Molecular Characterisation of Antimicrobial Resistance in E. coli Isolates from Piglets in the West Region of Romania
Abstract
:1. Introduction
2. Results
2.1. Microbiological Antibiotic Resistance/Susceptibility Testing (AST)
2.2. Prevalence of Resistance Genes
2.3. Microbiological Antibiotic Susceptibility Testing (AST) by Resistance Genes
2.4. The Association of Resistance Genes with Reduction in Susceptibility
2.5. Penetrance of Plasmid-Borne Genes
2.6. AST Diagnostic Odds Ratio of Positive Phenotypic Resistance (DOR)
3. Discussion
4. Materials and Methods
4.1. Description of Sampling Sites
4.2. Samples and E. coli Isolation
4.3. Confirmation of E. coli and Detection of Antimicrobial Resistance by MicroScan Analyser
4.4. DNA Extraction and Detection of Plasmid-Borne Resistance Genes by q-PCR
4.5. Phenotypic and Genotypic Resistance
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luppi, A. Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porc. Health Manag. 2017, 3, 16. [Google Scholar] [CrossRef]
- More, J.S. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir. Vet. J. 2020, 73, 2. [Google Scholar] [CrossRef]
- Hemonic, A.; Chauvin, C.; Delzescaux, D.; Verliat, F.; Correge, I. The French Working Group ‘Antimicrobials in the Swine Industry.Antimicrobials in the swine industry. Reliable estimation of antimicrobial use and its evolution between 2010 and 2013 in French swine farms. Porc. Health Manag. 2018, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Lungu, B.C.; Tudor, B.A.M.; Georgescu, O.I.; Spataru, I.; Torda, I.; Mircu, C.; Huțu, I. Observations on sensitivity and AMR of E.coli in pigs and humans. Sci. Pap. J.—Vet. Ser. 2022, 65, 17–21. [Google Scholar]
- AMR: A Major European and Global Challenge Available Factsheet_AMR. Available online: https://health.ec.europa.eu/system/files/2020-01/amr_2017_factsheet_0.pdf (accessed on 3 October 2023).
- The Review on Antimicrobial Resistance, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. December 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 3 October 2023).
- Castro, J.; Barros, M.M.; Araújo, D.; Campos, A.M.; Oliveira, R.; Silva, S.; Almeida, C. Swine enteric colibacillosis: Current treatment avenues and future directions. Front. Vet. Sci. 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. Progress and Challenges in Vaccine development against enterotoxigenic Escherichia coli (ETEC)—Associated porcine Post-weaning Diarrhea (PWD). J. Vet. Med. Res. 2014, 1, 1006. [Google Scholar]
- Fairbrother, J.M.; Gyles, C.L. Colibacillosis. In Disease of Swine, 10th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 723–747. [Google Scholar]
- European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021; EMA/795956/2022; European Medicines Agency: Amsterdam, The Netherlands, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2021; European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2022; Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2021 (accessed on 3 October 2023).
- Burrow, E.; Simoneit, C.; Tenhaggen, B.A.; Käsbohrer, A. Oral antimicrobial resistance in porcine E. coli—A systematic review. Prev. Vet. Med. 2014, 113, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.K.; Gong, J.; Kelly, P.; Lu, G.; Guardabassi, L.; Wei, L.; Han, X.; Qiu, H.; Price, S.; Cheng, D.; et al. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS ONE 2017, 12, e0185326. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef]
- Peng, Z.; Hu, Z.; Li, Z.; Zhang, X.; Jia, C.; Li, T.; Dai, M.; Tan, C.; Xu, Z.; Wu, B.; et al. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat. Commun. 2022, 13, 1116. [Google Scholar] [CrossRef]
- Echtermann, T.; Muentener, C.; Sidler, X.; Kuemmerlen, D. Antimicrobial Usage Among Different Age Categories and Herd Sizes in Swiss Farrow-to-Finish Farms. Front. Vet. Sci. 2020, 7, 566529. [Google Scholar] [CrossRef] [PubMed]
- Molteni, R.; Gérard, L.; Jansson, D.S.; Hanna, H.; Sparks, N.; Cerdà-Cuéllar, M.; Gefeller, E.M.; Hardy, M.; Koopman, R.; Scerri, K.; et al. EIP-AGRI Focus Group Reducing Antimicrobial Use in Poultry Farming: Final Report; EIP-AGRI Focus Group. 2021; Available online: https://ec.europa.eu/eip/agriculture/en/publications/eip-agri-focus-group-antimicrobial-use-poultry-report.html (accessed on 8 October 2023).
