Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt
Abstract
:1. Introduction
2. Results
2.1. Resistance Genes and Antibiotic Resistance, SCCmec Elements
2.2. Virulence Factors
2.3. Strain Affiliations
2.4. The SCCmec Element in CC1-MRSA-[V+fus+tir+ccrA/B-1]
3. Discussion
4. Materials and Methods
4.1. Isolates
4.2. PCR for S. aureus/MRSA
4.3. Array Procedures
4.4. Nanopore Sequencing
4.5. Analysis of Previously Published Genome Sequences
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Hiramatsu, K.; Tomasz, A.; de Lencastre, H.; Perreten, V.; Holden, M.T.G.; Coleman, D.C.; Goering, R.; Giffard, P.M.; Skov, R.L.; et al. Guidelines for Reporting Novel mecA Gene Homologues. Antimicrob. Agents Chemother. 2012, 56, 4997–4999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Katayama, Y.; Asada, K.; Mori, N.; Tsutsumimoto, K.; Tiensasitorn, C.; Hiramatsu, K. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1323–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Ma, X.X.; Takeuchi, F.; Okuma, K.; Yuzawa, H.; Hiramatsu, K. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 2004, 48, 2637–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Okuma, K.; Ma, X.X.; Yuzawa, H.; Hiramatsu, K. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: Genomic island SCC. Drug Resist. Updates 2003, 6, 41–52. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Peters, B.M.; Li, L.; Li, B.; Xu, Z.; Shirliff, M.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb. Pathog. 2016, 101, 56–67. [Google Scholar] [CrossRef]
- Queck, S.Y.; Khan, B.A.; Wang, R.; Bach, T.H.; Kretschmer, D.; Chen, L.; Kreiswirth, B.N.; Peschel, A.; Deleo, F.R.; Otto, M. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 2009, 5, e1000533. [Google Scholar] [CrossRef]
- Patot, S.; Imbert, P.; Baude, J.; Martins Simões, P.; Campergue, J.-B.; Louche, A.; Nijland, R.; Bès, M.; Tristan, A.; Laurent, F.; et al. The TIR Homologue Lies near Resistance Genes in Staphylococcus aureus, Coupling Modulation of Virulence and Antimicrobial Susceptibility. PLoS Pathog. 2017, 13, e1006092. [Google Scholar] [CrossRef] [Green Version]
- Naimi, T.S.; LeDell, K.H.; Como-Sabetti, K.; Borchardt, S.M.; Boxrud, D.J.; Etienne, J.; Johnson, S.K.; Vandenesch, F.; Fridkin, S.; O’Boyle, C.; et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol. 2003, 290, 2976–2984. [Google Scholar]
- Boyle-Vavra, S.; Daum, R.S. Community-acquired methicillin-resistant Staphylococcus aureus: The role of Panton-Valentine leukocidin. Lab. Investig. 2007, 87, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Buescher, E.S. Community-acquired methicillin-resistant Staphylococcus aureus in pediatrics. Curr. Opin. Pediatr. 2005, 17, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus-Minnesota and North Dakota. Morb. Mortal Wkly. Rep. 1999, 282, 1123–1125. [Google Scholar]
- Collignon, P.; Gosbell, I.; Vickery, A.; Nimmo, G.; Stylianopoulos, T.; Gottlieb, T. Community-acquired meticillin-resistant Staphylococcus aureus in Australia. Australian Group on Antimicrobial Resistance. Lancet 1998, 352, 145–146. [Google Scholar] [CrossRef]
- Liassine, N.; Auckenthaler, R.; Descombes, M.C.; Bes, M.; Vandenesch, F.; Etienne, J. Community-acquired methicillin-resistant Staphylococcus aureus isolated in Switzerland contains the Panton-Valentine leukocidin or exfoliative toxin genes. J. Clin. Microbiol. 2004, 42, 825–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linde, H.; Wagenlehner, F.; Strommenger, B.; Drubel, I.; Tanzer, J.; Reischl, U.; Raab, U.; Holler, C.; Naber, K.G.; Witte, W.; et al. Healthcare-associated outbreaks and community-acquired infections due to MRSA carrying the Panton-Valentine leucocidin gene in southeastern Germany. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 419–422. [Google Scholar] [CrossRef]
- Ma, X.X.; Ito, T.; Tiensasitorn, C.; Jamklang, M.; Chongtrakool, P.; Boyle-Vavra, S.; Daum, R.S.; Hiramatsu, K. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob. Agents Chemother. 2002, 46, 1147–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaskill, M.L.; Mason, E.O., Jr.; Kaplan, S.L.; Hammerman, W.; Lamberth, L.B.; Hulten, K.G. Increase of the USA300 clone among community-acquired methicillin-susceptible Staphylococcus aureus causing invasive infections. Pediatr. Infect. Dis. J. 2007, 26, 1122–1127. [Google Scholar] [CrossRef]
- Munckhof, W.J.; Schooneveldt, J.; Coombs, G.W.; Hoare, J.; Nimmo, G.R. Emergence of community-acquired methicillin-resistant Staphylococcus aureus (MRSA) infection in Queensland, Australia. Int. J. Infect. Dis. 2003, 7, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.E.; et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: Worldwide emergence. Emerg. Infect. Dis. 2003, 9, 978–984. [Google Scholar] [CrossRef]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef]
