Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study
Abstract
:1. Introduction
2. Results
2.1. Resistance Acquisition to Imipenem and Imipenem/Relebactam
2.2. Resistance Acquisition to the Other Antibiotics Tested by the Mutants
2.3. Genotypic Characterization of the Initial Isolates and Resistant Mutants to Imipenem and Imipenem/Relebactam
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. In Vitro Generation of P. aeruginosa Resistant Mutants
4.3. Antibiotic Susceptibility
4.4. Genotypic Characterization and Bioinformatic Analyses
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Gramatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Doi, Y. Treatment Options for Carbapenem-Resistant Gram-Negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef]
- Liu, G.; Thomsen, L.E.; Olsen, J.E. Antimicrobial-Induced Horizontal Transfer of Antimicrobial Resistance Genes in Bacteria: A Mini-Review. J. Antimicrob. Chemother. 2022, 77, 556–567. [Google Scholar] [CrossRef]
- Jampilek, J. Drug Repurposing to Overcome Microbial Resistance. Drug Discov. Today 2022, 27, 2028–2041. [Google Scholar] [CrossRef]
- Bassetti, S.; Tschudin-Sutter, S.; Egli, A.; Osthoff, M. Optimizing Antibiotic Therapies to Reduce the Risk of Bacterial Resistance. Eur. J. Intern. Med. 2022, 99, 7–12. [Google Scholar] [CrossRef]
- Bulman, Z.P.; Wicha, S.G.; Nielsen, E.I.; Lenhard, J.R.; Nation, R.L.; Theuretzbacher, U.; Derendorf, H.; Tängdén, T.; Zeitlinger, M.; Landersdorfer, C.B.; et al. Research Priorities towards Precision Antibiotic Therapy to Improve Patient Care. Lancet Microbe 2022, 3, e795–e802. [Google Scholar] [CrossRef]
- Zucca, M.; Scutera, S.; Savoia, D. New Antimicrobial Frontiers. Mini Rev. Med. Chem. 2011, 11, 888–900. [Google Scholar] [CrossRef]
- Smith, J.R.; Rybak, J.M.; Claeys, K.C. Imipenem-Cilastatin-Relebactam: A Novel β-Lactam–β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 343–356. [Google Scholar] [CrossRef]
- Gomis-Font, M.A.; Cabot, G.; Sánchez-Diener, I.; Fraile-Ribot, P.A.; Juan, C.; Moya, B.; Zamorano, L.; Oliver, A. In vitro Dynamics and Mechanisms of Resistance Development to Imipenem and Imipenem/Relebactam in Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 2020, 75, 2508–2515. [Google Scholar] [CrossRef]
- Shields, R.K.; Stellfox, M.E.; Kline, E.G.; Samanta, P.; Van Tyne, D. Evolution of Imipenem-Relebactam Resistance Following Treatment of Multidrug-Resistant Pseudomonas Aeruginosa Pneumonia. Clin. Infect. Dis. 2022, 75, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Alonso-García, I.; Vázquez-Ucha, J.C.; Lasarte-Monterrubio, C.; González-Mayo, E.; Lada-Salvador, P.; Vela-Fernández, R.; Aja-Macaya, P.; Guijarro-Sánchez, P.; Rumbo-Feal, S.; Muíño-Andrade, M.; et al. Simultaneous and Divergent Evolution of Resistance to Cephalosporin/β-Lactamase Inhibitor Combinations and Imipenem/Relebactam Following Ceftazidime/Avibactam Treatment of MDR Pseudomonas Aeruginosa Infections. J. Antimicrob. Chemother. 2023, 78, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- López-Pérez, M.; Haro-Moreno, J.M.; Molina-Pardines, C.; Ventero, M.P.; Rodríguez, J.C. Genomic Characterization of Imipenem- and Imipenem-Relebactam-Resistant Clinical Isolates of Pseudomonas Aeruginosa. mSphere 2021, 6, e00836-21. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0. 2023. Available online: http://www.eucast.org (accessed on 30 August 2023).