- Pearson, D.B.; Fancher, B.I.; Rosales, A.G. Antibiotic-Free and Reduced Antibiotic Use in Broiler Production. The Poultry Site, 3 April 2023. Available online: https://www.thepoultrysite.com/articles/antibiotic-free-and-reduced-antibiotic-use-in-broiler-production (accessed on 8 October 2023).
- Moreno, M.A. Survey of quantitative antimicrobial consumption per production stage in farrow-to-finish pig farms in Spain. Vet. Rec. Open 2014, 1, e000002. [Google Scholar] [CrossRef] [PubMed]
- Van Rennings, L.; von Munchhausen, C.; Ottilie, H.; Hartmann, M.; Merle, R.; Honscha, W.; Kasbohrer, A.; Kreienbrock, L. Cross-Sectional Study on Antibiotic Usage in Pigs in Germany. PLoS ONE 2015, 10, e0119114. [Google Scholar] [CrossRef]
- Sjolund, M.; Backhans, A.; Greko, C.; Emanuelson, U.; Lindberg, A. Antimicrobial usage in 60 Swedish farrow-to-finish pig herds. Prev. Vet. Med. 2015, 121, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Scali, F.; Santucci, G.; Maisano, A.M.; Giudici, F.; Guadagno, F.; Tonni, M.; Amicabile, A.; Formenti, N.; Giacomini, E.; Lazzaro, M.; et al. The Use of Antimicrobials in Italian Heavy Pig Fattening Farms. Antibiotics 2020, 9, 892. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.L.; Kongsted, H.; Sørensen, J.T.; Krogh, M.A. Antibiotic and medical zinc oxide usage in Danish conventional and welfare-label pig herds in 2016–2018. Prev. Vet. Med. 2021, 189, 105283. [Google Scholar] [CrossRef]
- Moruzi, R.F.; Tirziu, E.; Muselin, F.; Dumitrescu, E.; Huțu, I.; Mircu, C.; Tulcan, C.; Doma, A.O.; Degi, J.; Degi, D.M.; et al. The importance of databases to manage the phenomenon of resistance to antimicrobials for veterinary use. Rev. Rom. Med. Vet. 2019, 29, 40–57. [Google Scholar]
- Cristina, T.R.; Muselin, F.; Dumitrescu, C.; Doma, A.O.; Moruzi, R.F.; Degi, D.M. Cross-Sectional Survey on the Use of Antimicrobial Preparations in the Food Chain; Report in PN-III-P1-1.2-PCCDI-2017-0361 Project; USMVB: Timisoara, Romania, 2019. [Google Scholar]
- Alliance to Save Our Antibiotics. Available online: https://www.saveourantibiotics.org/the-issue/antibiotic-overuse-in-livestock-farming/ (accessed on 6 June 2023).