- Enany, S.; Yaoita, E.; Yoshida, Y.; Enany, M.; Yamamoto, T. Molecular characterization of Panton-Valentine leukocidin-positive community-acquired methicillin-resistant Staphylococcus aureus isolates in Egypt. Microbiol. Res. 2010, 165, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Mediavilla, J.R.; Chen, L.; Mathema, B.; Kreiswirth, B.N. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr. Opin. Microbiol. 2012, 15, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Coombs, G.; Shore, A.C.; Coleman, D.C.; Akpaka, P.; Borg, M.; Chow, H.; Ip, M.; Jatzwauk, L.; Jonas, D.; et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE 2011, 6, e17936. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karageorgopoulos, D.E.; Leptidis, J.; Korbila, I.P. MRSA in Africa: Filling the global map of antimicrobial resistance. PLoS ONE 2013, 8, e68024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goering, R.V.; Shawar, R.M.; Scangarella, N.E.; O’Hara, F.P.; Amrine-Madsen, H.; West, J.M.; Dalessandro, M.; Becker, J.A.; Walsh, S.L.; Miller, L.A.; et al. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from global clinical trials. J. Clin. Microbiol. 2008, 46, 2842–2847. [Google Scholar] [CrossRef] [Green Version]
- Holden, M.T.G.; Hsu, L.-Y.; Kurt, K.; Weinert, L.A.; Mather, A.E.; Harris, S.R.; Strommenger, B.; Layer, F.; Witte, W.; de Lencastre, H.; et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013, 23, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Rasigade, J.-P.; Laurent, F.; Lina, G.; Meugnier, H.; Bes, M.; Vandenesch, F.; Etienne, J.; Tristan, A. Global Distribution and Evolution of Panton- Valentine Leukocidin-Positive Methicillin-Susceptible Staphylococcus aureus, 1981–2007. J. Infect. Dis. 2010, 201, 1589–1597. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, F.G.; Price, C.; Grubb, W.B.; Gustafson, J.E. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J. Antimicrob. Chemother. 2002, 50, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Udo, E.E.; Sarkhoo, E. Genetic analysis of high-level mupirocin resistance in the ST80 clone of community-associated meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 2010, 59, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Nejma, M.B.; Mastouri, M.; Jrad, B.B.H.; Nour, M. Characterization of ST80 Panton-Valentine leukocidin-positive community-acquired methicillin-resistant Staphylococcus aureus clone in Tunisia. Diagn. Microbiol. Infect. Dis. 2013, 77, 20–24. [Google Scholar] [CrossRef]
- Ellington, M.J.; Reuter, S.; Harris, S.R.; Holden, M.T.; Cartwright, E.J.; Greaves, D.; Gerver, S.M.; Hope, R.; Brown, N.M.; Torok, M.E.; et al. Emergent and evolving antimicrobial resistance cassettes in community-associated fusidic acid and meticillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2015, 45, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Boswihi, S.S.; Udo, E.E.; Al-Sweih, N. Shifts in the Clonal Distribution of Methicillin-Resistant Staphylococcus aureus in Kuwait Hospitals: 1992–2010. PLoS ONE 2016, 11, e0162744. [Google Scholar] [CrossRef] [PubMed]
- Boswihi, S.S.; Udo, E.E.; Monecke, S.; Mathew, B.; Noronha, B.; Verghese, T.; Tappa, S.B. Emerging variants of methicillin-resistant Staphylococcus aureus genotypes in Kuwait hospitals. PLoS ONE 2018, 13, e0195933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senok, A.; Slickers, P.; Hotzel, H.; Boswihi, S.; Braun, S.D.; Gawlik, D.; Müller, E.; Nabi, A.; Nassar, R.; Nitschke, H.; et al. Characterisation of a novel SCCmec VI element harbouring fusC in an emerging Staphylococcus aureus strain from the Arabian Gulf region. PLoS ONE 2019, 14, e0223985. [Google Scholar] [CrossRef] [Green Version]
- Monecke, S.; Müller, E.; Braun, S.D.; Armengol-Porta, M.; Bes, M.; Boswihi, S.; El-Ashker, M.; Engelmann, I.; Gawlik, D.; Gwida, M.; et al. Characterisation of S. aureus/MRSA CC1153 and review of mobile genetic elements carrying the fusidic acid resistance gene fusC. Sci. Rep. 2021, 11, 8128. [Google Scholar] [CrossRef]
- Schaumburg, F.; Alabi, A.S.; Peters, G.; Becker, K. New epidemiology of Staphylococcus aureus infection in Africa. Clin. Microbiol. Infect. 2014, 20, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Ahoyo, T.A.; Martin-Odoom, A.; Bankole, H.S.; Baba-Moussa, L.; Zonon, N.; Loko, F.; Prevost, G.; Sanni, A.; Dramane, K. Epidemiology and prevention of nosocomial pneumonia associated with Panton-Valentine Leukocidin (PVL) producing Staphylococcus aureus in Departmental Hospital Centre of Zou Collines in Benin. Ghana Med. J. 2012, 46, 234–240. [Google Scholar]
- Okon, K.O.; Basset, P.; Uba, A.; Lin, J.; Oyawoye, B.; Shittu, A.O.; Blanc, D.S. Co-occurrence of Predominant PVL-positive (ST 152) and Multidrug-resistant (ST 241) Staphylococcus aureus clones in Nigerian hospitals. J. Clin. Microbiol. 2009, 47, 3000–3003. [Google Scholar] [CrossRef] [Green Version]
- Rasigade, J.P.; Trouillet-Assant, S.; Breurec, S.; Antri, K.; Lina, G.; Bes, M.; Tristan, A.; Badiou, C.; Bernelin, M.; Fall, C.; et al. The levels of antibodies to Panton-Valentine leukocidin (PVL) vary with PVL prevalence along a north-to-south gradient. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 927–933. [Google Scholar] [CrossRef]
