Methicillin Resistance Increased the Risk of Treatment Failure in Native Joint Septic Arthritis Caused by Staphylococcus aureus
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Characteristics of S. aureus NJSA Compared between MRSA and MSSA
2.2. Treatment and Outcomes in S. aureus NJSA Compared between MRSA and MSSA
2.3. Antibiotic Susceptibility
2.4. Risk Factors for Treatment Failure and the Need for Subsequent Surgical Drainage
3. Discussion
4. Materials and Methods
4.1. Study Population, Design, and Data Collection
4.2. Outcome and Follow-Up
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathews, C.J.; Weston, V.C.; Jones, A.; Field, M.; Coakley, G. Bacterial septic arthritis in adults. Lancet 2010, 375, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.; Chambers, S.T.; Nolan, I.; Gallagher, K.; Werno, A.; Browne, M.; Stamp, L.K. Native Joint Septic Arthritis: Epidemiology, Clinical Features, and Microbiological Causes in a New Zealand Population. J. Rheumatol. 2015, 42, 2392–2397. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, Y.S.; Sohn, Y.J.; Hyun, J.H.; Ahn, S.M.; Lee, W.J.; Kim, J.H.; Seong, H.; Kim, J.; Jeong, S.J.; et al. Clinical Characteristics and Causative Pathogens of Infective Arthritis and Risk Factors for Gram-Negative Bacterial Infections. Infect. Chemother. 2020, 52, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Gobao, V.C.; Alfishawy, M.; Smith, C.; Byers, K.E.; Yassin, M.; Urish, K.L.; Shah, N.B. Risk Factors, Screening, and Treatment Challenges in Staphylococcus aureus Native Septic Arthritis. Open Forum Infect. Dis. 2021, 8, ofaa593. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Arthur Vithran, D.T.; Pan, L.; Zeng, H.; Yang, G.; Lu, B.; Zhang, F. An update on recent progress of the epidemiology, etiology, diagnosis, and treatment of acute septic arthritis: A review. Front. Cell Infect. Microbiol. 2023, 13, 1193645. [Google Scholar] [CrossRef]
- Gandra, S.; Alvarez-Uria, G.; Turner, P.; Joshi, J.; Limmathurotsakul, D.; van Doorn, H.R. Antimicrobial Resistance Surveillance in Low- and Middle-Income Countries: Progress and Challenges in Eight South Asian and Southeast Asian Countries. Clin. Microbiol. Rev. 2020, 33, 10–1128. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Taneja, C.; Haque, N.; Oster, G.; Shorr, A.F.; Zilber, S.; Kyan, P.O.; Reyes, K.C.; Moore, C.; Spalding, J.; Kothari, S.; et al. Clinical and economic outcomes in patients with community-acquired Staphylococcus aureus pneumonia. J. Hosp. Med. 2010, 5, 528–534. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Gálvez, J.; Martínez-Marcos, F.J.; Plata-Ciezar, A.; De La Torre-Lima, J.; López-Cortés, L.E.; Noureddine, M.; Reguera, J.M.; Vinuesa, D.; García, M.V.; et al. Clinical and prognostic differences between methicillin-resistant and methicillin-susceptible Staphylococcus aureus infective endocarditis. BMC Infect. Dis. 2020, 20, 160. [Google Scholar] [CrossRef]