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.; Komarow, L.; Chen, L.; Ge, L.; Hanson, B.M.; Cober, E.; Herc, E.; Alenazi, T.; Kaye, K.S.; Garcia-Diaz, J.; et al. Global Epidemiology and Clinical Outcomes of Carbapenem-Resistant Pseudomonas Aeruginosa and Associated Carbapenemases (POP): A Prospective Cohort Study. Lancet Microbe 2023, 4, e159–e170. [Google Scholar] [CrossRef] [PubMed]
- Vivo, A.; Fitzpatrick, M.A.; Suda, K.J.; Jones, M.M.; Perencevich, E.N.; Rubin, M.A.; Ramanathan, S.; Wilson, G.M.; Evans, M.E.; Evans, C.T. Epidemiology and Outcomes Associated with Carbapenem-Resistant Acinetobacter Baumannii and Carbapenem-Resistant Pseudomonas Aeruginosa: A Retrospective Cohort Study. BMC Infect. Dis. 2022, 22, 491. [Google Scholar] [CrossRef]
- Fraile-Ribot, P.A.; Zamorano, L.; Orellana, R.; Del Barrio-Tofiño, E.; Sánchez-Diener, I.; Cortes-Lara, S.; López-Causapé, C.; Cabot, G.; Bou, G.; Martínez-Martínez, L.; et al. Activity of Imipenem-Relebactam against a Large Collection of Pseudomonas Aeruginosa Clinical Isolates and Isogenic β-Lactam-Resistant Mutants. Antimicrob. Agents Chemother. 2020, 64, e02165-19. [Google Scholar] [CrossRef]
- Lob, S.H.; Karlowsky, J.A.; Young, K.; Motyl, M.R.; Hawser, S.; Kothari, N.D.; Gueny, M.E.; Sahm, D.F. Activity of Imipenem/Relebactam against MDR Pseudomonas Aeruginosa in Europe: SMART 2015-17. J. Antimicrob. Chemother. 2019, 74, 2284–2288. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. In-Vitro Activity of Imipenem/Relebactam and Key β-Lactam Agents against Gram-Negative Bacilli Isolated from Lower Respiratory Tract Infection Samples of Intensive Care Unit Patients—SMART Surveillance United States 2015–2017. Int. J. Antimicrob. Agents 2020, 55, 105841. [Google Scholar] [CrossRef]
- Aeschlimann, J.R. The Role of Multidrug Efflux Pumps in the Antibiotic Resistance of Pseudomonas Aeruginosa and Other Gram-Negative Bacteria. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2003, 23, 916–924. [Google Scholar] [CrossRef]
- Kiser, T.H.; Obritsch, M.D.; Jung, R.; MacLaren, R.; Fish, D.N. Efflux Pump Contribution to Multidrug Resistance in Clinical Isolates of Pseudomonas Aeruginosa. Pharmacotherapy 2010, 30, 632–638. [Google Scholar] [CrossRef]
- Muller, C.; Plésiat, P.; Jeannot, K. A Two-Component Regulatory System Interconnects Resistance to Polymyxins, Aminoglycosides, Fluoroquinolones, and β-Lactams in Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2011, 55, 1211–1221. [Google Scholar] [CrossRef]
- Gomis-Font, M.A.; Cabot, G.; López-Argüello, S.; Zamorano, L.; Juan, C.; Moyá, B.; Oliver, A. Comparative Analysis of in vitro Dynamics and Mechanisms of Ceftolozane/Tazobactam and Imipenem/Relebactam Resistance Development in Pseudomonas Aeruginosa XDR High-Risk Clones. J. Antimicrob. Chemother. 2022, 77, 957–968. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Zhou, X.; Yang, F.; Guo, Q.; Wang, M. Comparison of In vitro Activity of Ceftazidime-Avibactam and Imipenem-Relebactam against Clinical Isolates of Pseudomonas Aeruginosa. Microbiol. Spectr. 2023, 11, e0093223. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-Y.; Han, J.-T.; Zhang, M.-Y.; Yan, X.; Zhang, N.; Ge, H.; Wang, Z.; He, Y.-X. The Two-Component System RstA/RstB Regulates Expression of Multiple Efflux Pumps and Influences Anaerobic Nitrate Respiration in Pseudomonas Fluorescens. mSystems 2021, 6, e0091121. [Google Scholar] [CrossRef]