- El-Ashker, M.; Gwida, M.; Monecke, S.; El-Gohary, F.; Ehricht, R.; Elsayed, M.; Akinduti, P.; El-Fateh, M.; Maurischat, S. Antimicrobial resistance pattern and virulence profile of S. aureus isolated from household cattle and buffalo with mastitis in Egypt. Vet. Microbiol. 2020, 240, 108535. [Google Scholar] [CrossRef]
- El-Ashker, M.; Gwida, M.; Tomaso, H.; Monecke, S.; Ehricht, R.; El-Gohary, F.; Hotzel, H. Staphylococci in cattle and buffaloes with mastitis in Dakahlia Governorate, Egypt. J. Dairy Sci. 2015, 98, 7450–7459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Ashker, M.; Monecke, S.; Gwida, M.; Saad, T.; El-Gohary, A.; Mohamed, A.; Reißig, A.; Frankenfeld, K.; Gary, D.; Müller, E.; et al. Molecular characterisation of methicillin-resistant and methicillin-susceptible Staphylococcus aureus clones isolated from healthy dairy animals and their caretakers in Egypt. Vet. Microbiol. 2022, 267, 109374. [Google Scholar] [CrossRef] [PubMed]
- Alfeky, A.E.; Tawfick, M.M.; Ashour, M.S.; El-Moghazy, A.A. High Prevalence of Multi-drug Resistant Methicillin-Resistant Staphylococcus aureus in Tertiary Egyptian Hospitals. J. Infect. Dev. Ctries. 2022, 16, 795–806. [Google Scholar] [CrossRef]
- Montelongo, C.; Mores, C.R.; Putonti, C.; Wolfe, A.J.; Abouelfetouh, A.; Mkrtchyan, H.V. Whole-Genome Sequencing of Staphylococcus aureus and Staphylococcus haemolyticus Clinical Isolates from Egypt. Microbiol. Spectr. 2022, 10, e02413–e02421. [Google Scholar] [CrossRef]
- Mehndiratta, P.L.; Bhalla, P. Typing of Methicillin resistant Staphylococcus aureus: A technical review. Indian J. Med. Microbiol. 2012, 30, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Dunne, W.M.; Pouseele, H.; Monecke, S.; Ehricht, R.; van Belkum, A. Epidemiology of transmissible diseases: Array hybridization and next generation sequencing as universal nucleic acid-mediated typing tools. Infect. Genet. Evol. 2018, 63, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Slickers, P.; Ehricht, R. Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol. Med. Microbiol. 2008, 53, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, J.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Robinson, D.; Enright, M. Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2004, 10, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Monecke, S.; Gavier-Widen, D.; Mattsson, R.; Rangstrup-Christensen, L.; Lazaris, A.; Coleman, D.C.; Shore, A.C.; Ehricht, R. Detection of mecC-positive Staphylococcus aureus (CC130-MRSA-XI) in diseased European hedgehogs (Erinaceus europaeus) in Sweden. PLoS ONE 2013, 8, e66166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monecke, S.; Jatzwauk, L.; Müller, E.; Nitschke, H.; Pfohl, K.; Slickers, P.; Reissig, A.; Ruppelt-Lorz, A.; Ehricht, R. Diversity of SCCmec elements in Staphylococcus aureus as observed in South-Eastern Germany. PLoS ONE 2016, 11, e0162654. [Google Scholar] [CrossRef] [PubMed]
- Sabat, A.J.; Wouthuyzen-Bakker, M.; Rondags, A.; Hughes, L.; Akkerboom, V.; Koutsopetra, O.; Friedrich, A.W.; Bathoorn, E. Case Report: Necrotizing fasciitis caused by Staphylococcus aureus positive for a new sequence variant of exfoliative toxin E. Front. Genet. 2022, 13, 964358. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.A.; Monecke, S.; Heffernan, H.; Ritchie, S.R.; Roberts, S.A.; Upton, A.; Thomas, M.G.; Fraser, J.D. High usage of topical fusidic acid and rapid clonal expansion of fusidic acid-resistant Staphylococcus aureus: A cautionary tale. Clin. Infect. Dis. 2014, 59, 1451–1454. [Google Scholar] [CrossRef] [Green Version]
- Talaat, M.; Saied, T.; Kandeel, A.; El-Ata, G.A.; El-Kholy, A.; Hafez, S.; Osman, A.; Razik, M.A.; Ismail, G.; El-Masry, S.; et al. A Point Prevalence Survey of Antibiotic Use in 18 Hospitals in Egypt. Antibiotics 2014, 3, 450–460. [Google Scholar] [CrossRef]
- El-Baghdady, K.Z.; El-Borhamy, M.I.; Abd El-Ghafar, H.A. Prevalence of resistance and toxin genes in community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus clinical isolates. Iran J. Basic Med. Sci. 2020, 23, 1251–1260. [Google Scholar] [CrossRef]
- Monecke, S.; Muller, E.; Buechler, J.; Rejman, J.; Stieber, B.; Akpaka, P.E.; Bandt, D.; Burris, R.; Coombs, G.; Hidalgo-Arroyo, G.A.; et al. Rapid detection of Panton-Valentine leukocidin in Staphylococcus aureus cultures by use of a lateral flow assay based on monoclonal antibodies. J. Clin. Microbiol. 2013, 51, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Senok, A.; Monecke, S.; Nassar, R.; Celiloglu, H.; Thyagarajan, S.; Müller, E.; Ehricht, R. Lateral Flow Immunoassay for the Detection of Panton-Valentine Leukocidin in Staphylococcus aureus from skin and soft tissue infections in the United Arab Emirates. Front. Cell. Infect. Microbiol. 2021, 11, 754523. [Google Scholar] [CrossRef]