- de Kraker, M.E.; Wolkewitz, M.; Davey, P.G.; Koller, W.; Berger, J.; Nagler, J.; Icket, C.; Kalenic, S.; Horvatic, J.; Seifert, H.; et al. Clinical impact of antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob. Agents Chemother. 2011, 55, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Chen, S.Y.; Wang, J.T.; Wu, G.H.; Chiang, W.C.; Hsueh, P.R.; Chen, Y.C.; Chang, S.C. Comparison of both clinical features and mortality risk associated with bacteremia due to community-acquired methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus. Clin. Infect. Dis. 2008, 46, 799–806. [Google Scholar] [CrossRef] [PubMed]
- An, T.J.; Benvenuti, M.A.; Mignemi, M.E.; Martus, J.; Wood, J.B.; Thomsen, I.P.; Schoenecker, J.G. Similar Clinical Severity and Outcomes for Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Pediatric Musculoskeletal Infections. Open Forum Infect. Dis. 2017, 4, ofx013. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.J.; Park, D.A.; Kang, C.I.; Chung, D.R.; Song, J.H.; Lee, S.M.; Peck, K.R. Reevaluation of the impact of methicillin-resistance on outcomes in patients with Staphylococcus aureus bacteremia and endocarditis. Korean J. Intern. Med. 2019, 34, 1347–1362. [Google Scholar] [CrossRef]
- Lin, W.T.; Wu, C.D.; Cheng, S.C.; Chiu, C.C.; Tseng, C.C.; Chan, H.T.; Chen, P.Y.; Chao, C.M. High Prevalence of Methicillin-Resistant Staphylococcus aureus among Patients with Septic Arthritis Caused by Staphylococcus aureus. PLoS ONE 2015, 10, e0127150. [Google Scholar] [CrossRef]
- Lora-Tamayo, J.; Murillo, O.; Iribarren, J.A.; Soriano, A.; Sánchez-Somolinos, M.; Baraia-Etxaburu, J.M.; Rico, A.; Palomino, J.; Rodríguez-Pardo, D.; Horcajada, J.P.; et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin. Infect. Dis. 2013, 56, 182–194. [Google Scholar] [CrossRef]
- Ross, J.J.; Davidson, L. Methicillin-resistant Staphylococcus aureus septic arthritis: An emerging clinical syndrome. Rheumatology 2005, 44, 1197–1198. [Google Scholar] [CrossRef]
- Al-Nammari, S.S.; Bobak, P.; Venkatesh, R. Methicillin resistant Staphylococcus aureus versus methicillin sensitive Staphylococcus aureus adult haematogenous septic arthritis. Arch. Orthop. Trauma. Surg. 2007, 127, 537–542. [Google Scholar] [CrossRef]
- Mínguez, S.; Molinos, S.; Mateo, L.; Gimenez, M.; Mateu, L.; Cabello, J.; Olivé, A. Septic arthritis due to methylcyllin-resistant Staphylococcus aureus in adults. Reumatol. Clin. 2015, 11, 381–386. [Google Scholar] [CrossRef]
- Blot, S.I.; Vandewoude, K.H.; Hoste, E.A.; Colardyn, F.A. Outcome and attributable mortality in critically Ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Arch. Intern. Med. 2002, 162, 2229–2235. [Google Scholar] [CrossRef]
- Cosgrove, S.E.; Sakoulas, G.; Perencevich, E.N.; Schwaber, M.J.; Karchmer, A.W.; Carmeli, Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: A meta-analysis. Clin. Infect. Dis. 2003, 36, 53–59. [Google Scholar] [CrossRef]
- Li, Z.; Zhuang, H.; Wang, G.; Wang, H.; Dong, Y. Prevalence, predictors, and mortality of bloodstream infections due to methicillin-resistant Staphylococcus aureus in patients with malignancy: Systemic review and meta-analysis. BMC Infect. Dis. 2021, 21, 74. [Google Scholar] [CrossRef]
- Hunter, J.G.; Gross, J.M.; Dahl, J.D.; Amsdell, S.L.; Gorczyca, J.T. Risk factors for failure of a single surgical debridement in adults with acute septic arthritis. J. Bone Jt. Surg. Am. 2015, 97, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Walinga, A.B.; Stornebrink, T.; Emanuel, K.S.; Kievit, A.J.; Janssen, S.J.; Kerkhoffs, G. Failure rates in surgical treatment in adults with bacterial arthritis of a native joint: A systematic review of 8,586 native joints. Arch. Orthop. Trauma. Surg. 2023, 143, 6547–6559. [Google Scholar] [CrossRef] [PubMed]