- Atrissi, J.; Milan, A.; Bressan, R.; Lucafò, M.; Petix, V.; Busetti, M.; Dolzani, L.; Lagatolla, C. Interplay of OpdP Porin and Chromosomal Carbapenemases in the Determination of Carbapenem Resistance/Susceptibility in Pseudomonas Aeruginosa. Microbiol. Spectr. 2021, 9, e0118621. [Google Scholar] [CrossRef]
- De Kievit, T.R.; Parkins, M.D.; Gillis, R.J.; Srikumar, R.; Ceri, H.; Poole, K.; Iglewski, B.H.; Storey, D.G. Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas Aeruginosa Biofilms. Antimicrob. Agents Chemother. 2001, 45, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Nishino, K.; Yamasaki, S.; Nakashima, R.; Zwama, M.; Hayashi-Nishino, M. Function and Inhibitory Mechanisms of Multidrug Efflux Pumps. Front. Microbiol. 2021, 12, 3390. [Google Scholar] [CrossRef]
- Tierney, A.R.P.; Rather, P.N. Roles of Two-Component Regulatory Systems in Antibiotic Resistance. Future Microbiol. 2019, 14, 533. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, C.; Williams, D.M.; Kelly, S.D. Lipopolysaccharide O-Antigens—Bacterial Glycans Made to Measure. J. Biol. Chem. 2020, 295, 10593–10609. [Google Scholar] [CrossRef]
- Huszczynski, S.M.; Lam, J.S.; Khursigara, C.M. The Role of Pseudomonas Aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019, 9, 6. [Google Scholar] [CrossRef]
- Maldonado, R.F.; Sá-Correia, I.; Valvano, M.A. Lipopolysaccharide Modification in Gram-Negative Bacteria during Chronic Infection. FEMS Microbiol. Rev. 2016, 40, 480. [Google Scholar] [CrossRef] [PubMed]
- Yakovlieva, L.; Fülleborn, J.A.; Walvoort, M.T.C. Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies. Front. Microbiol. 2021, 12, 2737. [Google Scholar] [CrossRef]
- Hwang, W.; Yoon, S.S. Virulence Characteristics and an Action Mode of Antibiotic Resistance in Multidrug-Resistant Pseudomonas Aeruginosa. Sci. Rep. 2019, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.W.; Khan, A.U. Updates on the Pathogenicity Status of Pseudomonas Aeruginosa. Drug Discov. Today 2019, 24, 350–359. [Google Scholar] [CrossRef]
- Cianciulli Sesso, A.; Lilić, B.; Amman, F.; Wolfinger, M.T.; Sonnleitner, E.; Bläsi, U. Gene Expression Profiling of Pseudomonas Aeruginosa Upon Exposure to Colistin and Tobramycin. Front. Microbiol. 2021, 12, 937. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas Aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Coppry, M.; Jeanne-Leroyer, C.; Noize, P.; Dumartin, C.; Boyer, A.; Bertrand, X.; Dubois, V.; Rogues, A.M. Antibiotics Associated with Acquisition of Carbapenem-Resistant Pseudomonas Aeruginosa in ICUs: A Multicentre Nested Case-Case-Control Study. J. Antimicrob. Chemother. 2019, 74, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic Burden of Antibiotic Resistance in ESKAPE Organisms: A Systematic Review. Antimicrob. Resist. Infect. Control 2019, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cui, K.; Lu, W.; Bai, H.; Zhai, Y.; Hu, S.; Li, H.; Dong, H.; Feng, W.; Dong, Y. Evaluation of Carbapenem Use in a Tertiary Hospital: Antimicrobial Stewardship Urgently Needed. Antimicrob. Resist. Infect. Control 2019, 8, 5. [Google Scholar] [CrossRef]
- Dolan, S.K. Current Knowledge and Future Directions in Developing Strategies to Combat Pseudomonas Aeruginosa Infection. J. Mol. Biol. 2020, 432, 5509–5528. [Google Scholar] [CrossRef]