- Albrecht, N.; Jatzwauk, L.; Slickers, P.; Ehricht, R.; Monecke, S. Clonal replacement of epidemic methicillin-resistant Staphylococcus aureus strains in a German university hospital over a period of eleven years. PLoS ONE 2011, 6, e28189. [Google Scholar] [CrossRef] [Green Version]
- Boswihi, S.S.; Udo, E.E.; AlFouzan, W. Antibiotic resistance and typing of the methicillin-resistant Staphylococcus aureus clones in Kuwait hospitals, 2016–2017. BMC Microbiol. 2020, 20, 314. [Google Scholar] [CrossRef]
- Senok, A.; Somily, A.M.; Nassar, R.; Garaween, G.; Kim Sing, G.; Müller, E.; Reissig, A.; Gawlik, D.; Ehricht, R.; Monecke, S. Emergence of novel methicillin-resistant Staphylococcus aureus strains in a tertiary care facility in Riyadh, Saudi Arabia. Infect. Drug Resist. 2019, 12, 2739–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senok, A.; Nassar, R.; Celiloglu, H.; Nabi, A.; Alfaresi, M.; Weber, S.; Rizvi, I.; Muller, E.; Reissig, A.; Gawlik, D.; et al. Genotyping of methicillin resistant Staphylococcus aureus from the United Arab Emirates. Sci. Rep. 2020, 10, 18551. [Google Scholar] [CrossRef] [PubMed]
- Udo, E.E.; Al-Sweih, N. Emergence of Methicillin-Resistant Staphylococcus aureus in the Maternity Hospital, Kuwait. Med. Princ. Pract. 2013, 22, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Udo, E.E.; Al-Lawati, B.A.H.; Al-Muharmi, Z.; Thukral, S.S. Genotyping of methicillin-resistant Staphylococcus aureus in the Sultan Qaboos University Hospital, Oman reveals the dominance of Panton–Valentine leucocidin-negative ST6-IV/t304 clone. New Microbes New Infect. 2014, 2, 100–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egyir, B.; Guardabassi, L.; Sorum, M.; Nielsen, S.S.; Kolekang, A.; Frimpong, E.; Addo, K.K.; Newman, M.J.; Larsen, A.R. Molecular epidemiology and antimicrobial susceptibility of clinical Staphylococcus aureus from healthcare institutions in Ghana. PLoS ONE 2014, 9, e89716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, C.; Mari, A.; Aspiroz, C.; Gomez-Sanz, E.; Ceballos, S.; Fortuno, B.; Barcenilla, F.; Jover-Saenz, A.; Torres, C. Nasal carriage of coagulase positive staphylococci in patients of a Primary-Healthcare-Center: Genetic lineages and resistance and virulence genes. Enferm. Infecc. Microbiol. Clin. 2015, 33, 391–396. [Google Scholar] [CrossRef]
- Monecke, S.; Luedicke, C.; Slickers, P.; Ehricht, R. Molecular epidemiology of Staphylococcus aureus in asymptomatic carriers. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1159–1165. [Google Scholar] [CrossRef]
- Raji, M.A.; Garaween, G.; Ehricht, R.; Monecke, S.; Shibl, A.M.; Senok, A. Genetic Characterization of Staphylococcus aureus Isolated from Retail Meat in Riyadh, Saudi Arabia. Front. Microbiol. 2016, 7, 911. [Google Scholar] [CrossRef] [Green Version]
- Senok, A.; Ehricht, R.; Monecke, S.; Al-Saedan, R.; Somily, A. Molecular characterization of methicillin-resistant Staphylococcus aureus in nosocomial infections in a tertiary-care facility: Emergence of new clonal complexes in Saudi Arabia. New Microbes New Infect. 2016, 14, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Senok, A.C.; Somily, A.M.; Slickers, P.; Raji, M.A.; Garaween, G.; Shibl, A.; Monecke, S.; Ehricht, R. Investigating a rare methicillin-resistant Staphylococcus aureus strain: First description of genome sequencing and molecular characterization of CC15-MRSA. Infect. Drug Resist. 2017, 10, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Udo, E.E.; Boswihi, S.S.; Mathew, B.; Noronha, B.; Verghese, T.; Al-Jemaz, A.; Al Saqer, F. Emergence of Methicillin-Resistant Staphylococcus aureus Belonging to Clonal Complex 15 (CC15-MRSA) in Kuwait Hospitals. Infect. Drug Resist. 2020, 13, 617–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geraci, D.M.; Bonura, C.; Giuffrè, M.; Aleo, A.; Saporito, L.; Graziano, G.; Valenti, R.M.; Mammina, C. tst1-positive ST22-MRSA-IVa in healthy Italian preschool children. Infection 2014, 42, 535–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bakri, A.G.; Al-Hadithi, H.; Kasabri, V.; Othman, G.; Kriegeskorte, A.; Becker, K. The epidemiology and molecular characterization of methicillin-resistant staphylococci sampled from a healthy Jordanian population. Epidemiol. Infect. 2013, 141, 2384–2391. [Google Scholar] [CrossRef]
- Senok, A.; Somily, A.; Raji, A.; Gawlik, D.; Al-Shahrani, F.; Baqi, S.; Boswihi, S.; Skakni, L.; Udo, E.E.; Weber, S.; et al. Diversity of methicillin-resistant Staphylococcus aureus CC22-MRSA-IV from Saudi Arabia and the Gulf region. Int. J. Infect. Dis. 2016, 51, 31–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udo, E.E.; Boswihi, S.S.; Al-Sweih, N. High prevalence of toxic shock syndrome toxin-producing epidemic methicillin-resistant Staphylococcus aureus 15 (EMRSA-15) strains in Kuwait hospitals. New Microbes New Infect. 2016, 12, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Ababneh, Q.; Jaradat, Z.; Khanfar, M.; Alnohoud, R.; Alzu’bi, M.; Makahleh, S.; Abulaila, S. Methicillin-resistant Staphylococcus aureus contamination of high-touched surfaces in a university campus. J. Appl. Microbiol. 2022, 132, 4486–4500. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Abuelaish, I.; Biber, A.; Jaber, H.; Callendrello, A.; Andam, C.P.; Regev-Yochay, G.; Hanage, W.P. Genomic epidemiology of meticillin-resistant Staphylococcus aureus ST22 widespread in communities of the Gaza Strip, 2009. Euro Surveill. 2018, 23, 1700592. [Google Scholar] [CrossRef] [PubMed]