- Græsbøll, K.; Larsen, I.; Clasen, J.; Birkegård, A.C.; Nielsen, J.P.; Christiansen, L.E.; Olsen, J.E.; Angen, Ø.; Folkesson, A. Effect of tetracycline treatment regimens on antibiotic resistance gene selection over time in nursery pigs. BMC Microbiol. 2019, 19, 269. [Google Scholar] [CrossRef]
- Pokhrel, N.; Kasemsuwan, S.; Goutard, F.; Boonsoongnern, A.; Chumsing, S.; Tulayakul, P. Practices and Factors Influencing the Use of Antibiotics in Swine Farms in Central Region of Thailand. J. Kasetsart Vet. 2019, 29, 33–55. [Google Scholar]
- Adebowale, O.O.; Adeyemo, F.A.; Bankole, N.; Olasoju, M.; Adesokan, H.K.; Fasanmi, O.; Fasina, F.O. Farmers’ Perceptions and Drivers of Antimicrobial Use and Abuse in Commercial Pig Production, Ogun State, Nigeria. Int. J. Environ. Res. Public Health 2020, 17, 3579. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Callens, B.; Persoons, D.; Maes, D.; Laanen, M.; Postma, M.; Boyen, F.; Haesebrouck, F.; Butaye, P.; Catry, B.; Dewulf, J. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev. Vet. Med. 2012, 106, 53–62. [Google Scholar] [CrossRef]
- EUR-Lex. Available online: https://eur-lex.europa.eu/EN/legal-content/summary/authorisation-import-and-manufacture-of-veterinary-medicines.html (accessed on 10 July 2023).
- Guerra, B.; Junker, E.; Schroeter, A.; Malorny, B.; Lehmann, S.; Helmuth, R. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J. Antimicrob. Chemother. 2003, 52, 489–492. [Google Scholar] [CrossRef]
- Lugsomya, K.; Yindee, J.; Niyomtham, W.; Tribuddharat, C.; Tummaruk, P.; Hampson, D.J.; Prapasarakul, N. Antimicrobial Resistance in Commensal Escherichia coli Isolated from Pigs and Pork Derived from Farms Either Routinely Using or Not Using In-Feed Antimicrobials. Microb. Drug Resist. 2018, 24, 1054–1066. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Kong, L.; Gao, H.; Cheng, X.; Wang, X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front. Microbiol. 2022, 13, 822689. [Google Scholar] [CrossRef]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple Antibiotic Resistance Indexing of Escherichia coli to Identify High-Risk Sources of Fecal Contamination of Foodst. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Ayandele, A.A.; Oladipo, E.K.; Oyebisi, O.; Kaka, M.O. Prevalence of Multi-Antibiotic Resistant Escherichia coli and Klebsiella species obtained from a Tertiary Medical Institution in Oyo State, Nigeria. Qatar Med. J. 2020, 9, 1–9. [Google Scholar] [CrossRef]
- Sandhu, R.; Dahiya, S.; Sayal, P. Evaluation of multiple antibiotic resistance (MAR) index and Doxycycline susceptibility of Acinetobacter species among inpatients. Indian J. Microbiol. Res. 2016, 3, 299–304. [Google Scholar] [CrossRef]
- Mir, R.; Salari, S.; Najimi, M.; Rashki, A. Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Vet. Med. Sci. 2020, 8, 229–236. [Google Scholar] [CrossRef]