- Ravn, C.; Neyt, J.; Benito, N.; Abreu, M.A.; Achermann, Y.; Bozhkova, S.; Coorevits, L.; Ferrari, M.C.; Gammelsrud, K.W.; Gerlach, U.J.; et al. Guideline for management of septic arthritis in native joints (SANJO). J. Bone Jt. Infect. 2023, 8, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Maneiro, J.R.; Souto, A.; Cervantes, E.C.; Mera, A.; Carmona, L.; Gomez-Reino, J.J. Predictors of treatment failure and mortality in native septic arthritis. Clin. Rheumatol. 2015, 34, 1961–1967. [Google Scholar] [CrossRef] [PubMed]
- McBride, S.; Mowbray, J.; Caughey, W.; Wong, E.; Luey, C.; Siddiqui, A.; Alexander, Z.; Playle, V.; Askelund, T.; Hopkins, C.; et al. Epidemiology, Management, and Outcomes of Large and Small Native Joint Septic Arthritis in Adults. Clin. Infect. Dis. 2020, 70, 271–279. [Google Scholar] [CrossRef]
- Richebé, P.; Coiffier, G.; Guggenbuhl, P.; Mulleman, D.; Couderc, M.; Dernis, E.; Deprez, V.; Salliot, C.; Urien, S.; Brault, R.; et al. Management and outcome of native joint septic arthritis: A nationwide survey in French rheumatology departments, 2016–2017. Ann Rheum Dis. 2022, 81, 1612–1621. [Google Scholar] [CrossRef]
- Straub, J.; Lingitz, M.T.; Apprich, S.; Staats, K.; Windhager, R.; Böhler, C. Early postoperative laboratory parameters are predictive of initial treatment failure in acute septic arthritis of the knee and shoulder joint. Sci. Rep. 2023, 13, 8192. [Google Scholar] [CrossRef]
- Lauper, N.; Davat, M.; Gjika, E.; Müller, C.; Belaieff, W.; Pittet, D.; Lipsky, B.A.; Hannouche, D.; Uçkay, I. Native septic arthritis is not an immediate surgical emergency. J. Infect. 2018, 77, 47–53. [Google Scholar] [CrossRef]
- Kodumuri, P.; Geutjens, G.; Kerr, H.L. Time delay between diagnosis and arthroscopic lavage in septic arthritis. Does it matter? Int. Orthop. 2012, 36, 1727–1731. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yoon, E.J.; Kim, D.; Shin, J.H.; Shin, J.H.; Shin, K.S.; Kim, Y.A.; Uh, Y.; Kim, H.S.; Kim, Y.R.; et al. Antimicrobial resistance in South Korea: A report from the Korean global antimicrobial resistance surveillance system (Kor-GLASS) for 2017. J. Infect. Chemother. 2019, 25, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.W.; Kim, H.J.; Hur, M.; Yun, Y.M. Antimicrobial susceptibility profiles of Staphylococcus aureus isolates classified according to their origin in a tertiary hospital in Korea. Am. J. Infect. Control. 2014, 42, 1340–1342. [Google Scholar] [CrossRef] [PubMed]
- Sendi, P.; Lora-Tamayo, J.; Cortes-Penfield, N.W.; Uçkay, I. Early switch from intravenous to oral antibiotic treatment in bone and joint infections. Clin. Microbiol. Infect. 2023, 29, 1133–1138. [Google Scholar] [CrossRef]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic penetration into bone and joints: An updated review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef]
- Li, H.K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M.; et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef]