- Biber, A.; Abuelaish, I.; Rahav, G.; Raz, M.; Cohen, L.; Valinsky, L.; Taran, D.; Goral, A.; Elhamdany, A.; Regev-Yochay, G.; et al. A Typical Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clone Is Widespread in the Community in the Gaza Strip. PLoS ONE 2012, 7, e42864. [Google Scholar] [CrossRef]
- Laham, N.A.; Mediavilla, J.R.; Chen, L.; Abdelateef, N.; Elamreen, F.A.; Ginocchio, C.C.; Pierard, D.; Becker, K.; Kreiswirth, B.N. MRSA Clonal Complex 22 Strains Harboring Toxic Shock Syndrome Toxin (TSST-1) Are Endemic in the Primary Hospital in Gaza, Palestine. PLoS ONE 2015, 10, e0120008. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, R.P.; Cook, G.M.; Lamont, I.; Lang, S.; Heffernan, H.; Smith, J.M. Phenotypic and molecular characterization of community occurring, Western Samoan phage pattern methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2002, 50, 825–831. [Google Scholar] [CrossRef]
- Smith, J.M.; Cook, G.M. A decade of community MRSA in New Zealand. Epidemiol. Infect. 2005, 133, 899–904. [Google Scholar] [CrossRef]
- Muller, A.; Seinige, D.; Jansen, W.; Klein, G.; Ehricht, R.; Monecke, S.; Kehrenberg, C. Variety of Antimicrobial Resistances and Virulence Factors in Staphylococcus aureus Isolates from Meat Products Legally and Illegally Introduced to Germany. PLoS ONE 2016, 11, e0167864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masiuk, H.; Kopron, K.; Grumann, D.; Goerke, C.; Kolata, J.; Jursa-Kulesza, J.; Giedrys-Kalemba, S.; Broker, B.M.; Holtfreter, S. Association of Recurrent Furunculosis with Panton-Valentine Leukocidin and the Genetic Background of Staphylococcus aureus. J. Clin. Microbiol. 2010, 48, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Yeap, A.D.; Woods, K.; Dance, D.A.B.; Pichon, B.; Rattanavong, S.; Davong, V.; Phetsouvanh, R.; Newton, P.N.; Shetty, N.; Kearns, A.M. Molecular epidemiology of Staphylococcus aureus skin and soft tissue infections in the Lao People’s Democratic Republic. Am. J. Trop. Med. Hyg. 2017, 97, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorobieva, V.; Bazhukova, T.; Hanssen, A.M.; Caugant, D.A.; Semenova, N.; Haldorsen, B.C.; Simonsen, G.S.; Sundsfjord, A. Clinical isolates of Staphylococcus aureus from the Arkhangelsk region, Russia: Antimicrobial susceptibility, molecular epidemiology, and distribution of Panton-Valentine leukocidin genes. Apmis 2008, 116, 877–887. [Google Scholar] [CrossRef]
- Monecke, S.; Slickers, P.; Ellington, M.; Kearns, A.; Ehricht, R. High diversity of Panton-Valentine leucocidin-positive, methicillin-susceptible isolates of Staphylococcus aureus and implications for the evolution of community-associated MRSA. Clin. Microbiol. Infect. 2007, 13, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Enright, M.C. Evolution of Staphylococcus aureus by Large Chromosomal Replacements. J. Bacteriol. 2004, 186, 1060–1064. [Google Scholar] [CrossRef] [Green Version]
- Monecke, S.; Slickers, P.; Gawlik, D.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; Akpaka, P.; Bandt, D.; Bes, M.; Boswihi, S.; et al. Molecular typing of ST239-MRSA-III from diverse geographic locations and the evolution of the SCCmec III element during its intercontinental spread. Front. Microbiol. 2018, 9, 1436. [Google Scholar] [CrossRef] [Green Version]
- Shang, W.; Hu, Q.; Yuan, W.; Cheng, H.; Yang, J.; Hu, Z.; Yuan, J.; Zhang, X.; Peng, H.; Yang, Y.; et al. Comparative Fitness and Determinants for the Characteristic Drug Resistance of ST239-MRSA-III-t030 and ST239-MRSA-III-t037 Strains Isolated in China. Microb. Drug Resist. 2016, 22, 185–192. [Google Scholar] [CrossRef]
- Smyth, D.S.; McDougal, L.K.; Gran, F.W.; Manoharan, A.; Enright, M.C.; Song, J.H.; de Lencastre, H.; Robinson, D.A. Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus, ST239-MRSA-III. PLoS ONE 2010, 5, e8582. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhou, H.; Wang, H.; Chen, H.; Leung, K.K.; Tsui, S.; Ip, M. Comparative genomics of methicillin-resistant Staphylococcus aureus ST239: Distinct geographical variants in Beijing and Hong Kong. BMC Genom. 2014, 15, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, T.; Takano, T.; Higuchi, W.; Iwao, Y.; Singur, O.; Reva, I.; Otsuka, Y.; Nakayashiki, T.; Mori, H.; Reva, G.; et al. Comparative Genomics and Drug Resistance of a Geographic Variant of ST239 Methicillin-Resistant Staphylococcus aureus Emerged in Russia. PLoS ONE 2012, 7, e29187. [Google Scholar] [CrossRef]
