Y.-T.; Daskalopoulou, C.; Hasan, M.T.; Huisman, M.; Prina, M. Global Trends in the Prevalence and Incidence of Depression:A Systematic Review and Meta-Analysis. J. Affect. Disord. 2021, 281, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Bretler, T.; Weisberg, H.; Koren, O.; Neuman, H. The Effects of Antipsychotic Medications on Microbiome and Weight Gain in Children and Adolescents. BMC Med. 2019, 17, 112. [Google Scholar] [CrossRef] [PubMed]
- Munawar, N.; Ahsan, K.; Muhammad, K.; Ahmad, A.; Anwar, M.A.; Shah, I.; Al Ameri, A.K.; Al Mughairbi, F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int. J. Mol. Sci. 2021, 22, 7671. [Google Scholar] [CrossRef] [PubMed]
Compound | Mechanism of Action | Cell Line | Reference |
---|---|---|---|
Citalopram Escitalopram | Modulation of NFκB-signaling, ROS formation | HepG2 hepatocellular carcinoma cell line, A549 and H460 non-small lung cancer cell lines | [53,54] |
Disruption of mitochondrial membrane potential | Burkitt lymphoma cell lines | [55] | |
Fluoxetine | Modulation of NFκB-signaling | CL1-5-F4 human lung adenocarcinoma cell line | [56] |
OVCAR-3 human epithelial ovarian cancer cell line | [57] | ||
Modulation of AKT/mTOR pathway | A549 and H460 non-small lung cancer cell lines | [58] | |
Disruption of mitochondrial membrane potential | HT29 and CaCo-2 human colon adenocarcinoma cell lines, Burkitt lymphoma cell lines | [56,59] | |
Mitochondrial Ca2+-overload | HeLa human cervical carcinoma cell line | [60] | |
Paroxetine | Modulation of AKT-signaling | HCT116 and HT29 human colon adenocarcinoma | [61] |
Disruption of mitochondrial membrane potential | Burkitt lymphoma cell lines | [55] | |
Sertraline | Modulation of mTOR signaling | MCF-7 human breast adenocarcinoma cell line | [62] |
SGC-7901/DDP gastric cancer cell line | [63] | ||
Modulation of AKT signaling | A375 human melanoma cell line | [64] | |
Ca2+-overload, ROS formation | Prostate cancer cell lines | [65,66] | |
MG63 human osteosarcoma cell line | [67] |
Compound | Mechanism of Action | Cell Line | Reference |
---|---|---|---|
Amitryptiline | Modulation of NFκB-signaling | T98G human glioblastoma multiforme cell line | [68] |
Inhibition of mitochondrial respiration | IPSB-18 anaplastic astrocytoma-derived cell line | [69] | |
SK-MEL28, SK-ML2 and patient-derived melanoma cell lines | [70] | ||
Nortryptiline | Inhibition of mitochondrial respiration | SK-MEL28, SK-ML2 and patient-derived melanoma cell lines | [70] |
Imipramine | Modulation of NFκB-signaling | T98G human glioblastoma multiforme cell line | [68] |
CL1-5-F4 human lung adenocarcinoma cell line | [71] | ||
Modulation of AKT/mTOR pathway | U-87MG glioma cells | [72] | |
Modulation of AKT- and NFκB-signaling | PC-3 human prostate cancer cell line | [73] | |
Inhibition of mitochondrial respiration | IPSB-18 anaplastic astrocytoma-derived cell line | [69] | |
Clomipramine | Inhibition of mitochondrial respiration | IPSB-18 anaplastic astrocytoma-derived cell line | [69] |
SK-MEL28, SK-ML2 and patient-derived melanoma cell lines | [70] | ||
Desipramine | Ca2+-overload | Hep3B hepatocellular carcinoma | [74] |
MG63 human osteosarcoma cell line | [75] |
Compound | Mechanism of Action | Cell Line | Reference |
---|---|---|---|
Thioridazine | Modulation of mTOR-signaling | ECA-109 and TE-1 esophageal squamous cell carcinoma | [76] |
Human cervical and endometrial cancer cell lines | [77] | ||
Modulation of AKT-signaling | A549 stem cell-like non-small lung cancer cell lines | [78] | |
HepG2 hepatocellular carcinoma cell line | [79] | ||
Caki human renal carcinoma cell line | [80] | ||
A2780 and SKOV3 human ovarian cancer cell lines | [81] | ||
4T1 and MDA-MB-231 breast cancer cell lines | [82] | ||
Disruption of mitochondrial membrane potential | A549 and A549/DDP human non-small lung cancer cell lines, SKOV3 and SKOV3/DDP ovarian cancer cell lines | [83] | |
HeLa cervical cancer line | [84] | ||
HCT116 human colon cancer cell line | [85] | ||
NCI-N87 and AGS gastric cancer cell lines | [86] | ||
Ca2+-overload | HepG2 hepatocellular carcinoma cell line | [87] | |
K-562 chronic myelogenous leukemia cell | [88] | ||
Chlorpromazine | Modulation of mTOR-signaling | U-87MG human glioma cells | [89] |
HSC-3 and Ca9-22 human oral cancer cells | [90] | ||
Promethazine | Modulation of AKT-signaling | HT29 and SW480 human colorectal carcinoma cell lines | [91] |
K-562 chronic myelogenous leukemia cell | [92] | ||
Fluphenazine | Modulation of mTOR-signaling | MDA-MB-231 human breast cancer cell line | [93] |
Modulation of AKT-signaling | OVCAR-3 ovarian cancer cell line | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rácz, B.; Spengler, G. Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases. Antibiotics 2023, 12, 137. https://doi.org/10.3390/antibiotics12010137
Rácz B, Spengler G. Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases. Antibiotics. 2023; 12(1):137. https://doi.org/10.3390/antibiotics12010137
Chicago/Turabian StyleRácz, Bálint, and Gabriella Spengler. 2023. "Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases" Antibiotics 12, no. 1: 137. https://doi.org/10.3390/antibiotics12010137
APA StyleRácz, B., & Spengler, G. (2023). Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases. Antibiotics, 12(1), 137. https://doi.org/10.3390/antibiotics12010137