- Weber, N.R.; Nielsen, J.P.; Jorsal, S.E.L.; Haugegaard, S.; Denwood, M.; Pedersen, K.S. Comparison of antimicrobial resistance in E. coli isolated from rectal and floor samples in pens with diarrhoeic nursery pigs in Denmark. Prev. Vet. Med. 2017, 147, 42–49. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (Suppl. S1), 5–16. [Google Scholar] [CrossRef]
- Barton, M.D. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 2014, 19, 9–15. [Google Scholar] [CrossRef]
- Messai, Y.; Benhassine, T.; Naim, M.; Paul, G.; Bakour, R. Prevalence of β-lactams resistance among Escherichia coli clinical isolates from a hospital in Algiers. Rev. Esp. Quimioter. 2006, 19, 144–151. [Google Scholar]
- Titilawo, Y.; Obi, L.; Okoh, A. Antimicrobial resistance determinants of Escherichia coli isolates recovered from some rivers in Osun State, South-Western Nigeria: Implications for public health. Sci. Total Environ. 2015, 523, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.-K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.S.M.; Hazzah, W.A.; Bakr, W.M.K. Evaluation of antibiotic susceptibility test results: How guilty a laboratory could be? J. Egypt. Public Health Assoc. 2019, 94, 4. [Google Scholar] [CrossRef]
- Rosenberg, L.E.; Rosenberg, D.D. Chapter 5: Transmission of Genes. In Human Genes and Genomes; Rosenberg, L.E., Rosenberg, D.D., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 51–73. [Google Scholar]
- Leinyuy, J.F.; Ali, I.M.; Ousenu, K.; Tume, C.B. Molecular characterization of antimicrobial resistance related genes in E. coli, Salmonella and Klebsiella isolates from broilers in the West Region of Cameroon. PLoS ONE 2023, 18, e0280150. [Google Scholar] [CrossRef]
Antibiotic | MIC (mg/L) for E. coli | Resistant | Susceptible | |
---|---|---|---|---|
Resistant | Susceptible | |||
| >16/8 | ≤4 | 24 (31.57%) | 52 (68.42%) |
| >16 | ≤8 | 76 (100%) | 0 (0%) |
| >16 | ≤8 | 47 (61.84%) | 29 (38.15%) |
| >16 | ≤8 | 24 (31.57%) | 52 (68.42%) |
| >8 | ≤8 | 16 (21.05%) | 60 (78.94%) |
| >16 | ≤1 | 3 (3.94%) | 52 (68.42%) |
| >16 | ≤4 | 44 (57.89%) | 32 (42.1%) |
| >8 | ≤1 | 0 (0%) | 76 (100%) |
| >64 | ≤16 | 76 (100%) | 0 (0%) |
| >64 | ≤16 | 8 (10.52%) | 68 (89.47%) |
| >64 | ≤16 | 58 (76.31%) | 18 (23.68%) |
| >8 | ≤4 | 51 (67.1%) | 25 (32.89%) |
| >2 | ≤1 | 3 (3.94%) | 73 (96.05%) |
Genes | Antibiotics | R | RG+ | RG- | S | SG+ | SG- | P (%) | DOR |
---|---|---|---|---|---|---|---|---|---|
ampC | Amoxicillin/clavulanate | 24 | 24 | 0 | 52 | 52 | 0 | 32% | |
Cefazolin | 47 | 45 | 2 | 29 | 28 | 1 | 62% | 0.80 | |
Cefepime | 24 | 23 | 1 | 52 | 50 | 2 | 32% | 0.92 | |
Cefotaxime | 4 | 4 | 0 | 0 | 0 | 0 | 100% | ||
Cefoxitin | 16 | 16 | 0 | 60 | 60 | 0 | 21% | ||
Ceftazidime | 1 | 1 | 0 | 51 | 51 | 0 | 2% | ||
Cefuroxime | 44 | 40 | 4 | 32 | 31 | 1 | 56% | 0.32 | |
Ampicillin | 75 | 75 | 0 | 1 | 1 | 0 | 99% | ||
TOTAL ampC | 230 | 223 | 7 | 225 | 221 | 4 | 50% | 0.58 | |
blaZ | Amoxicillin/clavulanate | 24 | 23 | 1 | 52 | 50 | 2 | 32% | 0.92 |
Ampicillin | 75 | 72 | 3 | 1 | 1 | 0 | 99% | ||
TOTAL blaZ | 99 | 95 | 4 | 53 | 51 | 2 | 65% | 0.93 | |
blaTEM | Amoxicillin/clavulanate | 24 | 9 | 15 | 52 | 17 | 35 | 35% | 1.24 |
Ampicillin | 76 | 26 | 50 | ||||||