- Chen, H.; Yin, Y.; van Dorp, L.; Shaw, L.P.; Gao, H.; Acman, M.; Yuan, J.; Chen, F.; Sun, S.; Wang, X.; et al. Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China. Genome Med. 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhou, W.; Zhan, Q.; Zheng, B.; Chen, Y.; Luo, Q.; Shen, P.; Xiao, Y. Genomic Epidemiology and Characterization of Methicillin-Resistant Staphylococcus aureus from Bloodstream Infections in China. mSystems 2021, 6, e0083721. [Google Scholar] [CrossRef]
- Kechrid, A.; Perez-Vazquez, M.; Smaoui, H.; Hariga, D.; Rodriguez-Banos, M.; Vindel, A.; Baquero, F.; Canton, R.; Del Campo, R. Molecular analysis of community-acquired methicillin-susceptible and resistant Staphylococcus aureus isolates recovered from bacteraemic and osteomyelitis infections in children from Tunisia. Clin. Microbiol. Infect. 2011, 17, 1020–1026. [Google Scholar] [CrossRef] [Green Version]
- Monecke, S.; Skakni, L.; Hasan, R.; Ruppelt, A.; Ghazal, S.S.; Hakawi, A.; Slickers, P.; Ehricht, R. Characterisation of MRSA strains isolated from patients in a hospital in Riyadh, Kingdom of Saudi Arabia. BMC Microbiol. 2012, 12, 146. [Google Scholar] [CrossRef] [Green Version]
- Stegger, M.; Wirth, T.; Andersen, P.S.; Skov, R.L.; De Grassi, A.; Simoes, P.M.; Tristan, A.; Petersen, A.; Aziz, M.; Kiil, K.; et al. Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. mBio 2014, 5, e01044-14. [Google Scholar] [CrossRef] [Green Version]
- Abou Shady, H.M.; Bakr, A.E.; Hashad, M.E.; Alzohairy, M.A. Staphylococcus aureus nasal carriage among outpatients attending primary health care centers: A comparative study of two cities in Saudi Arabia and Egypt. Braz. J. Infect. Dis. 2015, 19, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Elhani, D.; Gharsa, H.; Kalai, D.; Lozano, C.; Gomez, P.; Boutheina, J.; Aouni, M.; Barguellil, F.; Torres, C.; Ben Slama, K. Clonal lineages detected amongst tetracycline-resistant meticillin-resistant Staphylococcus aureus isolates of a Tunisian hospital, with detection of lineage ST398. J. Med. Microbiol. 2015, 64, 623–629. [Google Scholar] [CrossRef]
- Vannuffel, P.; Gigi, J.; Ezzedine, H.; Vandercam, B.; Delmee, M.; Wauters, G.; Gala, J.L. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J. Clin. Microbiol. 1995, 33, 2864–2867. [Google Scholar] [CrossRef] [Green Version]
- Ardic, N.; Sareyyupoglu, B.; Ozyurt, M.; Haznedaroglu, T.; Ilga, U. Investigation of aminoglycoside modifying enzyme genes in methicillin-resistant staphylococci. Microbiol. Res. 2006, 161, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Shokravi, Z.; Mehrad, L.; Ramazani, A. Detecting the frequency of aminoglycoside modifying enzyme encoding genes among clinical isolates of methicillin-resistant Staphylococcus aureus. Bioimpacts 2015, 5, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Louie, L.; Matsumura, S.O.; Choi, E.; Louie, M.; Simor, A.E. Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 2170–2173. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Kuhnert, P.; Hotzel, H.; Slickers, P.; Ehricht, R. Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle. Vet. Microbiol. 2007, 125, 128–140. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Number of MRSA Isolates | Percent |
---|---|---|
Aspirated pus | 18 | 60.0 |
Wound swab | 4 | 13.3 |
Blood culture | 2 | 6.7 |
Bone marrow aspirate | 1 | 3.3 |
Catheter tip | 1 | 3.3 |
Peritoneal fluid | 1 | 3.3 |
Sputum | 1 | 3.3 |
Throat swab | 1 | 3.3 |
Urine | 1 | 3.3 |
Antibiotic Compound | N (Suscept.) | % (Suscept.) | N (Intermed.) | % (Intermed.) | N (Resistant) | % (Resistant) |
---|---|---|---|---|---|---|
Cefoxitin | 0 | 0.0 | 0 | 0.0 | 30 | 100.0 |
Vancomycin | 30 | 100.0 | 0 | 0.0 | 0 | 0.0 |
Gentamicin | 1 | 3.3 | 2 | 6.7 | 27 | 90.0 |
Amikacin * | 1 | 3.3 | 13 | 43.3 | 16 | 53.3 |
Tobramycin * | 0 | 0.0 | 3 | 10.0 | 27 | 90.0 |
Erythromycin | 1 | 3.3 | 17 | 56.7 | 12 | 40.0 |
Doxycycline | 0 | 0.0 | 16 | 53.3 | 14 | 46.7 |
Tigecycline * | 14 | 46.7 | 12 | 40.0 | 4 | 13.3 |
Ciprofloxacin | 3 | 10.0 | 14 | 46.7 | 13 | 43.3 |
Levofloxacin | 2 | 6.7 | 20 | 66.7 | 8 | 26.7 |
Ofloxacin | 0 | 0.0 | 14 | 46.7 | 16 | 53.3 |
Norfloxacin | 0 | 0.0 | 1 | 3.3 | 0 | 0.0 |
Clindamycin | 9 | 30.0 | 11 | 36.7 | 10 | 33.3 |
Trimethoprim+ sulfamethoxazole | 4 | 13.3 | 9 | 30.0 | 17 | 56.7 |
Chloramphenicol | 0 | 0.0 | 23 | 76.7 | 7 | 23.3 |
Rifampin | 21 | 70.0 | 5 | 16.7 | 4 | 13.3 |
Linezolid | 28 | 93.3 | 0 | 0.0 | 2 | 6.7 |
Fusidic acid * | 0 | 0.0 | 4 | 13.3 | 26 | 86.7 |
Nitrofurantoin | 0 | 0.0 | 1 | 3.3 | 0 | 0.0 |
Marker | Description/Gene Product | Ref. | n | % |
---|---|---|---|---|
mecA | Gene encoding a modified penicillin-binding protein (PBP2a) | [23,47] | 30 | 100.0 |
mecC | Alternate gene encoding a modified penicillin-binding protein, SCCmec XI | [51,52] | 0 | 0.0 |
Delta mecR1 | Truncated methicillin resistance operon repressor 1. Truncated mecR1 is present in SCCmec I, IV, V, VI, VII | [23,47] | 7 | 23.3 |
mecR1 | Methicillin resistance operon repressor 1. Un-truncated sequence in SCCmec II, III, VIII | [23,47] | 2 | 6.7 |
mecI | Gene encoding a methicillin-resistance regulatory protein. Present in SCCmec II, III, VIII | [23,47] | 2 | 6.7 |