- Brown, N.M.; Goodman, A.L.; Horner, C.; Jenkins, A.; Brown, E.M. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC Antimicrob. Resist. 2021, 3, dlaa114. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef]
- Newman, J.H. Review of septic arthritis throughout the antibiotic era. Ann. Rheum. Dis. 1976, 35, 198–205. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
MRSA (n = 39 [38.6]) | MSSA (n = 62 [61.4]) | Total (n = 101) | p-Value | |
---|---|---|---|---|
Age ≥ 65 years | 18 (46.2) | 26 (41.9) | 44 (43.6) | 0.677 |
Male | 21 (53.8) | 36 (58.1) | 57 (56.4) | 0.677 |
Comorbidities | ||||
Immunocompromised status | 5 (12.8) | 10 (16.1) | 15 (14.9) | 0.788 |
Solid tumor | 2 (5.1) | 2 (3.2) | 4 (4.0) | 1.000 a |
Hematologic malignancy | 1 (2.6) | 1 (1.6) | 2 (2.0) | 1.000 a |
Immunosuppressant agents | 4 (10.3) | 9 (14.5) | 13 (12.9) | 0.565 |
End-stage renal disease | 3 (7.7) | 2 (3.2) | 5 (5.0) | 0.372 a |
Liver cirrhosis | 1 (2.6) | 4 (6.5) | 5 (5.0) | 0.646 a |
Diabetes mellitus | 9 (23.1) | 23 (37.1) | 32 (31.7) | 0.188 |
Rheumatoid arthritis | 2 (5.1) | 4 (6.5) | 6 (5.9) | 1.000 a |
Osteoarthritis | 5 (12.8) | 12 (19.4) | 17 (16.8) | 0.430 |
Charlson comorbidity score b | 1.08 ± 1.56 | 1.02 ± 1.52 | 1.04 ± 1.52 | 0.847 |
Risk factors | ||||
Previous intra-articular injection | 12 (30.8) | 19 (30.6) | 31 (30.7) | 1.000 |
Previous acupuncture | 1 (2.6) | 6 (9.7) | 7 (6.9) | 0.244 a |
Previous arthroscopic procedure | 6 (15.4) | 6 (9.7) | 12 (11.9) | 0.529 a |
Recent blunt trauma | 8 (20.5) | 15 (24.2) | 23 (22.8) | 0.809 |
Hospital-acquired infection | 7 (17.9) | 1 (1.6) | 8 (7.9) | 0.005 a |
Involved joints | ||||
Knee | 22 (56.4) | 36 (58.1) | 58 (57.4) | 1.000 |
Hip | 3 (7.7) | 7 (11.3) | 10 (8.9) | 0.737 a |
Shoulder | 9 (23.9) | 10 (16.1) | 19 (18.8) | 0.438 |
Elbow | 4 (10.3) | 3 (4.8) | 7 (6.9) | 0.425 a |
Ankle | 1 (2.6) | 3 (4.8) | 4 (4.0) | 1.000 a |
Wrist | 1 (2.6) | 2 (3.2) | 3 (3.0) | 1.000 a |
Other small joints | 0 (0) | 3 (4.8) | 3 (3.0) | 0.282 a |
Polyarthropathy | 1 (2.6) | 2 (3.2) | 3 (3.0) | 1.000 a |
Clinical presentation | ||||
Body temperature ≥ 38 ℃ | 14 (35.9) | 29 (46.8) | 43 (42.6) | 0.308 |
Shock | 3 (7.7) | 5 (8.1) | 8 (7.9) | 1.000 a |
Mechanical ventilator | 3 (7.7) | 3 (4.8) | 6 (5.9) | 0.674 a |
Laboratory test at admission | ||||
WBC, ×109/mm3 | 11.5 (7.1–14.1) | 11.9 (10.-14.3) | 11.7 (9.5–14.1) | 0.619 |
CRP, mg/dL | 13.3 (0.1–42.0) | 13.5 (0.1–34.4) | 12.8 (7.7–21.4) | 0.399 |
ESR, mm/h | 81 (8–120) | 75 (7–124) | 77 (50–109) | 0.507 |
Acute kidney injury | 5 (12.8) | 8 (12.9) | 13 (12.9) | 1.000 |
Synovial fluid WBC, ×103/mm3 | 55.1 (35.6–111.75) | 113.1 (38.9–175.7) | 91.5 (37.8–158.5) | 0.182 |
Positive blood culture c | 13 (54.2) | 26 (57.8) | 39 (56.5) | 0.803 |
MRSA (n = 39 [38.6]) | MSSA (n = 62 [61.4]) | Total (n = 101) | p-Value | |
---|---|---|---|---|
Initial drainage modes | 33 (84.6) | 53 (85.5) | 86 (85.1) | 1.000 |
Time to drainage, days | 2.0 (0–4) | 1.0 (0–2) | 1.0 (0–3) | 0.093 |
Drainage ≤ 72 h | 20 (51.3) | 45 (72.6) | 65 (64.4) | 0.030 |
Repeated arthrocentesis | 4 (10.3) | 10 (16.1) | 14 (13.9) | 0.557 |
Arthroscopy | 21 (53.8) | 38 (61.3) | 59 (58.4) | 0.536 |