Cefazolin | 47 | 15 | 32 | 29 | 11 | 18 | 58% | 0.77 | |
Cefepime | 24 | 6 | 18 | 52 | 20 | 32 | 23% | 0.53 | |
Cefotaxime | 4 | 2 | 2 | ||||||
Cefoxitin | 16 | 5 | 11 | 60 | 21 | 39 | 19% | 0.84 | |
Ceftazidime | 3 | 1 | 2 | 52 | 20 | 32 | 5% | 0.80 | |
Cefuroxime | 44 | 12 | 32 | 32 | 14 | 18 | 46% | 0.48 | |
Meropenem | 76 | 26 | 50 | 0% | |||||
Mezlocillin | 76 | 26 | 50 | ||||||
Pip/Tazo | 8 | 5 | 3 | 68 | 21 | 47 | 19% | 3.73 | |
Piperacillin | 58 | 21 | 37 | 18 | 5 | 13 | 81% | 1.48 | |
TOTAL blaTEM | 365 | 120 | 245 | 319 | 114 | 205 | 51% | 0.88 | |
tetK | Tetracycline | 51 | 30 | 21 | 25 | 6 | 19 | 83% | 4.52 |
Tigecycline | 3 | 2 | 1 | 73 | 34 | 39 | 6% | 2.29 | |
TOTAL tetK | 54 | 32 | 22 | 98 | 40 | 58 | 44% | 2.11 | |
TOTAL STUDY 1 | 748 | 470 | 278 | 695 | 426 | 269 | 52% | 1.07 |
Genes | Prevalence of Resistance Genes/Resistant Isolates 5 | Prevalence of Resistance Genes/Susceptible Isolates 6 |
---|---|---|
ampC 1 | 223/230 (97.0%) | 221/225 (98.2%) |
blaZ 2 | 95/99 (96.0%) | 51/53 (96.2%) |
blaTEM 3 | 120/365 (32.9%) | 114/319 (35.7%) |
tetK 4 | 32/54 (59.3%) | 40/98 (40.8%) |
Factor | Outcome Genes | Risk Estimate | Pearson Chi-Square (Significant Correlation (≤0.05)) | ||
---|---|---|---|---|---|
Odds Ratios (Increased Risk > 1) | 95% Confidence Interval | ||||
Lower | Upper | ||||
Reduced susceptibility | ampC | 0.731 | 0.332 | 1.605 | 0.285 |
blaZ | 0.931 | 0.294 | 2.945 | 0.634 | |
blaTEM | 0.935 | 0.792 | 1.104 | 0.240 | |
tetK | 2.850 | 1.281 | 6.342 | 0.004 |
Gene | Primer | Primer Sequence (5′-3′) | Annealing Temperature (°C) | Amplicon Size (bp) | Authors |
---|---|---|---|---|---|
ampC | ampC F | ATCAAAACTGGCAGCCG | 65 | 510 | [45] |
ampC R | GAGCCCGTTTTATGCACCCA | ||||
blaZ | blaZ F | ACT TCA ACA CCT GCT GCT TTC | 60 | 490 | [46] |
blaZ R | TGA CCA CTT TTA TCA GCA ACC | ||||
blaTEM | blaTEM F | GAGTATTCAACATTTCCGTGTC | 42 | 850 | [45] |
laTEM R | TAATCAGTGAGGCACCTATCTC | ||||
tetK | tetK F | TCG ATA GGA ACA GCA GTA | 55 | 169 | [47] |
tetK R | CAG CAG ATC CTA CTC CTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lungu, B.C.; Hutu, I.; Barrow, P.A. Molecular Characterisation of Antimicrobial Resistance in E. coli Isolates from Piglets in the West Region of Romania. Antibiotics 2023, 12, 1544. https://doi.org/10.3390/antibiotics12101544
Lungu BC, Hutu I, Barrow PA. Molecular Characterisation of Antimicrobial Resistance in E. coli Isolates from Piglets in the West Region of Romania. Antibiotics. 2023; 12(10):1544. https://doi.org/10.3390/antibiotics12101544
Chicago/Turabian StyleLungu, Bianca Cornelia, Ioan Hutu, and Paul Andrew Barrow. 2023. "Molecular Characterisation of Antimicrobial Resistance in E. coli Isolates from Piglets in the West Region of Romania" Antibiotics 12, no. 10: 1544. https://doi.org/10.3390/antibiotics12101544
APA StyleLungu, B. C., Hutu, I., & Barrow, P. A. (2023). Molecular Characterisation of Antimicrobial Resistance in E. coli Isolates from Piglets in the West Region of Romania. Antibiotics, 12(10), 1544. https://doi.org/10.3390/antibiotics12101544