xylR=mecR2 | Methicillin resistance operon repressor 2, homolog of xylose repressor. Present in SCCmec II, III, VIII | [23,47] | 2 | 6.7 |
ugpQ | Gene encoding glycerophosphoryl diester phosphodiesterase. Accompanies mecA in nearly all SCCmec sequences | [23,47] | 30 | 100.0 |
pls-SCC | Gene encoding Plasmin-sensitive surface protein | [23,47] | 0 | 0.0 |
cstB-SCC | CsoR-like sulfur transferase-regulated gene B. Used to distinguish SCCmec IVa from other SCCmec IV subtypes | [52] | 3 | 10.0 |
kdpA+B+D-SCC | SCC-borne ATP-driven potassium transport (KDP) system, SCCmec II | [23,47] | 0 | 0.0 |
D1GU38 | Putative protein. Used for identification of SCCmec VT, SCCmec ZH47, SCCmec VII because of an association with (additional/second) ccrC copies | [52] | 0 | 0.0 |
B2Y834 | Abortive phage resistance protein. Used for identification of SCCmec IV A, G, c and SCCmec MRSAZH47 | [52] | 0 | 0.0 |
B6VQU0 | Putative protein. Used for identification of SCCmec IVh/j | [52] | 0 | 0.0 |
Q3YK51 | Putative protein. Subtyping SCCmec IV, i.e., identification of SCCmec IV g | [52] | 0 | 0.0 |
tirS | Staphylococcal TIR-protein binding protein | [52] | 11 | 36.7 |
arcA+B+D-SCC | Genes encoding the arginine metabolic operon from ACME-1/-2 elements | [23,47] | 0 | 0.0 |
opp3B and speG | Genes encoding oligopeptide permease and spermidine N-acetyltransferase. Associated with ACME or composite SCCmec/ACME elements | [52] | 0 | 0.0 |
ccrA-1+ccrB-1 | Cassette chromosome recombinase genes, type 1 | [23,47] | 8 | 26.7 |
ccrA-2+ccrB-2 | Cassette chromosome recombinase genes, type 2 | [23,47] | 3 | 10.0 |
ccrA-3+ccrB-3 | Cassette chromosome recombinase genes, type 3 | [23,47] | 2 | 6.7 |
ccrAA+ccrC | Cassette chromosome recombinase gene C and associated ccr homologue | [23,47] | 24 | 80.0 |
ccrA-4+ccrB-4 | Cassette chromosome recombinase genes, type 4 | [23,47] | 2 | 6.7 |
Q9XB68-dcs | Located at the terminus of SCCmec directly next to orfX | [23,47] | 0 | 0.0 |
merA+merB | Genes from the mercury resistance operon | [23,47] | 0 | 0.0 |
czrC | Cadmium and zinc resistance gene C, heavy metal translocating P-type ATPase. Frequently associated with livestock MRSA | [52] | 0 | 0.0 |
cadD (R35) | SCC-borne cadmium resistance gene, used for subtyping CC239-MRSA-III clades | [52] | 2 | 6.7 |
blaZ+blaI+blaR | Penicillinase operon (excluding the SCCmec XI-associated allele) | [23,47] | 28 | 93.3 |
blaZ(SCCmec XI) | Gene encoding beta-lactamase, from SCCmec XI | [51,52] | 0 | 0.0 |
erm(A) | rRNA adenine N-6-methyl-transferase conferring erythro-/clindamycin resistance | [23,47] | 1 | 3.3 |
erm(B) | rRNA adenine N-6-methyl-transferase, erythro-/clindamycin resistance | [23,47] | 1 | 3.3 |
erm(C) | rRNA adenine N-6-methyl-transferase, erythro-/clindamycin resistance | [23,47] | 4 | 13.3 |
lnu(A) | Lincosamide-nucleotidyltransferase (=linA) | [23,47] | 5 | 16.7 |
lsa-E | Lincosamide ABC transporter | [52] | 0 | 0.0 |
msrA | Macrolide resistance ABC transporter, ATP-binding protein | [23,47] | 5 | 16.7 |
mefA | Macrolide efflux protein A | [23,47] | 0 | 0.0 |
mph(C) | Macrolide 2′-phosphotransferase II (=mpbBM) | [23,47] | 0 | 0.0 |
vat(A), vat(B) | Acetyltransferase inactivating streptogramin A, virginiamycin | [23,47] | 0 | 0.0 |
vga(A), vgb | Streptogramin A resistance genes | [23,47] | 0 | 0.0 |
aacA-aphD | Bifunctional enzyme Aac/Aph (6′-aminoglycoside N-acetyltransferase and 2′′-aminoglycoside phosphotransferase), gentamicin/tobramycin resistance | [23,47] | 25 | 83.3 |
aadD | Aminoglycoside adenyltransferase, tobramycin resistance | [23,47] | 6 | 20.0 |
aphA3 | 3′5′-aminoglycoside phosphotransferase, neo-/kanamycin resistance | [23,47] | 12 | 40.0 |
sat | Streptothricine acetyltransferase | [23,47] | 9 | 30.0 |
dfrA | Dihydrofolate reductase type 1 | [23,47] | 4 | 13.3 |
fusC | SCC-associated fusidic acid resistance gene (=Q6GD50) | [23,47] | 25 | 83.3 |
far1 | Plasmid borne fusidic acid resistance gene (=fusB) | [23,47] | 0 | 0.0 |
mupA | (High level) mupirocin resistance protein | [23,47] | 1 | 3.3 |
tet(K) | Tetracycline resistance gene | [23,47] | 9 | 30.0 |
tet(L) | Tetracycline resistance gene | [52] | 9 | 30.0 |
tet(M) | Tetracycline resistance gene | [23,47] | 4 | 13.3 |
cat | Chloramphenicol acetyltransferase | [23,47] | 1 | 3.3 |
cfr | 23S rRNA methyltransferase encoding resistance towards Lincosamides, Oxazolidinones, Pleuromutilins, Streptogramin A etc. | [23,47] | 1 | 3.3 |
fexA | Chloramphenicol/florfenicol exporter | [23,47] | 2 | 6.7 |
qacA, qacC | Quaternary ammonium compound resistance proteins A and C | [23,47] | 0 | 0.0 |
vanA, vanB, vanZ | Glycopeptide resistance genes | [23,47] | 0 | 0.0 |
Marker | Description/Gene Product | Ref. | n | % |
---|---|---|---|---|
lukF-PV+lukS-PV | Phage-borne Panton-Valentine leukocidin | [23,47] | 12 | 40.0 |
lukM+lukF-P83 | Phage-borne LukM/F-P83 leukocidin, associated with disease in ungulates | [23,47] | 0 | 0.0 |
lukD+lukE | Genomic-Island-borne leukocidin | [23,47] | 21 | 70.0 |