- Labaste, F.; Grossac, J.; Bounes, F.V.; Conil, J.M.; Ruiz, S.; Seguin, T.; Grare, M.; Fourcade, O.; Minville, V.; Georges, B. Risk Factors for Acquisition of Carbapenem-Resistance during Treatment with Carbapenem in the Intensive Care Unit: A Prospective Study. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2077–2085. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.; Mather, A.E.; Sánchez-Busó, L.; Page, A.J.; Parkhill, J.; Keane, J.A.; Harris, S.R. ARIBA: Rapid Antimicrobial Resistance Genotyping Directly from Sequencing Reads. Microb. Genomics 2017, 3, e000131. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Bickhart, D.M.; Behsaz, B.; Gurevich, A.; Rayko, M.; Shin, S.B.; Kuhn, K.; Yuan, J.; Polevikov, E.; Smith, T.P.L.; et al. MetaFlye: Scalable Long-Read Metagenome Assembly Using Repeat Graphs. Nat. Methods 2020, 17, 1103–1110. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Natale, D.A.; Garkavtsev, I.V.; Tatusova, T.A.; Shankavaram, U.T.; Rao, B.S.; Kiryutin, B.; Galperin, M.Y.; Fedorova, N.D.; Koonin, E.V. The COG Database: New Developments in Phylogenetic Classification of Proteins from Complete Genomes. Nucleic Acids Res. 2001, 29, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Haft, D.H.; Loftus, B.J.; Richardson, D.L.; Yang, F.; Eisen, J.A.; Paulsen, I.T.; White, O. TIGRFAMs: A Protein Family Resource for the Functional Identification of Proteins. Nucleic Acids Res. 2001, 29, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER Web Server: Interactive Sequence Similarity Searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef] [PubMed]
Initial Isolates | Imipenen Mutants | Imipenem/Relebactam Mutants | ||||||
---|---|---|---|---|---|---|---|---|
MIC (mg/L) | % R * | MIC (mg/L) | % R * | MIC (mg/L) | % R * | p Value | ||
Beta-lactams | Piperacillin/ Tazobactam | 4.75 ± 0.72 | 0 | 198 ± 38.00 | 87.5 | 17.75 ± 3.73 | 37.5 | 0.003 |
Ceftazidime | 0.62 ± 0.11 | 0 | 77.87 ± 39.06 | 37.5 | 4.81 ± 1.16 | 12.5 | 0.015 | |
Ceftolozane/ Tazobactam | 0.39 ± 0.05 | 0 | 2.87 ± 0.93 | 25.0 | 1.81 ± 0.91 | 0 | 0.823 | |
Ceftazidime/ Avibactam | 0.87 ± 0.09 | 0 | 38.75 ± 31.09 | 37.5 | 6.25 ± 1.61 | 12.5 | 0.442 | |
Aztreonam | 2.56 ± 0.29 | 0 | 85 ± 37.73 | 62.5 | 18.25 ± 3.88 | 50 | 0.105 | |
Aminoycosides | Amikacin | 3.31 ± 0.31 | 0 | 13.12 ± 3.65 | 25.0 | 24.75 ± 10.71 | 50 | 0.442 |
Tobramycin | 0.87 ± 0.07 | 0 | 1.31 ± 0.16 | 0 | 1.84 ± 0.46 | 37.5 | 0.999 | |
Quinolones | Ciprofloxacin | 0.083 ± 0.01 | 0 | 0.10 ± 0.01 | 0 | 0.61 ± 0.19 | 50 | 0.279 |
Imipenem-Resistant Mutants | Imipenem/Relebactam-Resistant Mutants | ||
---|---|---|---|
Beta-lactams | Piperacillin/ | 3835, 8247, 6760, 9137, 6630, 2718, 3664 | 6630, 2718, 3664 |
Tazobactam | |||
Ceftazidime | 3835, 6760, 9137, 6630, 2718, 3664 | 6630 | |
Ceftolozane/ | 6760, 9137 | ||
Tazobactam | |||
Ceftazidime/ | 6760, 9137, 2718 | 6630 | |
Avibactam | |||
Aztreonam | 3835, 6760, 9137, 6591, 2718 | 8247, 6630, 2718, 3664 | |
Aminoycosides | Amikacin | 6760, 2718 | 6760, 6591, 6630, 2718 |
Tobramycin | 6760, 6591, 2718 | ||
Quinolones | Ciprofloxacin | 3835, 9137, 6630, 3664 |
Contigs | Genome Size (bp) | GC Content (%) | Proteins | Coding Density (%) | Intrinsic Antibiotic Resistance | |
---|---|---|---|---|---|---|
Strain 2718 | 1 | 6,445,503 | 66.4 | 5915 | 90 | OXA-846/PDC-127 |
Strain 8247 | 1 | 6,942,622 | 65.9 | 6457 | 89 | OXA-488/PDC-34 |