Arthrotomy | 8 (20.5) | 5 (8.1) | 13 (12.9) | 0.124 |
Surgical drainage ≥ 2 times b | 10 (25.6) | 11(17.7) | 21 (20.8) | 0.451 |
Appropriate antibiotics ≤ 48 h | 10 (25.6) | 62 (100) | 72 (71.3) | <0.001 |
Duration of antibiotic therapy, days | ||||
Total antibiotics | 37 (25–52) | 47 (33–69) | 44 (30–64) | 0.238 |
≤4 weeks | 13 (33.3) | 12 (19.4) | 25 (24.8) | 0.113 |
4–6 weeks | 9 (23.1) | 13 (21.0) | 21 (21.8) | 0.803 |
>6 weeks | 17 (43.6) | 37 (59.7) | 54 (53.5) | 0.115 |
Intravenous antibiotics | 29 (22–39) | 28 (21–41) | 28 (22–40) | 0.692 |
Oral antibiotics c | 0 (0–21) | 13 (0–31) | 12 (0–28) | 0.166 |
Hospital length of stay, days | 41 (31–74) | 34 (24–52) | 36 (25–59) | 0.266 |
Treatment failure | 13 (33.3) | 7 (11.3) | 20 (19.8) | 0.007 |
Death | 4 (10.3) | 1 (1.6) | 5 (5.0) | 0.072 a |
Repeated surgical drainage after 30 days of antibiotic therapy d | 7 (17.9) | 2 (3.2) | 9 (8.9) | 0.026 a |
Relapse after completed therapy e | 2 (5.1) | 5 (8.1) | 7 (6.9) | 0.704 a |
Antimicrobial Agents | Number of Susceptible Isolates (%) | p-Value | ||
---|---|---|---|---|
MRSA (n = 39) | MSSA (n = 62) | Total (n = 101) | ||
Clindamycin b | 19 (48.7) | 51 (82.3) | 70 (69.3) | <0.001 |
Erythromycin | 17 (43.6) | 50 (80.6) | 67 (66.3) | <0.001 |
Trimethoprim/sulfamethoxazole | 39 (100) | 61 (98.4) | 100 (99) | 1.000 a |
Rifampin | 39 (100) | 61 (98.4) | 100 (99) | 1.000 a |
Ciprofloxacin b | 27 (69.2) | 61 (98.4) | 88 (87.1) | <0.001 a |
Fusidic acid | 36 (76.9) | 42 (67.7) | 72 (71.3) | 0.564 |
Gentamicin | 27 (69.2) | 59 (95.2) | 86 (85.1) | <0.001 |
Penicillin | 0 (0) | 10 (16.1) | 10 (9.9) | 0.006 a |
Variable | Treatment Success (n = 81 [80.1]) | Treatment Failure (n = 20 [19.8]) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |||
MRSA | 26 (32.1) | 13 (65.0) | 3.93 (1.40–11.01) | 0.007 | 3.38 (1.09–10.46) | 0.035 |
Initial CRP (mg/dL) | 13.1 ± 8.3 | 21.5 ± 10.0 | 1.10 (1.04–1.17) | 0.002 | 1.09 (1.02–1.16) | 0.007 |
Charlson comorbidity score | 0.85 ± 1.53 | 1.8 ± 1.28 | 1.41 (1.04–1.90) | 0.008 | ||
Mechanical ventilator | 3 (3.7) | 3 (15) | 4.59 (0.85–24.72) | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, S.Y.; Sohn, K.M.; Kim, B.; Joo, E.-J. Methicillin Resistance Increased the Risk of Treatment Failure in Native Joint Septic Arthritis Caused by Staphylococcus aureus. Antibiotics 2023, 12, 1628. https://doi.org/10.3390/antibiotics12111628
Kim J, Park SY, Sohn KM, Kim B, Joo E-J. Methicillin Resistance Increased the Risk of Treatment Failure in Native Joint Septic Arthritis Caused by Staphylococcus aureus. Antibiotics. 2023; 12(11):1628. https://doi.org/10.3390/antibiotics12111628
Chicago/Turabian StyleKim, Jungok, So Yeon Park, Kyung Mok Sohn, Bomi Kim, and Eun-Jeong Joo. 2023. "Methicillin Resistance Increased the Risk of Treatment Failure in Native Joint Septic Arthritis Caused by Staphylococcus aureus" Antibiotics 12, no. 11: 1628. https://doi.org/10.3390/antibiotics12111628
APA StyleKim, J., Park, S. Y., Sohn, K. M., Kim, B., & Joo, E. -J. (2023). Methicillin Resistance Increased the Risk of Treatment Failure in Native Joint Septic Arthritis Caused by Staphylococcus aureus. Antibiotics, 12(11), 1628. https://doi.org/10.3390/antibiotics12111628