tst1 | Toxic shock syndrome toxin | [23,47] | 2 | 6.7 |
sea | Gene encoding enterotoxin A | [23,47] | 13 | 43.3 |
sea(N315)=sep | Allele of the enterotoxin A gene, frequently found in CC5 and CC7 | [23,47] | 0 | 0.0 |
seb | Gene encoding enterotoxin B | [23,47] | 2 | 6,7 |
sec, see, sel | Genes encoding enterotoxins C, E and L | [23,47] | 0 | 0.0 |
sed | Gene encoding enterotoxin D | [23,47] | 1 | 3.3 |
seh | Gene encoding enterotoxin H, associated, e.g., with CC1, CC10 and CC34 | [23,47] | 9 | 30.0 |
sej | Gene encoding enterotoxin J | [23,47] | 1 | 3.3 |
sek | Gene encoding enterotoxin K | [23,47] | 12 | 40.0 |
seq | Gene encoding enterotoxin Q | [23,47] | 12 | 40.0 |
ser | Gene encoding enterotoxin R | [23,47] | 1 | 3.3 |
egc | Enterotoxin gene cluster consisting of seg, sei, selm, seln, selo and selu | [23,47] | 6 | 20.0 |
ORF CM14 | Enterotoxin gene homologue, associated, e.g., with CCs 93, 121 and 705 | [23,47] | 1 | 3.3 |
sak | Staphylokinase | [23,47] | 24 | 80.0 |
chp | Chemotaxis-inhibiting protein (CHIPS) | [23,47] | 9 | 30.0 |
scn | Staphylococcal complement inhibitor | [23,47] | 29 | 96.7 |
etA, etB, etD | Genes encoding Exfoliative Toxins A, B. D | [23,47] | 0 | 0.0 |
etD2/etE/etE2 | Exfoliative Toxin homologue * | [51,52] | 2 | 6.7 |
edinA | Epidermal cell differentiation inhibitor | [23,47] | 1 | 3.3 |
edinB | Epidermal cell differentiation inhibitor B | [23,47] | 2 | 6.7 |
edinC | Epidermal cell differentiation inhibitor C | [23,47] | 0 | 0.0 |
cap 5 | Capsule type 5 (summary of probes for capH5, capJ5, capK5) | [23,47] | 10 | 33.3 |
cap 8 | Capsule type 8 (summary of probes for capH8, capI8, capJ8, capK8) | [23,47] | 20 | 66.7 |
cna | Gene encoding collagen adhesion factor | [23,47] | 18 | 60.0 |
sasG | Staphylococcus aureus surface protein G | [23,47] | 26 | 86.7 |
sasX=sesI | Surface-anchored protein X, used for subtyping CC239-MRSA-III clades | [52] | 0 | 0.0 |
agr I | Accessory gene regulator, group (variant/allele) 1 | [23,47] | 8 | 26.7 |
agr II | Accessory gene regulator, group (variant/allele) 2 | [23,47] | 11 | 36.7 |
agr III | Accessory gene regulator, group (variant/allele) 3 | [23,47] | 10 | 33.3 |
agr IV | Accessory gene regulator, group (variant/allele) 4 | [23,47] | 1 | 3.3 |
hld | Haemolysin Delta, small peptide whose gene is located next to agr | [23,47] | 30 | 100.0 |
tirS | Staphylococcal TIR-protein binding protein | [52] | 11 | 36.7 |
arcA+B+D-SCC | Genes encoding the arginine metabolic operon from ACME-1/-2 elements | [23,47] | 0 | 0.0 |
Clonal Complex | Strain | n in 2020 | % in 2020 | n in 2015 | % in 2015 |
---|---|---|---|---|---|
CC1 | CC1-MRSA-[V+fus+tir+ccrA/B-1] | 3 | 10.0 | 2 | 4.3 |
CC1-MRSA-[V+fus+tir+ccrA/B-1] (PVL+) | 5 | 16.7 | 4 | 8.7 | |
CC1-MRSA-[V+fus+tir] | 1 | 3.3 | 0 | 0 | |
CC5 | CC5-MRSA-[V+cas], “WA MRSA-123” | 0 | 0.0 | 2 | 4.3 |
CC5-MRSA-[VI+fus+tir] | 2 | 6.7 | 1 | 2.2 | |
CC6 | CC6-MRSA-IVa, “WA MRSA-51” | 0 | 0.0 | 1 | 2.2 |
CC6-MRSA-[V+fus] | 1 | 3.3 | 0 | 0 | |
CC15 | CC15-MRSA-[V+fus] | 6 | 20.0 | 0 | 0 |
CC22 | CC22-MRSA-IVa (tst1+), “Gaza Epidemic Strain” | 2 | 6.7 | 3 | 6.5 |
CC30 | CC30-MRSA-IVa (PVL+), “WSPP/Southwest Pacific Clone” | 1 | 3.3 | 0 | 0 |
CC80 | CC80-MRSA-IVc | 0 | 0.0 | 1 | 2.2 |
CC80-MRSA-IVc (PVL+) | 0 | 0.0 | 3 | 6.5 | |
CC88 | CC88-MRSA-IV | 0 | 0.0 | 1 | 2.2 |
CC97 | CC97-MRSA-IVc, “WA MRSA-54/63” | 0 | 0.0 | 3 | 6.5 |
CC97-MRSA-V | 0 | 0.0 | 1 | 2.2 | |
CC97-MRSA-[V+fus] | 1 | 3.3 | 2 | 4.3 | |
CC121 | CC121-MRSA-[V+fus] (PVL+) | 1 | 3.3 | 0 | 0 |
CC152 | CC152-MRSA-[V+fus] (PVL+) | 2 | 6.7 | 1 | 2.2 |
CC239 | CC239-MRSA-[III+Cd/Hg+ccrC] (sasX-positive), “Southeast Asian Clade” | 0 | 0.0 | 1 | 2.2 |
CC239-MRSA-[III+Cd+ccrC] (sasX-negative), “Middle Eastern Cluster” | 1 | 3.3 | 18 | 39.1 | |
CC239-MRSA-[III+Cd] (sasX-negative) | 1 | 3.3 | 2 | 4.3 | |
CC1153 | CC1153-MRSA-[V+fus] (PVL+) | 3 | 10.0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monecke, S.; Bedewy, A.K.; Müller, E.; Braun, S.D.; Diezel, C.; Elsheredy, A.; Kader, O.; Reinicke, M.; Ghazal, A.; Rezk, S.; et al. Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt. Antibiotics 2023, 12, 78. https://doi.org/10.3390/antibiotics12010078
Monecke S, Bedewy AK, Müller E, Braun SD, Diezel C, Elsheredy A, Kader O, Reinicke M, Ghazal A, Rezk S, et al. Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt. Antibiotics. 2023; 12(1):78. https://doi.org/10.3390/antibiotics12010078
Chicago/Turabian StyleMonecke, Stefan, Amira K. Bedewy, Elke Müller, Sascha D. Braun, Celia Diezel, Amel Elsheredy, Ola Kader, Martin Reinicke, Abeer Ghazal, Shahinda Rezk, and et al. 2023. "Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt" Antibiotics 12, no. 1: 78. https://doi.org/10.3390/antibiotics12010078
APA StyleMonecke, S., Bedewy, A. K., Müller, E., Braun, S. D., Diezel, C., Elsheredy, A., Kader, O., Reinicke, M., Ghazal, A., Rezk, S., & Ehricht, R. (2023). Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt. Antibiotics, 12(1), 78. https://doi.org/10.3390/antibiotics12010078