Gene | I-R * Mutants | I/R-R * Mutants | Type | Effect | Protein | Pathway | |
---|---|---|---|---|---|---|---|
Strain 8247 (ST253) | tagO | Yes | Yes | Del | frameshift | putative undecaprenyl-phosphate N-acetylglucosaminyl 1-phosphate transferase | Glycosylation mechanism |
rne | No | Yes | Del | disruptive | Ribonuclease E | Transcriptional regulation | |
ydhP_1 (cmxA) | Yes | No | SNP | missense | Inner membrane transport protein YdhP | Chloramphenicol resistance | |
sasA_14 | No | Yes | SNP | stop | Adaptive-response sensory-kinase SasA | histidine kinase response system | |
qseC | No | Yes | SNP | missense | Sensor protein QseC | histidine kinase response system | |
Strain 2718 (ST238) | tyrR_1 | No | Yes | SNP | missense | Transcriptional regulatory protein TyrR | Transcriptional regulation |
rstB | No | Yes | SNP | missense | Sensor protein RstB | Efflux pump | |
barA_1 | No | Yes | SNP | missense | Signal transduction histidine-protein kinase BarA | Histidine kinase response system | |
phoQ | Yes | No | SNP | missense | Two-component sensor PhoQ | Polymyxin B and cationic antimicrobial peptides resistance | |
zraR_4 | No | Yes | DEL | frameshift | Transcriptional regulatory protein ZraR | Transcriptional regulation | |
gyrB | Yes | No | SNP | missense | DNA gyrase subunit B | Fluoroquinolones resistance | |
wecA | Yes | No | SNP | frameshift | Undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase | Glycosylation mechanism | |
sasA_7 | Yes | No | SNP | missense | Adaptive-response sensory-kinase SasA | histidine kinase response system | |
nuoM | Yes | No | DEL | disruptive | NADH-quinone oxidoreductase subunit M | ATP synthesis | |
oprD_7 | Yes | No | SNP | stop_gained | Porin D | Efflux pump | |
pilA | Yes | No | DEL | frameshift | Fimbrial protein | Biofilm formation | |
pglF | No | Yes | SNP | missense | UDP-N-acetyl-alpha-D-glucosamine C6 dehydratase | Glycosylation mechanism | |
rne | No | Yes | SNP | missense | Ribonuclease E | Transcriptional regulation | |
rnr | No | Yes | SNP | stop_gained | Ribonuclease R | Transcriptional regulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventero, M.P.; Haro-Moreno, J.M.; Molina-Pardines, C.; Sánchez-Bautista, A.; García-Rivera, C.; Boix, V.; Merino, E.; López-Pérez, M.; Rodríguez, J.C. Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study. Antibiotics 2023, 12, 1619. https://doi.org/10.3390/antibiotics12111619
Ventero MP, Haro-Moreno JM, Molina-Pardines C, Sánchez-Bautista A, García-Rivera C, Boix V, Merino E, López-Pérez M, Rodríguez JC. Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study. Antibiotics. 2023; 12(11):1619. https://doi.org/10.3390/antibiotics12111619
Chicago/Turabian StyleVentero, Maria Paz, Jose M. Haro-Moreno, Carmen Molina-Pardines, Antonia Sánchez-Bautista, Celia García-Rivera, Vicente Boix, Esperanza Merino, Mario López-Pérez, and Juan Carlos Rodríguez. 2023. "Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study" Antibiotics 12, no. 11: 1619. https://doi.org/10.3390/antibiotics12111619
APA StyleVentero, M. P., Haro-Moreno, J. M., Molina-Pardines, C., Sánchez-Bautista, A., García-Rivera, C., Boix, V., Merino, E., López-Pérez, M., & Rodríguez, J. C. (2023). Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study. Antibiotics, 12(11), 1619. https://doi.org/10.3390/antibiotics12111619